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A new method to study the retardation effects in mesons is presented. Inspired from the covariant
oscillator quark model, it is applied to the rotating string model in which a nonzero value is allowed for the
relative time between the quark and the antiquark. The straight line ansatz is used to describe the string,
and the relevance of this approximation is tested. This approach leads to a retardation term which behaves
as a perturbation of the meson mass operator. It is shown that this term preserves the Regge trajectories for
light mesons. As an illustration, we show that a satisfactory agreement with the experimental data can be
obtained if the quark self-energy contribution is added. The consequences of the retardation on the
Coulomb interaction and the wave function are also analyzed.
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I. INTRODUCTION

The retardation effect between two interacting particles
is a relativistic phenomenon, due to the finiteness of the
interaction speed. The light mesons are typical systems in
which the retardation mechanisms can significantly con-
tribute to the dynamics, since the light quarks can move at a
speed close to the speed of light. To take into account this
effect into effective models, one has to work with a fully
covariant theory. The most elegant approach, from a theo-
retical point of view, is the formalism with constraints
[1,2], but it quickly leads to complex equations, uneasy
to deal with if one wants to get analytical or numerical
results. Another covariant approach of mesons is the co-
variant oscillator quark model (COQM), which allows one
to find an analytical expression for the wave function and
numerical results in good agreement with the data [3,4].
Unfortunately, this model uses a quadratic potential, this
form being different from the linear potential, commonly
assumed to describe the confining part of the interaction
and suggested by lattice calculations. Moreover, vanishing
quark masses are not allowed in this approach.

Apart from these two approaches, most of the effective
models found in the literature are based on the equal time
ansatz, which simply takes the time coordinates of both
particles to be equal, neglecting the retardation effects.
This procedure allows one to deal with simpler equations,
and relativistic corrections can be obtained by developing
an expansion in v2=c2 of the model considered, like the
Bethe-Salpeter equation or even the QCD Lagrangian
[5,6].

The model we propose here is an attempt to include
retardation effects into the rotating string model (RSM)
[7,8] without making such an expansion, in order to esti-
mate the retardation contribution for light quarks. The
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RSM is an effective model derived from the QCD
Lagrangian, describing a meson by two spinless quarks
linked by a straight string. It has been shown that the RSM
was classically equivalent to the relativistic flux tube
model [9,10]. This last model, firstly presented in
Refs. [11,12], yields meson spectra in good agreement
with the experimental data [13]. Our method, inspired
from the COQM, relies on the hypothesis that the relative
time between the quark and the antiquark must have a
nonzero value. In our framework, the evolution parameter
of the system is not the common proper time of the quarks
and the string, but the time coordinate of the center of mass
which plays the role of an ‘‘average’’ time. In order to
simplify the calculations, the straight line ansatz is used to
describe the string.

Our paper is organized as follows. In Sec. II, we present
the general formalism of our approach. We compute the
retardation contribution to the meson mass in Sec. III. We
find different approximations for this contribution in
Sec. IV, with a special interest for light quarks, and we
numerically study the retardation effects in Sec. V. As our
model relies on unusual hypothesis, it is worth comparing
our results with those of other existing models. This is done
in Sec. VI. Finally, we compare the meson spectra of our
RSM including the retardation term with the experimental
data in Sec. VII. Some concluding remarks are given in
Sec. VIII. Appendix A contains some useful formulas. In
Appendix B, the relevance of the straight line ansatz is
studied.
II. THE ROTATING STRING MODEL WITH
NONZERO RELATIVE TIME

It has been shown that, starting from the QCD
Lagrangian and neglecting the spin contribution of the
quark and the antiquark, the Lagrange function of a meson
can be built from a Nambu-Goto action [7] which reads
(� � diag�� ���� and @ � c � 1)
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The two first terms are the kinetic energy operators of the
quark and the antiquark, whose current masses are m1 and
m2. These two particles are attached by a string with a
tension a. xi is the coordinate of the quark i and w is the
coordinate of the string. w depends on two variables de-
fined on the string world sheet: One is spacelike, �, and the
other timelike, �. Derivatives are denoted w0 � @�w and
_w � @�w. In this picture, � is a common proper time for the

string and the quarks. Introducing auxiliary fields to get rid
of the square root in the Lagrangian (1) and making the
straight line ansatz to describe the string, an effective
Lagrangian can be derived [8]:

L � �
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;

(2)

where the coefficients a1, a2, . . ., given at this stage by
formulas (A1), depend on various auxiliary fields �1, �2,
�, and �. The parameter � defines the position R of the
center of mass: R � �x1 � �1� ��x2. r is the relative
coordinate r � x1 � x2. The auxiliary fields �1 and �2

are seen as constituent masses for the quarks, and � can be
interpreted in the same way as an effective energy for the
string whose ‘‘static’’ energy is ar [9,10]. Let us note that
the straight line ansatz for the string implies w �
R� ��� ��r.

The total and relative momentum, computed from the
Lagrangian (2), are, respectively,

P� �
@L

@ _R�
� �a1

_R� � a2 _r� � �c1 � _�a1�r�; (3a)

p� �
@L
@ _r�
� �a2

_R� � a3 _r� � �c2 � _�a2�r�: (3b)

As we will work in the center of mass frame, the total
vector momentum ~P of the system must vanish, which
implies that

_~R �
�c1 � _�a1�~r� a2

_~r
a1

: (4)

Moreover, the relative vector momentum ~p is given by

~p � a2
_~R� a3

_~r� �c2 � _�a2� ~r: (5)

Thus, we impose a2 � 0 in order that ~p does not depend on
the motion of the center of mass. This leads to the follow-
ing value for the parameter � :

� �
�1 �

R
1
0 d���

�1 ��2 �
R

1
0 d��

: (6)
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Equation (6) reduces to � � 1=2 in the symmetrical case
(m1 � m2) and to � � m1=�m1 �m2� in the nonrelativistic
limit, as expected [10].

To go a step further, one usually takes the temporal
coordinates of the quarks and the string to be equal to the
common proper time �, this time being also the time t in
the center of mass frame

x0
1 � x0

2 � w0 � � � t: (7)

Then, we have r � �0; ~r�, R � �t; ~R�, _r � �0; _~r�, and _R �

�1; _~R�. This procedure allows one to deal with simpler
equations, but neglects the relativistic retardation effects
due to a possible nonzero value of the relative time r0.
Since these effects are precisely those we want to study in
this paper, we have to make a less restrictive hypothesis. As
in the formalism of the COQM [3,4], we define

r � ��; ~r�; R � ��t; ~R�: (8)

The temporal coordinate of the center of mass, �t, can be
seen as an ‘‘average time’’ for the meson. This is particu-
larly clear in the symmetrical case, where �t � �x0

1 � x
0
2�=2.

Our choice is to take �t as the evolution parameter of the
system. We identify it as the common proper time for the
quarks and the string, and the dotted quantities are derived
with respect to �t. We have for example

_r � � _�; _~r�; _R � �1; _~R�: (9)

The special case � � 0 is equivalent to the relation (7).
It is worth noting that the use of a nonvanishing relative

time is not really compatible with the straight line ansatz.
This can be seen by the following simple considerations:
let us assume that the world sheet of the system in the
center of mass frame is a helicoid area in the case of
exactly circular quark orbits; the shape of the string is a
straight line for a slice at constant time and a curve for a
slice not at constant time. A correct computation of the
retardation effects certainly requires to solve the string
equation of motion for the shape of the string induced by
the motion of its extremities, the quarks. Such an attempt is
performed in Ref. [14], but within the equal time approxi-
mation and the assumption of small deviations from the
straight line. In this last paper, it is shown that the curvature
of the string between the quarks could produce shifts of at
most few MeV for meson masses. A crude estimation of a
possible bending of the string is performed in Appendix B
and the result seems to agree with such small deviations. To
take into account a possible curvature of the string within
our model is a complex problem far beyond the scope of
this paper. So we will work with the straight line approxi-
mation for the string in the following.

The Lagrangian (2) can now be rewritten using formulas
(4), (5), (8), and (9) as

L � L0 � �L; (10)
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with
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2: (12)

We have gathered the relative time dependent terms in �L,
which contains the contribution of the retardation. Let us
remark that the Lagrangian L0 does not depend on _� .

We shall consider in the following �L as a perturbation
of L0. With this hypothesis, the auxiliary fields � and �
can be eliminated by considering only the constraint
�L0 � 0. The extremal values of these auxiliary fields �
and � are given by [10]

�0 � 	���
�; (13a)

�0 �
ar������������������������������������������������

1� �y1 � y2�
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p ; (13b)

with 	 � ��� ~p � ~r�=� ~�r2��, 
 � �1=��1 ��2�, ~� �
��1�2�=��1 ��2�, and yi is the transverse velocity of
the quark i. In Ref. [10], it is shown how a set of three
equations can be derived from the Lagrangian (11), to
define the RSM:

0 � �1y1 ��2y2 �
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�
��������������
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with

F�yi� �
1
2�arcsinyi � yi

��������������
1� y2

i

q
� and yt � y1 � y2;

(14d)

where pr is the radial momentum. The first relation gives
the cancellation of the total momentum in the center of
mass frame, while the two last ones define, respectively,
the angular momentum and the Hamiltonian. As we can
see in Eqs. (14), the only remaining auxiliary fields are �i.
Let us remark that a closed form cannot be obtained for the
Hamiltonian H0 because it is impossible to eliminate ana-
lytically the variables y1 and y2 as a function of L, by
means of the two first Eqs. (14).

Since we have a contribution from the relative time, the
total Hamiltonian is given by
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H � H0 ��H; (15)

with

�H � � _���L: (16)

With � � @L=@�, Eq. (3b) leads to

_� �
c2���

a3
; (17)

and finally we obtain

�H � �
�2

2a3
�
c2

a3
��� �c1 � _�a1���

c2
2

2a3
�2

�
1

2
�a4 � 2 _�c1 � _�2a1��2; (18)

the perturbation of the RSM Hamiltonian due to the re-
tardation effect.

In the following, for simplicity, we will focus on the
symmetrical case. Then _� � 0, c1 � 0, and the Hamil-
tonian (18) becomes

�H � �
1

2a3
��2 � 2c2��� �c2

2 � a4a3��
2�; (19)

where the coefficients a3, a4, and c2 are now given by
formulas (A3). Whether �H is really a perturbation or not
has to be verified. We will check this hypothesis a poste-
riori by a numerical computation of the retardation con-
tribution to the meson masses (see Sec. V).
III. RETARDATION EFFECTS

A. Contribution to the mass

Up to now, we were working in a classical framework. In
order to study the influence of the retardation on the meson
spectrum, we have to consider a quantized version of the
total RSM Hamiltonian H0 ��H. We can thus replace L
by

������������������
‘�‘� 1�

p
and consider r and � as operators such that

�r; pr� � i; ��;�� � �i: (20)

The total Hamiltonian has schematically the following
structure:

H��; r� � H0�r� ��H��; r�: (21)

The relative time � only appears in the perturbation, and
H0 only depends on the radius r. So, we make the follow-
ing ansatz to write the total wave function

j �r�i � jR�~r�i 	 jA���i; (22)

where jR� ~r�i is a solution of the eigenequation

H0�r�jR� ~r�i � M0jR�~r�i: (23)

Such a problem can be solved, for instance, by the
Lagrange mesh technique [15]. The total mass is written
-3
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M � M0 � hA���j 	 hR� ~r�j�H�r; ��jR�~r�i 	 jA���i

� M0 � �M: (24)

The contribution �M is then given by the solution of the
eigenequation,

�H ���jA���i � �MjA���i; (25)

where

�H ��� � hR� ~r�j�H�r; ��jR� ~r�i: (26)

In order to eliminate the unphysical excitations of the
relative time, we consider only the ground state of the
Hamiltonian �H ���, as it is done in Refs. [3,4]. Using
formula (19), this Hamiltonian is defined by

�H 
 �
1

2ha3i
��2 � hc2if�; �g � hc

2
2 � a4a3i�

2�;

(27)

where all mean values h i are computed with a space
function R� ~r� and where fA;Bg � AB� BA. We also use
the approximation h1=xi 
 1=hxi.

Using Eqs. (13a) and (A3), we see that c2 / 	. Since we
are in the symmetrical case, we can assume h	i � 0, and so
hc2i � 0. On the contrary, hc2

2i � 0 because hp2
ri> 0.

Finally the Hamiltonian �H takes its final form:

�H � �
1

2ha3i
��2 � hc2

2 � a4a3i�2�: (28)

With our approximations, the retardation contribution to
the Hamiltonian looks like a harmonic oscillator for the
canonical variables ��;��. Let us define

�2 � c2
2 � a4a3: (29)

Thanks to formulas (A1), we can compute �2:
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q
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Assuming that h�2i> 0 (this is checked in Sec. IV), the
ground state solution of the eigenequation (25) is given by

�M � �1
2!; (31a)

A��� �
�
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q
; (31c)
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�
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An immediate conclusion to draw from Eqs. (31) is that
the retardation effects bring a negative contribution to the
meson masses, and that the more probable value for the
relative time is � � 0. It is worth noting that these results
are formally identical to those of the COQM. In Sec. VI,
we compare the two approaches with more details.

Let us recall that this result is obtained within the
straight line ansatz approximation for the rotating string.
The calculations of Appendix B indicate that the curvature
of the string could be weak. Moreover, it has been shown
that a curved string model, within the equal time approxi-
mation, gives nearly the same results as a straight string
model, even in the case of massless quarks [14]. Since a
curved string has a greater energy content than a straight
string for the same quark separation, we can expect that the
decrease of meson masses is overestimated within our
model. But this effect could be very weak.

B. Modification of the Coulomb term

In the RSM, the string contribution takes into account
the interactions at large distances, which are responsible
for the confinement. To make more realistic models, it is
necessary to add short range potentials [13]. For instance,
the one gluon exchange mechanism can be simulated by a
Coulomb term,

VC�r� � �
4

3

�S
r
; (32)

with�S the strong coupling constant. This formula must be
modified if we consider the retardation effects. Indeed, the
quark and the antiquark are able to exchange one gluon if
their separation r is lightlike, that is to say if �2 � r2 � 0.
The probability for � to be negative or positive is

p��< 0� �
Z 0

�1
d�A���2 �

1

2
� p��> 0�: (33)

Consequently, as in the COQM [3,4], we make the follow-
ing substitution:

VC ! VC
1

2�
����� r� � ���� r��; (34)

where � is an energy scale which is introduced so as to give
the correct dimension. This parameter is purely phenome-
nological and could depend on the quark masses [3]. In this
paper, we assume that � is a constant. The effective
Coulomb potential ~VC, treated as a perturbation, is then
computed with the relation

~V C �
Z �1
�1

d�A���2VC
1

2�
����� r� � ���� r��;

(35)

and we obtain a damped effective Coulomb potential,

~V C � �
4

3

�S
�r

�
�



�
1=2

exp���r2�: (36)
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IV. APPROXIMATIONS FOR �M

The key ingredient to compute the retardation term (31a)
is the knowledge of �2 and a3, respectively, given by
formulas (30) and (A3). As these expressions are compli-
cated, we will try to get various simpler ones following the
value of the quark massm. In the following we will use two
limiting cases for a3 and �2 quantities: y � 0 corresponds
to a vanishing angular momentum or to a very high mass,
and y � 1 corresponds to a very high angular momentum
or to a very small mass. Both situations are summarized in
Table I.

The solutions of the RSM equations are, in good ap-
proximation, very close to the solutions of a two-body
spinless Salpeter equation with a linear potential

HSS � 2
������������������
~p2 �m2

q
� ar (37)

and with the pure string correction treated as a perturbation
[16]. For massless quarks, this correction is only about 6%
of the meson mass [17]. So, we will work with the
Hamiltonian HSS without the string correction, except in
Sec. VII. Actually, this approximation is equivalent to
consider the RSM at the order y2 [17]. Within this frame-
work, the extremal value of the auxiliary field � is [9,17]

� �
������������������
~p2 �m2

q
: (38)

We have then

hp2
ri 
 h�i2 �m2 �

‘�‘� 1�

hri2
; (39)

and 0< hp2
ri � h�i2.

A. High quark mass

If we assume that h�i 
 ahri, we can set y 
 0. In this
case, the relations (31a) and (31c) with h�i 
 ahri reduce
to

�h 


�����������
ah�i
2hri

s ���������������������
1�

hp2
ri

3h�i2

s
; (40)

�Mh 
 �

����������������
a

2h�ihri

s ���������������������
1�

hp2
ri

3h�i2

s
: (41)

It is clear that h�2i is positive. If m is very large, the
dynamical effects can be neglected and, using h�i 
 m,
TABLE I. Values of a3 and �2 for y � 0 and y � 1.

y � 0 y � 1

a3
�
2
�
ar
12

�
2
�

ar
16

�2 a�
2r
�
a2

12
�
ap2

r

6�r

a�

8r
�

2a2

64
�

ap2

r

8�r
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we have

�hh 


���������
am
2hri

s
; (42)

�Mhh 
 �

������������
a

2mhri

s
: (43)

The eigenvaluesM0 are then given with a good accuracy by
[18]

M0 
 2m�
�
a2

m

�
1=3
�n‘; (44)

where �n‘ is an eigenvalue of the dimensionless
Hamiltonian � ~q2 � j ~xj�. The nonrelativistic virial theorem
implies that

ahri �
2

3
�M0 � 2m� �

2

3

�
a2

m

�
1=3
�n‘: (45)

So we obtain

�hh 

�am�2=3

2

�������
3

�n‘

s
; (46)

�Mhh 
 �
1

2

�
a2

m

�
1=3

�������
3

�n‘

s
: (47)

Approximate values for the quantities �n‘ can be found in
Ref. [17].

B. Vanishing quark mass

In this section, we will work with the Hamiltonian HSS

for m � 0. With these conditions, the relativistic virial
theorem [19] gives the following results [9]:

M0 
 hHSSi � 4h�i; (48)

ahri � 2h�i: (49)

A good approximation for h�i is given by [17]

h�i 

���
a
p

�
�nl
3

�
3=4
: (50)

Let us first focus on the case ‘ � 0, for which y � 0 and
hp2

ri 
 h�i
2. Thanks to these relations, we have for light

quarks

�lj‘�0 �
a
2
; (51)

�Mlj‘�0 � �
3a

2M0
: (52)

Secondly, let us consider the case ‘
 1, for which we can
assume that y � 1. We then find
-5
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�lj‘
1 �
a
4

������������������������������������������


�
1�



4
�

16hp2
ri

M2
0

�s
; (53)

�Mlj‘
1 � �
a
M0

�
4

4� 


� ������������������������������������������


�
1�



4
�

16hp2
ri

M2
0

�s
: (54)

Combining Eqs. (39), (48), and (49), we find

hp2
ri 
 h�i2 �

64a2‘�‘� 1�

M4
0

: (55)

Consequently, for massless quarks with high angular mo-
mentum, we have

�lj‘
1 �
a
4

�����������������������������������������������


�


4
�

64a2‘�‘� 1�

M4
0

�s
; (56)

�Mlj‘
1 � �
a
M0

�
4

4� 


� �����������������������������������������������


�


4
�

64a2‘�‘� 1�

M4
0

�s
:

(57)

Again, h�2i is positive for ‘ � 0 and ‘
 1.
In good approximation, it appears that

�Ml /
1

M0
: (58)

The square meson mass composed of light quarks is then
given by

M2
l 
 M2

0 � 2M0�Ml; (59)

where the term �M2
l is neglected. This shows that the

retardation term only causes a global shift of the square
meson masses and consequently preserves the Regge tra-
jectories, since M2

0 / ‘ for large values of ‘ [16,17].
FIG. 1. Comparison between the exact retardation term and the
different approximations of Sec. IV for various quark masses,
with a � 0:2 GeV2 and ‘ � n � 0.
V. NUMERICAL RESULTS

In order to obtain better values for the contribution of the
retardation, we will compute it at the second order in y. In
this case, the quantities a3 and �2 become

ha3i 


�
ahri
12
�
h�i
2

�
�

1

40
ahrihy2i; (60a)

h�2i 


�
a2

12
�

ahp2
ri

6h�ihri
�
ah�i
2hri

�

�

�
a2

90
�

ahp2
ri

20h�ihri
�
ah�i
12hri

�
hy2i: (60b)

These expressions can be calculated using the relation [17]

hy2i 

‘�‘� 1�

hri2�ahri=6� h�i�2
: (60c)

In the following, the retardation contribution obtained
thanks to Eqs. (60) will be called ‘‘exact’’ by opposition
to the more approximate formulas obtained in Sec. IV, and
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it will be simply denoted by �M. The exact contribution is
compared to the approximate ones in Fig. 1 (h�2i is always
positive). In this graph, ‘ � n � 0, but the qualitative
features of the curves are the same for other quantum
numbers. We can thus determine a validity domain for
each approximation. In fact, �Ml is the best for m<
0:175 GeV (u, d quarks, which are commonly denoted
n). For 0:175 GeV<m< 4:0 GeV (s, c quarks), �Mh is
rather good, and for masses larger than 4:0 GeV (b quark),
�Mhh works well. As expected, the retardation contribu-
tion is less important when the quark mass is larger, for
which a nonrelativistic treatment is more justified. One
could ask how the systematic substitution h�2i ! h�i2

does affect the results. Actually, the values obtained by
the two methods differ at most by 5%. So, we will maintain
our choice, which is to use systematically powers of h�i.

We focus now on the light quarks, especially the mass-
less case: The retardation effects are indeed expected to be
the largest when m � 0, for which the motion is the most
relativistic. Typical behaviors of �M with ‘ and n are
shown in Fig. 2. If we take a � 0:2 GeV2, the ground state
mass M0 is 1:413 GeV. The contribution of the retardation
is �0:205 GeV. So, in the worst case, the contribution is
about 15% of the nonperturbed mass. This result justifies a
posteriori the perturbative theory we built in Secs. II and
III. Moreover, we see that, for a fixed quark mass, the
retardation contribution decreases when the different quan-
tum numbers, ‘ or n, increase. This means that the key
element is not the quark mass m, but its constituent mass
h�i [20] which also increases with these quantum num-
bers. The more the constituent mass is large, the more the
retardation effect is small.

In Sec. IV, we showed that the retardation only causes a
global shift of the Regge trajectories for light quarks. Even
if this result is only approximate, we can check in Fig. 1
-6



FIG. 4. Pure Coulomb potential with �S � 0:4 (straight line),
and effective Coulomb potentials for m � 0 and m �
4:660 GeV with � � 1 GeV (dotted lines).

FIG. 2. Exact retardation term versus ‘ for n � 0 (filled
circles) and n for ‘ � 0 (empty circles), with a � 0:2 GeV2

and m � 0.
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that we can have confidence in our formula �Ml when
m � 0. As a supplementary test in this case, we have
plotted in Fig. 3 the square meson masses versus the
angular momentum, with and without the exact retardation
term. We clearly see that the linearity of the Regge trajec-
tories is preserved as well as the slope.

Another interesting quantity to study is �, given by
Eq. (31c), the size of the relative time part of the wave
function (31b) and the range of the effective Coulomb
potential (36). Let us see what happens for two extreme
cases: the n quark and the b quark, for which we takemn �
0 and mb � 4:660 GeV. For n � ‘ � 0, �l, used for the n
quark, is given by formula (51). For the b quark, we can use
formula (46). For a standard value a � 0:2 GeV2, we find
FIG. 3. Regge trajectories with exact retardation term (circles)
and without (triangles), for n � 0 and 1, with m � 0 and a �
0:2 GeV2.
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�hhj‘�n�0 � 0:542 GeV2 
 �lj‘�n�0 � 0:1 GeV2:

(61)

So, the wave function is much more peaked around � � 0
when the mass increases. The numerical evaluation with
Eqs. (60) gives

�j‘�n�0 � 0:533 GeV2 
 �j‘�n�0 � 0:096 GeV2;

(62)

a result very close to the approximate one (61).
The parameter � also considerably affects the Coulomb

potential through Eq. (36), as shown in Fig. 4. We will see
in Sec. VII that the effective potential can become very
small with respect to the retardation term.

VI. COMPARISON WITH OTHER APPROACHES

Since the relative time is introduced in the same way for
our model and the COQM, both approaches share some
common properties. For instance, the relative time part of
our wave function Eq. (31b) and the counterpart in the
COQM have the same form. In this last model, for two
quarks with the same mass m, we have [3,4]

A��� �
�
	



�
1=4

exp
�
�
	
2
�2

�
with 	 �

��������
mK

2

s
; (63)

where K is a constant related to the interquark potential

U � �1
2Kr

2: (64)

Moreover, this model predicts also linear Regge trajecto-
ries, with a constant square mass shift �M2

COQM due to the
retardation which is given by

�M2
COQM � �2

�����������
2mK
p

: (65)

Besides this formal similarities, the physical content of
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TABLE II. Comparison between the COQM and our model.

COQM Our model

Mass operator square mass operator ordinary Hamiltonian
Confinement quadratic linear
Allowed masses nonzero all
Treatment of retardation exact in perturbation
Time and space decoupling complete and exact partial and approximate
Shift in energy negative and constant negative and state dependent
Relative time wave function Gaussian with constant size Gaussian with state dependent size
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these two models are nevertheless very different: A com-
parison is made in Table II.

A more usual method to get relativistic corrections (in-
cluding retardation) is to consider the v2=c2 terms of the
Bethe-Salpeter equation or of the Wilson loop formulation
of QCD. This was done, for example, in Refs. [5,6]. In
Ref. [6], the relativistic correction to the linear confine-
ment potential due to the retardation is given by
�M � �
�
a

m2

�
‘�‘� 1�

2r
� rp2

r

��
: (66)
As this correction term is obtained by an expansion in
v2=c2, one could expect that the best agreement with our
method will be obtained for large quark masses. However,
these corrections are very different from our term (43). In
particular, the correction (43) decreases with the quantum
numbers n and ‘ because it decreases with the constituent
mass, but the contribution (66) increases with these quan-
tum numbers. So, our approach does not lead to a non-
relativistic limit compatible with previous works.

Actually, in order to obtain linear Regge trajectories, it is
necessary to obtain �M / 1=M [see Eq. (59)] for light
quark systems. But, for heavy quark systems, one could
expect that �M / 1=m2 withm 
 M=2. Our model clearly
misses this transition. A proper treatment in a covariant
formalism with constraints could probably cure this flaw,
but it is out of the scope of this paper.
TABLE III. Our set of physical parameters.

a � 0:192 GeV2 �S � 0:4
mn � 0 � � 1:0 GeV
mb � 4:660 GeV f � 3:0

� � 1:0 GeV
VII. COMPARISON WITH EXPERIMENTAL DATA

We saw in Sec. VI that our formalism had unusual
features, compared with already known results. Despite
the crude approximations used, it can be interesting to
verify if its predictions are compatible with the experimen-
tal data. We will make here such an attempt with the n �n and
b �b mesons, in order to check our model in different mass
domains. The ingredients we put in our model are the
Hamiltonian (37) including the string correction [16,17],
the exact retardation term �M, the effective Coulomb
potential (36) treated as a perturbation, and the quark
self-energy [21].
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The string correction has the following form:

�Mstring � �
a‘�‘� 1�h1=ri
h�i�6h�i � ahri�

: (67)

The quark self-energy is due to the color magnetic moment
of the quark propagating through the vacuum background
field, and it has been shown that it brings a contribution to
the meson mass given in the symmetrical case by

�MQSE � �
fa


��m=��
h�i

; (68)

with f 2 �3; 4� and � 2 �1:0; 1:3� GeV. The function � is
given, for instance, in Ref. [17], in which a more detailed
discussion about the quark self-energy and its consequen-
ces on the meson spectrum can be found. Let us note that
��0� � 1.

The physical parameters we use are given in Table III.
We have tried as much as possible to choose standard
values: a � 0:192 GeV2 and �S � 0:4 are widely used,
and mb � 4:660 GeV is an acceptable value for the b
quark. The parameter f is fixed at 3, which is the value
obtained by simulations in unquenched lattice QCD calcu-
lations [22]. The value � � 1:0 GeV is used, but this
choice has a very little influence [17]. Finally, we fix � �
1:0 GeV in order to find, with the above parameters, the n �n
ground state near the center of gravity of the 
 and �
mesons, at 612.5 MeV (see below).

Since our model includes neither the spin (S) nor the
isospin (I) of the mesons, the experimental data chosen are
the spin and isospin averaged masses for the light mesons,
denoted Mav (see Table IV). These are given by [23]

Mav �

P
I;J
�2I � 1��2J� 1�MI;JP
I;J
�2I � 1��2J� 1�

; (69)
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TABLE IV. Comparison between the spin averaged masses
Mav of some n �n family states (see Ref. [17] for more details)
and the numerically computed masses M (24) of our model. The
first three columns present the different states used to compute
the spin averaged masses. The last column gives the contribution
of the effective Coulomb term.

Family N2S�1LJ Mav (GeV) M (GeV) h ~VCi (MeV)

� 12S�1SJ 0:613� 0:011 0:631 �19
a2�1320� 12S�1PJ 1:265� 0:011 1:235 �6
��1700� 12S�1DJ 1:676� 0:012 1:669 �3
a4�2040� 12S�1FJ 2:015� 0:012 2:022 �1
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with ~J � ~L� ~S. MI;J are the different masses of the states
with the same orbital angular momentum ‘. For the b �b
mesons, we present results for the radial excitation of the �
(see Table V). These data are taken from Ref. [24].

We see in Table IV that our results are in good agree-
ment with the spin averaged masses. For all states, the
relative error is below 3%. Actually, it is not very surpris-
ing since our model predicts linear Regge trajectories,
which is the main feature of the light meson spectra. Our
results show that, with reasonable effective QCD parame-
ters, it is possible to obtain for these Regge trajectories a
good intercept. The quality of the spectra of light mesons
obtained here is similar to the ones found in other potential
models [11].

Let us note that, for all states, the influence of the
effective Coulomb term is very small and could be ne-
glected. Its role in lowering the mass is played by the
contribution of the retardation. With a smaller value for
the parameter �, the contribution of the Coulomb term
could be enhanced, but probably to values below those
obtained in other potential models.

As can be seen in Table V, the relative error between the
data and our results is below 1% for the mesons �. For so
heavy quark, the potential-like description used here is
certainly more justified. As expected in this case since �
is larger, the contribution of the Coulomb potential is
larger. Heavy quark systems being more sensitive to the
TABLE V. Same as in Table IV, but for the masses Mexp of
some b �b mesons. The experimental error bars are smaller than
10 MeV and are not indicated.

State N2S�1LJ Mexp (GeV) M (GeV) h ~VCi (MeV)

��1S� 13S1 9.460 9.582 �87
��2S� 23S1 10.023 9.990 �52
��3S� 33S1 10.355 10.294 �40
��4S� 43S1 10.580 10.555 �33
��10 865� 53S1 10.865 10.788 �29
��11 020� 63S1 11.019 11.002 �26
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very short range part of the interaction, better results could
probably be obtained by using a running coupling constant
�S�r�. But this is out of the scope of this paper.
VIII. CONCLUSION

In this paper, the retardation effects in mesons are taken
into account by the introduction of a nonzero relative time
in the rotating straight line string Hamiltonian [7,8], fol-
lowing a procedure inspired by the covariant oscillator
quark model [3,4]. Treated as a perturbation, the part of
the total Hamiltonian containing the retardation terms is a
harmonic oscillator in the relative time variable, with an
effective reduced mass and an effective restoring force
both depending on eigenstates of the Hamiltonian inde-
pendent of the relative time. The fundamental state of this
oscillator gives the contribution of the retardation to the
masses as well as the relative time part of the wave func-
tion. The introduction of the retardation also affects the
Coulomb part of the interaction, which is replaced by an
effective damped potential. Systems containing two parti-
cles with the same mass are only considered, but our
approach leads to several interesting results.

In the light quark sector, the contribution of the retarda-
tion is not negligible (around 200 MeV for massless
quarks) but it is small enough to justify a perturbative
treatment. Within this approach, the Coulomb interaction
is strongly reduced but the meson masses are lowered by
the contribution of the retardation. The linearity of the
Regge trajectories is preserved, which is the most impor-
tant feature of our model. At last, the relative time wave
function is a Gaussian function centered around zero,
which confirms the validity of the equal time ansatz in first
approximation.

When the quark mass increases, the contribution of the
retardation to the meson masses decreases slowly. The
relative time wave function becomes more and more
peaked around zero, as expected. Unfortunately, our model
does not lead to a nonrelativistic limit in agreement with
previous works. This is probably due to the treatment of the
relative time which is not compatible with a proper elimi-
nation of this unphysical degree of freedom [1,2].

As an illustration, we compute the masses of some light
and heavy meson spectra. When an effective Coulomb
potential and the quark self-energy [17] are included in
our rotating string model with the retardation effects,
masses compatible with experimental data can be obtained.
The quality of our results are similar to the ones obtained
by other potential models.

This work must be considered as a first trial to compute
easily the retardation effects in mesons. The simplified and
approximate approach (straight line ansatz, treatment in
perturbation, partial and approximate time and space de-
coupling) used here has no firm theoretical basis, but it
shows that the contribution of these mechanisms to the
masses could be non-negligible. Moreover, the importance
-9
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of the retardation correction are not controlled by the
quark mass m but by its constituent-state dependent-mass

h
������������������
~p2 �m2

p
i [20].
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APPENDIX A: COEFFICIENTS OF THE
LAGRANGIAN

The coefficients used in the Lagrangian (2) are defined
by
a1 � �1 ��2 �
Z 1

0
d��; (A1a)

a2 � �1 � ���1 ��2� �
Z 1

0
d���� ���; (A1b)

a3 � �1�1� ��
2 ��2�

2 �
Z 1

0
d���� ��2�; (A1c)

a4 �
Z 1

0
d�
�
�2��

a2

�

�
; (A1d)

c1 �
Z 1

0
d���; (A1e)

c2 �
Z 1

0
d���� ����: (A1f)
Using the extremal values (13a) and (13b) of the auxiliary
fields � and �, we can compute the following relations:
Z 1

0
d�� �

ar
yt
�arcsins�y1

�y2
; (A2a)

Z 1

0

d�
�
�

1

2aryt
�s

��������������
1� s2

p
� arcsins�y1

�y2
; (A2b)

Z 1

0
d���� ��� � �

ar

y2
t
�
��������������
1� s2

p
�
y1
�y2
; (A2c)

Z 1

0
d���� ��2� �

ar

2y3
t
��s

��������������
1� s2

p
� arcsins�y1

�y2
: (A2d)
In the symmetrical case, we have �1 � �2 � �, m1 �
m2 � m, y1 � y2 � y, yt � 2y, � � 1=2, 
 � 1=2, and
~� � �=2. Equations (A1) are in this case given by
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a1 � 2��
ar
y

arcsiny; (A3a)

a2 � 0; (A3b)

a3 �
�
2
�
ar

8y3 ��y
��������������
1� y2

q
� arcsiny�; (A3c)

a4 � �
a

2ry
�y

��������������
1� y2

q
� arcsiny�

� 	2 ar

8y3 ��y
��������������
1� y2

q
� arcsiny�; (A3d)

c1 � 0; (A3e)

c2 � 	
ar

8y3 ��y
��������������
1� y2

q
� arcsiny�: (A3f)
APPENDIX B: RELEVANCE OF THE STRAIGHT
LINE ANSATZ

The meson wave function has a mean extension in the

relative time T� given by the value
���������
h�2i

p
. With the ex-

pression (31b), we obtain

T� �
1�������
2�
p : (B1)

The time Tq spent by a quark to travel a complete orbit can
be estimated by

Tq �

hri
hvi

; (B2)

where hvi is the mean speed of a quark. Following the
simple considerations of Sec. II about the world sheet of
the string, we can consider that the bending of the string is
weak if the ratio R � T�=Tq is small with respect to 1.

In the ultrarelativistic case (m � 0), we can take hvi 

1. Using the formulas of Sec. IV B for ‘
 1, we obtain
R 
 0:15 for n � 0 and ‘ � 1 (R is independent of awhen

m � 0). In the nonrelativistic case, we can compute hvi 
���������
h ~p2i

p
=m. Using the formulas of Sec. IVA, we obtain

R �
1

2


�
a

m2

�
1=3
�

3

�nl

�
1=4
: (B3)

This ratio decreases with the quark mass. For typical b
mass values and a � 0:2 GeV2, we find R 
 0:03 for n �
0 and ‘ � 1. In both ultrarelativistic and nonrelativistic
cases, the ratio R is small and decreases with increasing
values of n and ‘. This is an indication that the bending of
the string could be weak.
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