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Since rotational or similar modulation of the solar neutrino flux would seem to be incompatible with the
currently accepted theoretical interpretation of the solar neutrino deficit, it is important to determine
whether or not such modulation occurs. There have been conflicting claims as to whether or not power-
spectrum analysis of the Super-Kamiokande solar neutrino data yields indication of variability.
Comparison of these claims is complicated by the fact that the relevant articles may use different data
sets, different methods of analysis, and different procedures for significance estimation. The purpose of
this article is to clarify the role of power-spectrum analysis. To this end, we analyze primarily the Super-
Kamiokande 5-day data set, and we use a standard procedure for significance estimation as used by the
Super-Kamiokande collaboration. We then analyze this data set, with this method of significance
estimation, using six methods of power-spectrum analysis. Five of these have been used in published
articles, and the other is a method that might have been used. We find that, with one exception, the results
of these calculations are consistent with those of previously published analyses. We find that the power of
the principal modulation (that at 9:43 yr�1) is greater in analyses that take account of error estimates than
in the basic Lomb-Scargle analysis that does not take account of error estimates. The corresponding
significance level ranges between 98% and 99.3%, depending on the details of the analysis. Concerning
the recent article by Koshio, we find that we can reproduce the results of his power-spectrum analysis but
not the results of his Monte Carlo simulations, and we have a suggestion that may account for the
difference. We also comment on a recent article by Yoo et al. We discuss, in terms of subdominant
processes, possible neutrino-physics interpretations of the apparent variability of the Super-Kamiokande
measurements, and we suggest steps that could be taken to resolve the question of variability of the solar
neutrino flux.
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I. INTRODUCTION

Because of the efforts and dedication of the relevant
consortia, solar neutrino flux measurements are now avail-
able from the Homestake [1], GALLEX [2], GNO [3],
SAGE [4], Super-Kamiokande [5], and SNO [6] experi-
ments. The combined evidence from these experiments
shows that the solar neutrino deficit may be attributed to
matter-induced oscillations within the Sun—specifically,
the large-mixing angle version of the Mikheyev, Smirnov,
and Wolfenstein (MSW) process [7]. This model incorpo-
rates the assumption that, since the density profile of the
Sun is highly stable, the intrinsic solar neutrino flux should
be constant. If it is found that the solar neutrino flux is
intrinsically variable, we must conclude that either our
current understanding of the Sun or our current under-
standing of the neutrino model is inadequate. Possible
interpretations in terms of solar physics would include
nonsteady or nonspherically-symmetric nuclear burning.
A time variation with properties that point to association
with the solar magnetic field would indicate that the ex-
planation is to be found in a more complex neutrino
mechanism.

Current observational and experimental information
does not preclude the possibility that the solar neutrino
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flux may be influenced by (in addition to the dominant
MSW effect) a subdominant process that may involve both
flavor change and spin change. While a resonant-spin-
flavor-precession (RSFP) process [8] itself gives an excel-
lent fit to solar neutrino data, it must, if it occurs at all, be
subdominant (subordinate) to the MSW effect because of
the observation of a decrement in both solar �e flux in a
strong magnetic field and reactor ��e flux [9] in no such
field. Should the RSFP process involve only the three well-
established active neutrinos, it can take place only in the
solar core [10], because of the known neutrino mass
differences.

Another possibility [11] is that the solar electron neu-
trino may convert to a sterile neutrino via a transition
magnetic moment. Analysis of this form of the RSFP
process shows that it can provide a better fit to time-
averaged solar neutrino measurements than is provided
by the MSW process alone [12]. Since this sterile neutrino
does not mix with active neutrinos, all known constraints
on the sterile neutrino become irrelevant.

For these and other reasons, it is important to determine
whether or not the solar neutrino flux varies with time and,
if so, whether there is reason to believe that the modulation
is related to the solar magnetic field. It is advantageous that
-1 © 2005 The American Physical Society
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the rotation period of the Sun (about 27 days as seen from
Earth) is short enough that the powerful procedures of
power-spectrum analysis are applicable. The most exten-
sive available solar neutrino data set is that produced by the
Super-Kamiokande collaboration [13]. It must be empha-
sized, however, that the subdominant flux modulation
would be quite small. For the Super-Kamiokande energy
region, the expected modulation is of order 2% for the
three-neutrino model [10], and rather larger for the four-
neutrino case, for which the solar electron neutrino survival
probability is a fairly flat function of energy in this range. It
is therefore necessary to use power-spectrum analysis pro-
cedures that can detect small depths of modulation.

There have been a number of recent articles presenting
power-spectrum analyses of the Super-Kamiokande solar
neutrino data. Those published by members of the Super-
Kamiokande collaboration claim that there is no evidence
for variability [13–15]. On the other hand, investigators
outside the collaboration have claimed to find a case for
variability. Milsztajn [16] claimed to find a case for vari-
ability in an analysis of Super-Kamiokande 10-day data,
and we have presented a case for variability from analyses
of both the 10-day data [17–19] and 5-day data [11,20].
Early articles worked with the first data set, which was
organized in 10-day bins, but later analyses used the sec-
ond data set, which was organized in 5-day bins. However,
the methodologies have not been uniform (there are dif-
ferences in significance estimation, search bands, etc.), so
it is important to understand the extent to which the dif-
ferences in the claimed conclusions may be attributed to
methodological differences.

For this reason, we have carried out a sequence of
power-spectrum analyses of the Super-Kamiokande 5-
day data set, using in turn the five methods that have
been used so far, and another that might have been used.
We standardize other factors by (a) concentrating on the 5-
day data set, (b) adopting a standard search band (0 to
50 yr�1), and (c) using Monte Carlo simulations for sig-
nificance estimation. The 5-day data set [13] lists the start
times, end times, mean live times, flux estimates, lower
error estimates, and upper error estimates for each of 358
bins, beginning on May 31, 1996, and ending on July 15,
2001. We over-sample the power spectrum by adopting a
frequency resolution of 0:01 yr�1 in order to obtain reli-
able estimates of the peak values of the power.

In Sec. II, we give the results of a simple Lomb-Scargle
analysis [21,22] of the 5-day data set, using only the mean
times and the flux estimates, as in the Milsztajn [16]
analysis of the Super-Kamiokande 10-day data, and (fol-
lowing Yoo et al. [13]) standardizing the frequency interval
to be 0 to 50 yr�1. We also repeat the Lomb-Scargle
analysis, incorporating the mean live times rather than
the mean times, as in the analyses of Nakahata [14] and
Yoo et al. [13]. This results in little change in the power
spectrum. We also carry out spectrum analysis by a
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method, based on a proposal by Scargle [23], which takes
account of the experimental error estimates. This leads to a
notable change in the power spectrum, that now has a
pronounced peak at 9:43 yr�1 with power 9.56.

For each analysis, we present the results of Monte Carlo
simulations based on the assumption that there is no
real modulation in the time series (a ‘‘false-alarm’’ analy-
sis). We also carry out an analysis relevant to the sensitivity
of the Lomb-Scargle procedure: If the modulation at
9:43 yr�1 were real, what power should we expect to find
at that frequency? The results are somewhat surprising.

In Sec. III, we carry out spectrum analyses by likelihood
methods [24]. The first analysis takes account of the error
estimates and of the start time and end time. The leading
peak remains that at 9:43 yr�1. We next present the results
of an analysis that takes account also of the mean live time.
This modification makes little change in the resulting
power spectrum. We also present the results of an analysis
that allows for a ‘‘floating offset,’’ as used in our analyses
of Homestake [24] and GALLEX [25] data, and as used
recently by Koshio [15]. The results differ little from those
of the preceding likelihood calculations.

For each of these methods, we present the results of
Monte Carlo simulations. These calculations bear on the
possibility of a ‘‘Type 1’’ (or ‘‘false alarm’’) error: What is
the probability that what we consider to be evidence for
modulation has arisen purely by chance? For the floating
offset method, as for the Lomb-Scargle method, we also
present calculations relevant to the sensitivity of the
method. This calculation bears on the possibility of a
‘‘Type 2’’ (or ‘‘missed conflagration’’) error: If the modu-
lation is real, what is the probability that an experiment
similar to, but not identical to, the Super-Kamiokande
experiment would fail to detect it? As for the Lomb-
Scargle case, the results of this calculation are rather
surprising.

In Sec. IV, we carry out a comparative analysis of the 10-
day and 5-day data sets, focusing on the role of aliasing.
Since each data set was sampled in a highly regular time
sequence, modulation at a given frequency can appear, in a
power spectrum, not only at that frequency but also at one
or more related frequencies. There is unmistakable aliasing
of the primary modulation at 9:43 yr�1. However, we also
find indication of aliasing of a peak at 12:31 yr�1, which is
an interesting frequency since it may be related to solar
rotation.

In Sec. V, we review the results of the previous sections,
comparing the results with those of other authors. We find
that our results are quite consistent with results previously
published by Milsztajn [16], Nakahata [14], and Yoo et al.
[13]. We find an inconsistency between our results and
those of Koshio [15], and we speculate on a possible cause
of the discrepancy. We also review briefly the significance
of possible time variation of the solar neutrino flux for
neutrino physics and for solar physics.
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FIG. 1. Power spectrum of 5-day Super-Kamiokande data
formed by the basic Lomb-Scargle method, using the mean
times.

TABLE I. Top ten peaks in the basic Lomb-Scargle power
spectrum, using the mean times of bins.

Order Frequency yr�1 Power

1 43.72 6.79
2 34.02 6.19
3 39.28 6.03
4 31.23 5.95
5 9.43 5.90
6 12.31 5.67
7 39.54 5.65
8 48.16 4.75
9 0.36 4.64
10 15.73 4.35
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II. LOMB-SCARGLE ANALYSES

The Super-Kamiokande 5-day data are organized in bins
which we enumerate by r � 1; � � � ; R, where R � 358. For
each bin we are given the start time ts;r, the end time, te;r,
the ‘‘weighted mean live time’’ tml;r, the flux estimate gr,
the lower error estimate sl;r, and the upper error estimate
su;r;. We find that the two error estimates have a close
relationship: the ratio of the upper error estimate to the
lower error estimate has a mean value of 1.17 with a
standard deviation of only 0.046. For this reason, we here
work with a single error estimate formed from their mean:

sr �
1

2
�sl;r � su;r�: (2.1)

We now normalize the flux estimates

xr �
gr

mean�gs�
� 1; (2.2)

and also the error estimates

�r �
sr

mean�gs�
: (2.3)

However, the experimental error estimates are not used in
the basic Lomb-Scargle calculations of this section.

Following Lomb [21] and Scargle [22] (see also Press
et al. [26]), we form a power spectrum from

S��� �
1

2�2
0

(
�
P
r xr cos�2���tr � ����

2

�
P
r cos2�2���tr � ����

�
�
P
r xr sin�2���tr � ����2

�
P
r sin2�2���tr � ����

)
; (2.4)

where

�0 � std�xr�; (2.5)

and � is defined by the relation

tan�4���� �

P
r sin�4��tr�P
r cos�4��tr�

: (2.6)

In order to use the Lomb-Scargle procedure, it is neces-
sary to assign a definite time tr to each bin. In this section,
we adopt the mean of the start and end time, as in the early
work of Milsztajn [16]. This yields the power spectrum
shown in Fig. 1. The top ten peaks are listed in Table I. Of
the five leading peaks, those at frequencies 9:43 yr�1,
12:31 yr�1, 39:28 yr�1, and 43:72 yr�1 recur in later
analyses.

Here and in later sections, we assess the significance of
the leading peak by Monte Carlo simulations. We generate
a large number of simulated data sets by the algorithm

xMC;r � �rrandn; (2.7)

where randn is the operation of producing random numbers
113004
with a normal distribution, zero mean, and variance unity.
(Yoo et al. [13] use a fixed value of the error estimate [ �0]
for all data points, while we use the value (2.3) based on the
error estimates given by the experimenters for each data
point.) For each fictitious data set, we compute the power
spectrum over the range 0 to 50 yr�1, and note the power of
the highest peak, which we denote by SM for ‘‘spectral
maximum.’’ We then examine the distribution of the
maximum-power values.

We present the results of these simulations in Fig. 2,
which shows the distribution of values of SM from the
simulations, and indicates the value of SM for the actual
data. We see that 49% of the simulations have power equal
to or exceeding that of the strongest peak (S � 6:79 at
frequency 43:72 yr�1) in the actual power spectrum. We
also find that 824 out of 1000 simulations have power
larger than the power (5.90) at frequency 9:43 yr�1, which
will prove to be the frequency of most interest in our later
-3



FIG. 3. Histogram display of the power, computed by the
Lomb-Scargle procedure using the mean times, at the frequency
9:43 yr�1, for 1000 Monte Carlo simulations of the Super-
Kamiokande 5-day data. Each simulation contains the actual
sine-wave term with depth of modulation 6 % at 9:43 yr�1, plus
normally distributed random terms. 650 out of 1000 simulations
have power larger than the power (5.90) at frequency 9:43 yr�1.

FIG. 4. Power spectrum of 5-day Super-Kamiokande data
formed by the basic Lomb-Scargle method, using the mean
live times.

FIG. 2. Histogram display of the maximum power, computed
by the Lomb-Scargle procedure using the mean times, over the
frequency band 0 to 50 yr�1, for 1000 Monte Carlo simulations
of the Super-Kamiokande 5-day data. 485 out of 1000 simula-
tions have power larger than the actual maximum power (6.79 at
frequency 43:72 yr�1). 824 out of 1000 simulations have power
larger than the power (5.90) at frequency 9:43 yr�1.
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likelihood analyses. From this perspective, one would
conclude that there is no evidence for a periodic modula-
tion of the neutrino flux. It is important to note that this test
assumes that, a priori, all frequencies in the chosen search
band (here 0 to 50 yr�1) are equally likely. Hence we are
ignoring all available information concerning variability in
solar structure and dynamics. We comment on this point
further in Sec. V.

The Lomb-Scargle procedure is equivalent to finding a
least-squares fit of a sine wave to the data, normalized to
have mean value zero. With the notation

xLSr � ALSe
i2��tr � A	LSe

�i2��tr ; (2.8)

we find that the best fit to a sine wave of frequency
9:43 yr�1 is given by

A LS � 0:0116� 0:0273i: (2.9)

The corresponding fractional depth of modulation is given
by j2ALSj, which is found to be 6%. In order to evaluate
the sensitivity of the Lomb-Scargle procedure, we have
carried out 1000 Monte Carlo simulations of the Super-
Kamiokande 5-day data, replacing (2.7) by

xMC;r � xLSr � �rrandn; (2.10)

where xLSr is the expression (2.8), for the frequency � �
9:43 yr�1. (Since we are interested in the sensitivity of the
Lomb-Scargle procedure to the modulation at 9:43 yr�1,
we evaluate the power at this frequency.) The result of
these simulations is shown in histogram form in Fig. 3. We
see that there is a remarkably wide distribution of powers.
113004
Even for so small a depth of modulation as 6%, the result-
ing power can be as large as 20. We see that there is no
simple correspondence between the depth of modulation
and the resulting power in a power-spectrum analysis.

We now repeat the previous analysis, referring measure-
ments to the mean live times rather than the mean times, as
was done by Nakahata [14]. The power spectrum, com-
puted again by the basic Lomb-Scargle method, is shown
in Fig. 4, and the top ten peaks are listed in Table II. This
-4



TABLE II. Top ten peaks in the basic Lomb-Scargle power
spectrum, using the mean live times of bins.

Order Frequency yr�1 Power

1 43.73 7.29
2 34.01 6.65
3 9.43 6.18
4 39.27 5.82
5 12.31 5.48
6 39.54 5.34
7 48.15 5.18
8 31.23 4.67
9 0.36 4.64
10 15.73 4.06

TABLE III. Top ten peaks in the modified Lomb-Scargle
power spectrum.

Order Frequency yr�1 Power

1 9.43 9.56
2 43.72 7.91
3 39.28 6.18
4 33.99 5.42
5 45.85 5.42
6 12.31 4.86
7 8.30 4.38
8 0.34 4.26
9 31.25 4.23
10 35.04 4.15
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power spectrum is consistent with that presented by
Nakahata, and differs little from that shown in Fig. 1.

We next carry out power-spectrum analysis using a
modification of the Lomb-Scargle procedure, proposed
by Scargle [23], which takes account of the experimental
error estimates. Following Scargle, we introduce a weight-
ing function

wr �
1=�2

r

mean�1=�2
r�
: (2.11)

We then replace (2.4) by

S��� �
1

2�2
0

(
�
P
r wrxr cos�2���tr � ����

2

�
P
r wrcos2�2���tr � ����

�
�
P
r wrxr sin�2���tr � ����

2

�
P
r wrsin2�2���tr � ����

)
; (2.12)

where �0 and � are now defined by
FIG. 5. Power spectrum of 5-day Super-Kamiokande data,
using the mean live times, formed by the modified Lomb-
Scargle method.
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�0 � std�wrxr� (2.13)

and

tan�4���� �

P
r wr sin�4��tr�P
r wr cos�4��tr�

: (2.14)

When we apply this procedure to the Super-Kamiokande
5-day data set (now taking account of the mean live times,
the flux estimates, and the error estimates), we obtain the
power spectrum shown in Fig. 5. The top ten peaks are
listed in Table III. We see that the most significant peak in
this power spectrum is that at 9:43 yr�1, with power 9.56.

The results of Monte Carlo simulations are shown in
histogram form in Fig. 6. We find that less than 5% of the
simulations (477 out of 10 000) have power equal to or
larger than the actual maximum power in the range 0 to
50 yr�1, i.e. 9.56 at frequency 9:43 yr�1.
FIG. 6. Histogram display of the maximum power, computed
by the modified Lomb-Scargle procedure using the mean live
times, over the frequency band 0 to 50 yr�1, for 10 000
Monte Carlo simulations of the Super-Kamiokande 5-day data.
477 out of 10 000 simulations have power larger than the actual
maximum power (9.56 at frequency 9:43 yr�1).
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TABLE IV. Top ten peaks in a likelihood power spectrum,
using start and end times.

Order Frequency yr�1 Power

1 9.43 11.51
2 43.72 9.83
3 39.28 8.91
4 48.43 6.57
5 12.31 6.21
6 31.24 6.20
7 45.86 6.20
8 34.00 5.83
9 48.16 5.78
10 39.55 5.49
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III. LIKELIHOOD ANALYSES

In this section, we carry out power-spectrum analyses
using likelihood procedures [24]. Using the notation of
Sec. II, the log-likelihood that the data may be fit to a
model that gives Xr as the expected values of xr is given by

L � �
1

2

XR
r�1

�xr � Xr�2=�2
r : (3.1)

We estimate the power spectrum from the increase in the
log-likelihood over the value expected for no modulation,
corresponding to Xr � 0:

S �
1

2

XR
r�1

x2
r

�2
r
�

1

2

XR
r�1

�xr � Xr�2

�2
r

: (3.2)

If we assume that the data-acquisition process is uniform
over the duration of each bin and examine the possibility
that the flux varies sinusoidally with frequency �, the
expected normalized flux estimates will be given by

Xr �
1

Dr

Z ter

tsr
dt�Aei2��t � A 	 e�i2��t�; (3.3)

where

Dr � te;r � ts;r (3.4)

and, for each frequency, the complex amplitude A is ad-
justed to maximize the likelihood.

The resulting power spectrum is shown in Fig. 7, and the
top ten peaks are listed in Table IV. The results of
Monte Carlo simulations are shown in Fig. 8. We find
that less than 1% of the simulations (90 out of 10 000)
have power equal to or larger than the actual maximum
power in the range 0 to 50 yr�1, i.e. 11.51 (for frequency
FIG. 7. Power spectrum of 5-day Super-Kamiokande data,
formed by the likelihood method, using the start and end times.

113004
9:43 yr�1). Hence the case for modulation has now been
strengthened to the 99% significance level.

We may modify the likelihood procedure in such a way
as to allow us to take account of the mean live times, as
well as the start times and end times. We now replace
Eq. (3.3) by

Xr �
1

Dr

Z ter

tsr
dtWr�t��Ae

i2��t � A 	 e�i2��t�; (3.5)

where the weighting function Wr�t� is chosen so that the
mean value is unity,

1

Dr

Z ter

tsr
dtWr�t� � 1; (3.6)

and
FIG. 8. Histogram display of the maximum power, formed by
the likelihood method, using the start and end times, over the
frequency band 0 to 50 yr�1, for 10 000 Monte Carlo simulations
of the Super-Kamiokande 5-day data. 90 out of 10 000 simula-
tions have power larger than the actual maximum power (11.51
at frequency 9:43 yr�1).
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TABLE V. Top ten peaks in a likelihood power spectrum,
using start times, end times, and mean live times.

Order Frequency yr�1 Power

1 9.43 11.67
2 43.72 9.87
3 39.28 8.18
4 48.43 6.72
5 33.99 6.58
6 48.16 6.09
7 12.31 6.05
8 48.69 5.84
9 37.12 5.65
10 8.30 5.32
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1

Dr

Z ter

tsr
dtWr�t�t � tml: (3.7)

We seek the simplest form of the weighting function that
satisfies (3.6) and (3.7). We find that these requirements are
met by the following ‘‘double-boxcar’’ model:

Wr�t� � Wl;r 

te;r � tml;r
tml;r � ts;r

for ts;r < t < tml;r

Wr�t� � Wu;r 

tml;r � ts;r
te;r � tml;r

for tml;r < t < te;r:
(3.8)

It appears, from studying perturbations of (3.8), that this
model minimizes the difference between the maximum and
minimum values of the weighting function.

We have used this modification of the likelihood method
to compute the power spectrum of the Super-Kamiokande
5-day data. The result is shown in Fig. 9, and the top ten
peaks are listed in Table V. The results of Monte Carlo
simulations are shown in Fig. 10. We again find that less
than 1% of the simulations (now 74 out of 10 000) have
power equal to or larger than the actual maximum power in
the range 0 to 50 yr�1, i.e. 11.67, which is found at
frequency 9:43 yr�1.

We now carry out a likelihood calculation by the ‘‘float-
ing offset’’ method, in which one adjusts not only the
complex amplitude for each frequency but also the offset.
This method was used in our early articles on solar neu-
trino flux modulation [24,25], and has also been used
recently by Koshio [15]. One must be cautious in using
this technique since the offset term and the sine-wave
modulation term become confused at and near zero fre-
quency, which is one reason we have not always used this
method. When carrying out Monte Carlo simulations, it is
essential to exclude this region, which we do by restricting
FIG. 9. Power spectrum of 5-day Super-Kamiokande data,
using the start times, end times, and mean live times, formed
by the likelihood method.

113004
simulations to the frequency range 1 to 50 yr�1 rather than
0 to 50 yr�1.

Then Eq. (3.2) is now replaced by

S �
1

2

XR
r�1

g2
r

s2
r
�

1

2

XR
r�1

�gr �Gr�
2

s2
r

(3.9)

where

Gr �
1

Dr

Z ter

tsr
dt�C� Aei2��t � A 	 e�i2��t�; (3.10)

and we adjust both C and A, for each frequency, to max-
imize S. We show in Fig. 11 the power spectrum obtained
from this procedure. It is quite consistent with the power
spectrum computed by Koshio [15]. The top ten peaks are
listed in Table VI.
FIG. 10. Histogram display of the maximum power, computed
by the likelihood method using the start times, end times, and
mean live times, over the frequency band 0 to 50 yr�1, for
10 000 Monte Carlo simulations of the Super-Kamiokande 5-
day data. 74 out of 10 000 simulations have power larger than the
actual maximum power (11.67 at frequency 9:43 yr�1).
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FIG. 12. Histogram display of the maximum power, computed
by the likelihood method using the start times and end times and
allowing for a floating offset, over the frequency band 1 to
50 yr�1, for 10 000 Monte Carlo simulations of the Super-
Kamiokande 5-day data. 193 out of 10 000 simulations have
power larger than the actual maximum power (11.24 at fre-
quency 9:43 yr�1).

FIG. 11. Power spectrum of 5-day Super-Kamiokande data,
using the start times and end times, and allowing for a floating
offset, formed by the modified SWW likelihood method.
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We have carried out 10 000 Monte Carlo simulations of
this calculation, with results shown in Fig. 12. We find that
only 193 out of 10 000 simulations have power as large as
or larger than the actual maximum power (11.24 at fre-
quency 9:43 yr�1), for a significance level of 98.1%. This
fraction (1.9%) is much smaller than the value (20.94%)
given by Koshio on the basis of his Monte Carlo simula-
tions. Unfortunately, there is insufficient information in
Koshio’s article to enable one to understand the source of
this discrepancy, but since Koshio does not discuss the
zero-frequency problem, it seems likely that he did not
exclude the small-frequency range in carrying out his
simulations.

We have calculated a probability distribution function
for the modulus of the amplitude A in Eq. (3.10) by
evaluating the likelihood [the exponential of the log-
likelihood given by Eq. (3.1)] for the relevant frequency
TABLE VI. Top ten peaks in a likelihood power spectrum
computed from the 5-day data set, using start times and end
times, and allowing for a floating offset.

Order Frequency yr�1 Power

1 9.43 11.24
2 43.72 9.44
3 39.82 8.64
4 48.43 6.38
5 45.86 6.10
6 31.24 6.03
7 12.31 6.01
8 48.16 5.69
9 33.99 5.63
10 39.55 5.32
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and phase. We convert this to a probability distribution
function for the depth of modulation, which is related to the
amplitude by

DOM �
2jAj
C

: (3.11)

This is shown in Fig. 13. We see that the peak is at 6.6% and
the standard deviation is 1.45%. We can be 90% confident
that the amplitude is in the range 4.2% to 9.0%.
FIG. 13. Probability distribution function for the depth of
modulation at 9:43 yr�1. We see that the peak is at 6.6%, the
standard deviation is 1.45%, and there is 90% probability that the
depth of modulation is in the range 4.2% to 9.0%.
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In order to evaluate the sensitivity of the likelihood
procedure, taking account of a floating offset, we generate
1000 Monte Carlo simulations of the Super-Kamiokande
5-day data, by the algorithm

gMC;r � G0r � �rrandn; (3.12)

where G0r is the expression (3.10) evaluated for the fre-
quency � � 9:43 yr�1. Since we are interested in the sen-
sitivity of the likelihood procedure to the modulation at
9:43 yr�1, we evaluate the power at this frequency. The
result of these simulations is shown in histogram form in
Fig. 14. We again see that there is a very wide distribution
of powers. We find that 558 out of 1000 simulations have
power larger than the actual power (11.24) at frequency
9:43 yr�1, so there is no surprise in finding a peak with
power 11.24 if there is modulation with depth 6.6%.

However, one should note from Fig. 14 that a search for
modulation could easily run into a Type 2 error: there may
be a real modulation, but the analysis may fail to reveal that
fact. We find from Fig. 12 that, to be 95% confident that a
peak is not due to noise, the power must be 9.65 or more.
However, on examining Fig. 14, we find that 31% of the
area of the histogram has power 9.65 or less. The implica-
tion of this comparison is the following: If there were to be
a reproduction of the Super-Kamiokande experiment, and
if the flux were modulated at the frequency 9:43 yr�1 with
6.6% depth of modulation, there is a 31% chance that the
experiment would fail to detect the modulation. On the
other hand, given the power of the peaks found in the
likelihood analyses, we may conclude that the probability
of a Type 1 error (the inference that there is modulation
FIG. 14. Histogram display of the power at 9:43 yr�1, com-
puted by the floating offset likelihood procedure, for 1000
Monte Carlo simulations of the Super-Kamiokande 5-day data.
Each simulation contains the actual sine-wave term with depth of
modulation 6.6% at 9:43 yr�1, plus normally distributed random
terms. 558 out of 1000 simulations have power larger than the
power (11.24) at frequency 9:43 yr�1.
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when in fact there is no modulation) is in the range 1%–
2%.

IV. COMPARATIVE ANALYSIS OF THE 5-DAYAND
10-DAY DATASETS

In order to understand the relationship of power spectra
formed from the Super-Kamiokande 10-day and 5-day data
sets, it is useful to apply the likelihood analysis to the 10-
day data set. If we use the third procedure, which allows for
a floating offset, we obtain the power spectrum shown in
Fig. 15. The top ten peaks are listed in Table VII.

We see that the principal peak in the power spectrum is
found at frequency 26:57 yr�1, with power 11.13. The
second peak is at 9:42 yr�1 with power 7.23. These are
also the two strongest peaks in the Lomb-Scargle analysis
of the 10-day data carried out by Milsztajn [16]. As we
have pointed out elsewhere [11,20], the difference between
FIG. 15. Power spectrum of 10-day Super-Kamiokande data,
using the start times and end times, formed by a likelihood
method that allows for a floating offset.

TABLE VII. Top ten peaks in a likelihood power spectrum
computed from the 10-day data set, using start times and end
times, and allowing for a floating offset.

Order Frequency yr�1 Power

1 26.57 11.13
2 9.42 7.23
3 43.73 6.52
4 27.02 6.00
5 23.63 5.32
6 12.36 5.26
7 39.59 5.22
8 39.31 5.19
9 8.31 4.99
10 11.56 4.92
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FIG. 16. Joint spectrum statistic formed from the power spec-
trum formed from the 10-day Super-Kamiokande data by com-
bining the power at frequency � with that at frequency �T � �
where �T �� 36 yr�1� is the timing frequency.
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FIG. 17. Joint spectrum statistic formed from the power spec-
trum formed from the 5-day Super-Kamiokande data by combin-
ing the power at frequency � with that at frequency �T � �
where �T �� 72 yr�1� is the timing frequency.
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the 5-day and 10-day power spectra is due primarily to
aliasing. If the power spectrum of the bin-times contains a
peak at frequency �T , and if the data contains modulation
at frequency �M, then the power spectrum will also exhibit
peaks at j�T � �Mj and at �T � �M. [If the peak at �T is
particularly strong (as it is for the Super-Kamiokande data
sets), the power spectrum may also exhibit peaks at j2�T �
�Mj and 2�T � �M, etc.] For the 10-day data set, �T �
�T10 � 36 yr�1. Since 9:42� 26:57 � 35:99, we may
conclude that the peaks at 9:42 yr�1 and 26:57 yr�1 are
related, one being an alias of the other. When only the 10-
day data set was available, it seemed reasonable to guess
that the primary peak was that at 26:57 yr�1 since that was
the stronger of the two and could be interpreted as the
second harmonic of the synodic solar rotation frequency
[19]. However, analysis of the 5-day data set [20] has made
it clear that the reverse is the case: the primary peak is that
at 9.42 or 9:43 yr�1. (For the 5-day data set, an alias peak is
found at 62:56 yr�1.) This explains why the peak at
26:57 yr�1 (which Yoo et al. [13] refer to a ‘‘statistical
artifact’’) appears in the power spectrum formed from the
10-day data set, but not in that formed from the 5-day data
set.

We may make a more objective assessment of the role of
aliasing in the power spectrum formed from the 10-day
data set by using the ‘‘joint power statistic,’’ that provides a
convenient procedure for examining the correlation of two
power spectra [27]. If we form the geometric mean of the
powers,

X � �S1S2�
1=2; (4.1)

the joint power statistic (of second order) is given by

J � � ln�2XK1�2X�� (4.2)

where K1 is the Bessel function of the second kind. This
function has the following useful property: if S1 and S2 are
distributed exponentially and are statistically independent,
then J also is distributed exponentially. Hence a display of
J may be interpreted in the same way as a display of a
power spectrum.

Figure 16 shows the joint power statistic formed from
S��� and S��T � ��, with �T � 35:99 yr�1, over the fre-
quency range 0 to 18 yr�1. The strong peak with a nominal
equivalent power 16.47 at frequency 9:43 yr�1 shows that
the peaks in the power spectrum at frequencies 9:43 yr�1

and 26:57 yr�1 are correlated and should be interpreted as
an alias pair. (Note that we should not infer a confidence
limit from the nominal equivalent power, since the two
peaks are not statistically independent.)

The corresponding figure formed from the 5-day data set
is shown in Fig. 17, in which the joint power statistic has
been formed from S��� and S��T � ��, with �T �
71:99 yr�1, over the frequency range 0 to 36 yr�1. There
is a strong peak with equivalent power 13.76 at frequency
113004
9:43 yr�1, which is formed from the peak at 9:43 yr�1 and
from a peak at 62:56 yr�1.

We see that aliasing plays a lesser role in the power-
spectrum analysis of the 5-day data set, since the timing
frequency is much higher (72 yr�1 instead of 36 yr�1). We
note also that the peak at 12:31 yr�1 appears in both
Figs. 16 and 17, showing that it is accompanied by aliases
in both the 10-day and 5-day data sets. This peak, if real,
cannot be attributed to rotational modulation in the con-
vection zone, but the uncertainties in the rotation rate in the
-10
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radiative zone do not preclude its attribution to rotational
modulation in that region.

V. DISCUSSION

Although we have presented the analyses of Secs. II and
III in their conventional forms, and introduced the like-
lihood procedure of Sec. III as something different, we
may in fact regard all the analyses presented in this article
as special cases of the likelihood procedure. The relation-
ship is shown schematically in Fig. 18. Panels (a) and (b)
show the ‘‘single boxcar’’ and ‘‘double boxcar’’ weighting
functions corresponding to the uniform weighting in
Eq. (3.3) and the nonuniform weighting in Eq. (3.5). If
one calculates the power spectrum from the likelihood
procedure, adopting the standard deviation of the flux
estimates as the error term and using a delta-function
form of the time weighting function, as in panels (c) and
(d), one retrieves the power spectra computed by the
Lomb-Scargle procedure in Sec. II. The third calculation
of Sec. II is equivalent to using the time weighting function
shown in panel (d) and the actual error estimates.

We now compare the results of these analyses with those
of previous publications. Milsztajn [16] used the basic
Lomb-Scargle method to analyze the 10-day data set,
assigning flux measurements to the mean times. Hence
his method was the first presented in Sec. II. Milsztajn’s
power spectrum is similar to that obtained in Sec. IV (see
Fig. 15), showing two principal peaks at frequencies
26:57 yr�1 and 9:42 yr�1. In his article, Milsztajn states
‘‘. . .the sampling, though quite regular, is sufficiently vari-
able that no aliasing is observed. . .’’ However, in fact there
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FIG. 18. (a) Time window function for uniform weight over
start time to end time. (b) Time window function with nonuni-
form weight to take account of mean live time. (c) Delta-
function form for time window function at midpoint of bin.
(d) Delta-function form for time window function at mean live
time.
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is aliasing: we saw in Sec. IV that the two principal peaks
comprise an alias pair, related by the timing frequency
35:99 yr�1.

Nakahata [14] also carried out a Lomb-Scargle analysis
of the 10-day data set, assigning measurements to the mean
times, and obtained a power spectrum close to those found
previously [16,19]. However, Nakahata had access to the
mean live time measurements, and therefore repeated the
Lomb-Scargle analysis, assigning flux measurements to
the mean live times rather than to the mean times. This
analysis yields a peak at frequency 26:55 yr�1 with power
7.51, and a peak at frequency 9:42 yr�1 with power 6.67.
Nakahata interprets the second peak as ‘‘a natural peak in
the random distribution’’ (by which we presume he means
a statistical fluctuation) whereas, as we have seen in
Sec. IV, the peaks at 26:55 yr�1 and 9:42 yr�1 are an alias
pair.

Yoo et al. [13] were the first to have access to and
analyze the 5-day data set. Their analysis is that repro-
duced in Sec. III, leading to the power spectrum shown in
Fig. 4. Yoo et al. commented on our analysis of the 10-day
data set [19] and asserted that the difference in the resulting
power spectra was due to the fact that our analysis used the
mean times rather than the mean live times, but this state-
ment was incorrect, since our analysis used the start times
and end times, and made no reference to the mean times.
Yoo et al. noted that the peak at 26:55 yr�1, which was
evident in the 10-day power spectrum, was no longer
evident in the 5-day power spectrum, and concluded that
this ‘‘provides additional confirmation that the [peak at
26:55 yr�1] in the 10-day long sample is a statistical
artifact.’’ However, as we have seen, the peak disappeared
because it is an alias of the peak at 9:43 yr�1 in the 10-day
power spectrum but not in the 5-day power spectrum.

Since Yoo et al. [13] concluded that their power-
spectrum analysis did not yield evidence for periodic
modulation of the solar neutrino flux, they included in their
article a ‘‘sensitivity’’ calculation designed to determine
the significance of this null result. It was designed to
answer the following question: If there were a modulation
of specified amplitude at specified frequency, what is the
probability that this would have resulted in a positive out-
come in their power-spectrum analysis? Their procedure
comprised a set of Monte Carlo calculations in which
fictitious flux estimates are generated by (a) computing
the flux estimates to be expected from neutrino flux with
specified sinusoidal modulation; (b) adding a Gaussian
random fluctuation with width determined by the actual
error estimates; and (c) calculating the resulting Lomb-
Scargle power spectrum. They found that, for periods of 20
days or more (frequencies of 18 yr�1 or less), this method
could not reliably (i.e. with 95% probability) identify the
signal if the depth of modulation is less than 10%. There is
no conflict between their conclusion and the result of our
Lomb-Scargle analyses presented in Sec. II, since we
-11
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found that led to an estimate of the modulation at 9:43 yr�1

(period 38.73 days) of only 6%.
In our analyses, we have found indication of periodic

modulation, so our motivation for Monte Carlo simulations
is very different from that of Yoo et al. Our goal is not to
understand what we might have missed, but to check on
what we have found. [If you do not catch a fish, you
examine the net; if you do catch a fish, you examine the
fish.] We found (Fig. 3) that we were in a sense a little
unlucky in our basic Lomb-Scargle analyses (that take no
account of the error estimates) for the following reason: if
there were 1000 experiments identical in design and op-
eration to the Super-Kamiokande experiment, and if the
solar neutrino flux were modulated at the frequency
9:43 yr�1 with depth of modulation 7%, then 650 of the
experiments would have yielded a power at that frequency
that is larger than that actually found in the Super-
Kamiokande data set. Indeed, a few percent of those ex-
periments would have yielded a power of 15 or more. It is,
of course, possible that the modulation at 9:43 yr�1 will
prove to be due to some systematic effect in the operation
and data acquisition of the Super-Kamiokande experiment.
This possibility can be investigated only by the Super-
Kamiokande collaboration.

On the other hand, we found in our likelihood analyses
(Fig. 14) that it is perfectly reasonable that we found a
positive outcome due to the same assumed modulation. A
comparison of Figs. 3 and 14 shows that the likelihood
method (that takes account of the start time, end time, the
flux estimate, and error estimates) is a more sensitive
detector of modulation than the basic Lomb-Scargle
method that takes account only of the flux estimate and
one item of timing information (mean time or mean live
time). This result is not unreasonable. In investigating a
hypothesis, it makes sense to process as much information
as possible. (The Super-Kamiokande collaboration pro-
duced and analyzed the 5-day data set because it contains
more information than the 10-day data set.)

Koshio [15] has published an analysis from which he
concludes that there is no evidence for periodic modulation
in the Super-Kamiokande 5-day data set. We found in
Sec. III that we could reproduce his power spectrum but
not the results of his Monte Carlo simulations. We specu-
lated that Koshio may have examined simulations over a
frequency band extending to zero frequency, which would
result in anomalously large powers in some fraction of the
simulations. In simulations that allow for a ‘‘floating off-
set,’’ it is crucial that one avoids frequencies at or near
zero.

We now comment further on a point raised in Sec. II.
The Monte Carlo analysis of Nakahata [14], Yoo [13], and
Koshio [15] implicitly assumes that, a priori, all frequen-
cies in the chosen search band (here 0 to 50 yr�1) are
equally likely. This may be appropriate if one has no idea
what mechanism might lead to periodic modulation of the
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solar neutrino flux. However, if one were considering (for
instance) the specific possibility that the solar neutrino flux
may exhibit a periodic modulation due to solar rotation,
then the appropriate search band would be determined by
the Sun’s internal quasiequatorial synodic rotation rate. For
modulations in the convection zone, this points to synodic
frequencies in the range 13.4 to 13:8 yr�1. For modulations
in the tachocline, the range is 12.8 to 13:4 yr�1. For
modulations in the radiative zone, there is great uncertainty
concerning the appropriate limits. Analysis of MDI helio-
seismology data [28] yields a one-sigma frequency range
of 10.3 to 14:5 yr�1, and a two-sigma range of 8.2 to
16:6 yr�1. Hence one cannot at this stage rule out the
possibility that the prominent modulation with frequency
9:43 yr�1 may prove to be due to rotation in the deep
interior of the Sun.

In searching for rotational modulation, it makes sense to
examine not only the known range of rotation rates of the
solar interior, but also multiples (harmonics) of this range.
The peak at 39:28 yr�1 may be attributed to the second
harmonic (3 times the fundamental frequency) of the rota-
tion frequency in the same region, which is found to be
much more prominent than the fundamental and the first
harmonic in an analysis of the disk-center solar magnetic
field at that time [11,20]. If one were looking for other
types of modulation, such as r-modes [29–31], it makes
sense to determine search bands appropriate for those
modulations. In our analysis of the 5-day data set [11,20]
that uses the procedure summarized in Sec. IV, we point
out that the two strongest peaks (at 9:43 yr�1 and
43:72 yr�1) may both be due to an internal r-mode oscil-
lation with indices l � 2, m � 2, occurring where the
sidereal rotation rate is about 14:15 yr�1, which would
place it inside or just above the tachocline. It should be
noted that r-modes are excited individually. For instance,
one may find a manifestation of the l � 3; m � 2 r-mode
(period 77 days) or the l � 3; m � 3 r-mode (period 52
days) without there being any concurrent manifestation of
the l � 3; m � 1 (154 d) oscillation [32–34].

The SNO collaboration has recently released a data set
suitable for time-series analysis [35], and they have pub-
lished the results of their search for evidence of variability
[36]. Their analysis does not show evidence of modulation
at 9:43 yr�1. Unfortunately the interval for which SNO and
Super-Kamiokande overlap (1999.83 to 2001.40) repre-
sents only 30% of the Super-Kamiokande data set, and
only 40% of the SNO data set (the ‘‘D2O’’ section).
Furthermore, the statistical errors are larger for SNO data
than for Super-Kamiokande data. A Lomb-Scargle analy-
sis [21,22] of Super-Kamiokande data for the overlap
interval yields only a very small peak, with power S �
1:52, near � � 9:43 yr�1. Hence there is negligible indi-
cation of this modulation in Super-Kamiokande data for
the overlap interval. The SNO result is therefore compat-
ible with our analysis of Super-Kamiokande data for the
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same interval of time. We are carrying out further com-
parative analysis of Super-Kamiokande and SNO data, and
we plan to report our findings at a later date.

There is another basic point that is worth noting. Power-
spectrum analysis of solar neutrino data may detect an
oscillation in the neutrino flux if the flux is modulated by
a stable, high-Q oscillation. However, it is possible that the
flux is variable, but the variability does not meet these
criteria, in which case the variability may well escape
detection by power-spectrum analysis. For instance,
power-spectrum analysis is not well suited to the detection
of a stochastic variation, and it may fail to detect an
oscillation that drifts in frequency and/or jumps in phase.
Hence even if a power-spectrum analysis were to fail to
reveal a peak in a wide frequency range (which it does not),
this in itself would not comprise evidence that the flux is
constant. These considerations invalidate the following
assertion by Yoo et al. [13]: ‘‘Based on the observation
of no significant periodicity, SK-I data exclude modula-
tions greater than 10% of the 8B neutrino flux arising as a
result of more than 0.4% changes in the solar core tem-
perature, allowing a new measure of the solar core’s
stability.’’

The above reanalysis of Super-Kamiokande data sup-
ports our earlier conclusion that there is indication of an
intrinsic variability of the solar neutrino flux [11,20],
probably originating at or near the tachocline. In principle,
such a modulation could be due to the RSFP process [8].
Such a RSFP effect involving only the three active neu-
trinos would occur in the solar core, followed by an MSW
transition at a larger radius [10]; this would be incompat-
ible with the inference that modulation occurs at the tacho-
cline or above. In this context, we may also note that our
analysis of GALLEX data [11,37–39] gives an indication
of modulation at 13:59 yr�1 that, if interpreted as a synodic
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rotation frequency, corresponds to a sidereal rotation fre-
quency of 14:59 yr�1, placing the process in the convec-
tion zone [35,36].

We also note that an RSFP process in the radiative zone
leads to a much smaller depth of modulation (about 2%
[10]) than that (about 7%) which we find from power-
spectrum analysis. On the other hand, a 7% depth of
modulation is in the range predicted [12] for the model
[11] in which a sterile neutrino couples to active neutrinos
only via a transition magnetic moment. This model is
compatible with known limitations on sterile neutrinos,
and with the present null measurements of solar antineu-
trinos. In this model, for which the sterile neutrino and the
electron neutrino have a very small mass difference, the
RSFP process occurs in the solar convection zone at a
larger radius than the location of the MSW effect.

Clearly, it is necessary to pursue further the issue of
variability of the solar neutrino flux. It appears (not un-
reasonably) that the most sensitive methods are those that
process the greatest amount of relevant information. It is
also clearly desirable to package data into bins shorter than
5 days. Both goals could be met by packaging data into
1-day bins. However, with such short bins, it may not be
adequate to summarize data for each bin in terms of a most-
likely flux and upper and lower error estimates. It may
instead be necessary to summarize the data in terms of a
probability distribution function for the flux. It would
obviously be most helpful the Super-Kamiokande and
SNO collaborations would provide their data in identical
1-day bins, tied perhaps to Universal Time.
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