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We consider the bremsstrahlung and model-dependent contributions to the radiative decay �� !
���0��� in the context of a meson dominance model. We focus on several observables related to this
decay, including the branching ratio and the photon and di-pion spectra. Particular attention is paid to the
sensitivity of different observables upon the effects of model-dependent contributions and of the magnetic
dipole moment of the ���770� vector meson. Important numerical differences are found with respect to
results obtained in the framework of chiral perturbation theory.
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I. INTRODUCTION

Semileptonic tau lepton decays are a rich source of
information about the properties of hadronic resonances
below the tau lepton mass scale. They provide a clean
environment to study the properties of charged ��770�
and a1�1260� resonances which otherwise would be pro-
duced only through purely hadronic processes. The inter-
play of strong, weak, and electromagnetic interactions in
such processes offers an interesting place to test models for
these interactions at low energies and to extract informa-
tion about fundamental parameters of the standard model
[1].

In this paper we are interested in the study of the
radiative �� ! ���0��� decay, a process that involves
simultaneously the three fundamental interactions at the
lowest order. This decay channel has been studied previ-
ously in Refs. [2,3] within different models and with differ-
ent purposes. As is well known, the corresponding
nonradiative �� ! ���0�� decay is dominated by the
production of the ���770� vector meson; thus, the emis-
sion of a single photon from this process is expected to
carry information about the ��-meson magnetic dipole
moment [2]. A meaningful extraction of this property
from data is possible only with a full account of the
model-dependent contributions to the radiative decay,
which was not included in Ref. [2]. In this paper we pursue
this study and consider the complete calculation of the
radiative amplitude using a phenomenological model that
includes all possible intermediate hadronic states.

A different approach is followed in Ref. [3], where the
radiative amplitudes were calculated in the framework of
chiral perturbation theory and including resonances in the
relevant kinematical regions. The interest of Ref. [3] was
focused on the relationship between the di-pion tau decay
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data and its leading hadronic contribution to the anomalous
magnetic moment of the muon a� [4]. As is known, present
experimental information on �! ��� decays are photon
inclusive measurements [1]. Thus, removing radiative ef-
fects from the measured di-pion mass distribution in such
decays is important to predict the leading order hadronic
vacuum polarization contribution to a�. A comparison of
the two-pion mode in tau decays and e�e� annihilations
provides a sensitive test of the conserved vector-current
constraint hypothesis. At present, the prediction of ahad

�

based on �! ��� data seems to exceed by more than 2
standard deviations the corresponding prediction based on
e�e� data [1], even after the known sources of isospin
breaking corrections are removed [3,5,6]. Since the pro-
duction of high energy photons in �� ! ���0�� decays
is driven by the model-dependent contributions, a good
account of the model-dependent effects is again
mandatory.

This paper is organized as follows: In Sec. II we describe
the necessary one-loop modifications of the propagator and
electromagnetic vertex of the unstable �� vector meson to
achieve a gauge-invariant amplitude for the model-
independent contributions; in Sec. III we describe the
form of the amplitude for the nonradiative � lepton decay
and fix the parameters involved in our approximation; in
Sec. IV we focus on the different contributions to the
radiative decay amplitude and check their gauge invariance
requirements; in Sec. V we fix the coupling constants
involved in the model-independent contributions and com-
pute the different observables associated to the radiative
two-pion � lepton decays; our conclusions are summarized
in Sec. VI; and the Appendix is devoted to discuss the
kinematics associated with the four-body decay.

II. GAUGE INVARIANCE AND UNSTABLE
PARTICLES IN RADIATIVE PROCESSES

The physical amplitudes of radiative processes (M �

��M�, � being the photon polarization four-vector) have
-1 © 2005 The American Physical Society
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to satisfy the electromagnetic gauge invariance condition
k�M� � 0, where k is the photon four-momentum. As it
has been discussed elsewhere [7], when charged unstable
particles are produced as intermediate states of a physical
process some care must be taken to make compatible the
unstable character of the resonance with the gauge invari-
ance condition. One of the proposals to deal with this
problem is the so-called fermion loop-scheme (fls) for
gauge bosons [8]. According to the fls, only the fermion
contributions in loop corrections to the propagator and
electromagnetic vertex of gauge bosons have to be in-
cluded to render gauge invariant the resonant amplitudes
[8].

In the case of hadronic resonances such as the ��

meson, it has been suggested that an analogous boson
loop-scheme (bls) [2] can be used to avoid such potential
gauge pathologies. It has been shown [2,8] that when
particles in loop corrections are massless, the correspond-
ing dressed Green functions obtained in the fls and bls are
the same as the ones obtained using the complex-mass
prescription M2

0 ! M2 � iM� (M and � are the mass
and decay width of the resonance) in the bare Green
functions. This prescription has been successfully used
[9] to describe experimental data of the elastic and radia-
tive ��p scattering to extract the mass, width, and mag-
netic moment of the ��� baryon resonance.

According to the boson loop-scheme, one has to include
the absorptive parts of the one-loop corrections to the
electromagnetic vertex and the propagator of the resonance
in order to satisfy electromagnetic gauge invariance [2]. In
the case of a �� vector meson of mass m� and four-
momentum q, the one-loop absorptive corrections arising
from ���0 meson loops1 gives the resonant propagator
[2]:

D��
�� �q� � �i

g�� � q�q�

m2
�
�1� i

���q2�����
q2
p �

q2 �m2
� � i

�����
q2

p
���q

2�
; (1)

where we have defined the energy-dependent width (in the
limit of isospin symmetry m�� � m�0 � m�) as follows:

���q
2� �

g2
���

48�q2 �q
2 � 4m2

��
3=2��s� 4m2

��;

with g��� the ��� coupling constant (its value is dis-
cussed below).

The one-loop absorptive corrections to the electromag-
netic vertex (using the convention ��	�p� !
��
�p0����k� for Lorentz indices and four-momenta)
gives the following result [2]:

ie�	
� � ie��	
�0 � �	
�1 �; (2)
1The contribution of loops with K�K0 mesons can be included
in a similar way, but we neglect its small contribution in this
paper.
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where

�	
�0 � �p� p0�	g
� � �k
g	� � k�g	
�
�0� � p
g	�

� p0�g	
; (3)

is the electromagnetic vertex at the tree-level, and 
�0� the
value of the magnetic dipole moment of the ���770�
meson in units of e=2m� (
�0� � 2 corresponds to the
normal or canonical value of the magnetic dipole moment;
typical values of
�0� computed in quark models lies in the
interval 1:8 � 
�0� � 3:0 [10]). The absorptive part of the
���0 one-loop correction to the electromagnetic vertex of
the �� has been computed in Ref. [2] using cutting rules.
Its explicit form in the limit of isospin symmetry is given
by

�	
�1 �
ig2
���

16��p2 � p02�
fA�p2�p	T
��p�

� A�p02�p0	T
��p0� � B�p2�F	
�p�k�

� B�p02�F	��p0�k
 � �A�p2� � B�p2��

	 �F	
�p�F���p� � F	��p�F�
�p��p�

� �A�p02� � B�p02���F	
�p0�F���p0�

� F	��p0�F�
�p0��p0�g; (4)

where

B�q� � 2m2
� ln

��������
q2 � �q4 � 4m2

�q2�1=2

q2 � �q4 � 4m2
�q

2�1=2

��������
� �q4 � 4m2

�q2�1=2;

A�q2� �
2�q4 � 4m2

�q
2�3=2

3q4 ;

F���q� � g�� �
q�k�

q 
 k
; T���q� � g�� �

q�q�

q2 :

(5)

Since the above Green functions satisfy the Ward iden-
tity [2] k	�	
� � �iD
��p���1 � �iD
��p0���1, the radia-
tive amplitudes involving such vertices and propagators is
automatically gauge invariant. We will use this prescription
in computing the radiative amplitude of �� ! ���0���
decay; as it will be discussed below, the model-
independent contribution to this process involves the pro-
duction and decay of an intermediate ���770� vector
meson.
III. NONRADIATIVE TWO-PION DECAY

In this section we focus on the meson dominance model
for the nonradiative ���P� ! ���Q��0�Q0����P

0� decay,
where the particles four-momenta are indicated within
parenthesis. Our phenomenological model is based on the
quantum-mechanical requirement of unitarity, according to
which all possible intermediate states that are allowed to
contribute given their quantum numbers have to be in-
-2



RADIATIVE TWO-PION DECAY OF THE TAU LEPTON PHYSICAL REVIEW D 72, 113003 (2005)
cluded (see Fig. 1). In practice, only a few low-lying meson
states are sufficient to describe experimental data. As it can
be verified below, this model reproduces the Kühn and
Santamaria [11] parametrization of the vector form factor
which contains the sum of the ���770� and of its higher
excitations.

In the limit of the isospin symmetry, the amplitude for
this decay can be written in terms of a single vector form
factor:

M 0 �
GFVud���

2
p l��Q�Q0��f��~t�; (6)

where GF is the Fermi coupling constant, l� �
�u�P0����1� �5�u�P� denotes the leptonic current, ~t �
�Q�Q0�2 is the square of the momentum transfer and
Vud is the Cabibbo-Kobayashi-Maskawa mixing matrix
element.

For the purposes of illustrating how the model works, we
will assume that the amplitude is dominated by the ex-
change of two intermediate resonances: the ���770� and
the �0��1450� vector mesons as shown in Fig. 1. Applying
the Feynman rules to the diagram of Fig. 1 and using the
vector-meson propagator given in Eq. (1) we can obtain the
following expression for the form factor:

f��~t� �
g�g���

m2
� � ~t� i

��
~t
p

���~t�
�

g�0g�0��
m2
�0 � ~t� im�0��0

�

���
2
p

1� 

� m2
�

m2
� � ~t� i

��
~t
p

���~t�

� 
m2
�0

m2
�0 � ~t� im�0��0

�
; (7)

where g��g�0 � denotes the weak coupling of the
��770���0�1450�� vector meson (we neglect the energy
dependence of the decay width of the �0 meson).

The expression for the form factor in the second line of
Eq. (7), which coincides with the model of Ref. [11],
follows from imposing the normalization condition f��~t �
0� �

���
2
p

and from the definition of the parameter  �
�m2

�g�0g�0���=�m
2
�0g�g����. Using the experimental data

on the � and �0 decays [12] (we take ���0 ! e�e�� �
�
τ−

�
�

�
�
��

ντ

� � π−

��

��

��� π0

=
∑

V

FIG. 1. Meson dominance model of th
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1:48 keV, ���0 ! ����� � 26:9 MeV, which we have
estimated from relevant inputs in Ref. [12]), we can obtain
the following estimate for the relative strengths of these
vector-meson contributions in Eq. (7):

 �

����������������������������������������������������������������������������������������������
m�0���0 ! e�e�����0 ! ����m2

� � 4m2
��

3=2

m����! e�e�����! ����m2
�0 � 4m2

��
3=2

vuut

� 0:102: (8)

This estimate is very close to the experimental value
(jexpj � 0:120 0:008) reported in Ref. [13] [see also
our fit discussed after Eq. (10)]. This agreement renders
confidence on the meson dominance model for the radia-
tive decays to be discussed in this paper, and, in particular,
about the values of the coupling constants extracted from
other independent measured processes (see Sec. V).

In order to provide a comparison with the results ob-
tained for radiative � lepton decays in chiral perturbation
theory [3], hereafter we will restrict to the model with a
single resonance, namely, the ��770�. In order to fix the
parameters of this model, we have fitted the data of
Ref. [14] for the pion form factor below

��
~t
p
� 1:1 GeV

and have found that the approximation of using only one
resonance gives a good description of data with the follow-
ing central values for the resonance parameters:

m� � 776:66 MeV; g��� � 5:488: (9)

Using these values for the resonance parameters, we obtain
the following result for the nonradiative branching frac-
tion:

B��� ! ���0��� � 20:75%: (10)

Clearly, our simple model underestimates the experimental
value whose present world average is Bexp��� !
���0�� � �25:47 0:13�% [1]. This discrepancy can be
attributed mainly to the fact that we have neglected the
contribution of the ��1450� resonance which affects the
higher energy tail of the hadronic spectrum (indeed, if we
repeat the fit to data of Ref. [14] using the two vector
resonance model in Eq. (7), fixing the mass and width of
the �0 to their PDG values [12] and assuming that  is real,
�
τ−

�
�

�
�
��

ντ

�
��
�

� V −

� π−

��

��

��� π0

e nonradiative decay �� ! ���0��.
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we get m� � 775:80 MeV, g��� � 5:867, and  �
�0:12; this in turn leads to B��� ! ���0��� � 23:27%,
which is closer to the experimental value).

It is worth mentioning that in Ref. [3], the authors have
used the following form factor:

fGP
� �~t� �

���
2
p
m2
�

m2
� � ~t� im��GP

� �~t�
exp�2 ~H���~t� � ~HK �K�~t��;

(11)

which is obtained [15] by matching the prediction of chiral
perturbation theory at O�p4� with the contribution of the
��770� in the resonance region. The expressions of �GP

� �~t�
(which differs from our decay rate given in Sec. II) and of
the loops functions ~HPP0 �~t� can be found in Refs. [3,15]. As
in our model, the form factor in Eq. (11) gives a good
description of experimental data for the two-pion spectra in
the region below

��
~t
p
� 1:1 GeV.

The branching ratio for the nonradiative decay that is
obtained using the form factor in Eq. (11) also underesti-
mates the experimental value since:

B��! ���� � 21:19%: (12)

This low branching ratio reflects again the fact that the
form factor in Eq. (11) underestimates experimental data of
the pion form factor for large values of ~t. One possibility to
account for this discrepancy in the predictions of our model
is to normalize our results for radiative decays in terms of
the nonradiative rate. However, for the purposes of com-
paring our results with those of Ref. [3] we keep the one-
resonance model with the �� contribution in the evaluation
of the model-independent radiative amplitudes.
IV. RADIATIVE DECAY MODE

The Feynman diagrams that contribute to the radiative
���p� ! ���p���

0�p0����q���k; �� decay in our meson
dominance model are shown in Fig. 2. The particles four-
momenta are indicated within parenthesis, with k��� denot-
ing the momentum and polarization four-vectors of the
photon.

The decay amplitude has the following generic expan-
sion in powers of the photon energy E� [16]:

M �
A

E�
�BE0

� � CE� � 
 
 
 ; (13)

where the ellipsis denotes the terms of higher order in E�.
As we will see below, the terms of order up to E0

� (Low’s
amplitude) contains only model-independent contribu-
tions, while the terms starting at order E� arise from
model-dependent contributions and from the magnetic di-
pole [
�0�] and electric quadrupole moments (Q�) of the
�� meson (in this paper we do not consider the possible
effects of Q�). In the following we consider the different
contributions in more detail.
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A. Model-independent contributions

The model-independent contributions [Fig. 2(a)–2(d)]
are obtained by attaching the photon to all the charged lines
and vertices with derivate couplings in the nonradiative
Feynman diagram. This set of diagrams leads to a gauge-
invariant amplitude. In our model, gauge invariance is
guaranteed owing to the Ward identity satisfied by the
electromagnetic coupling and propagator of the �� intro-
duced in Sec. II. In other words, we do not need to impose
gauge invariance to the model-independent amplitude due
to the finite width effects of the �� vector meson. Just for a
later comparison, let us mention that the effects of the
��-meson magnetic moment 
�0�, a gauge-invariant
term by itself, can not be obtained by imposing gauge
invariance to the sum of amplitudes obtained from dia-
grams (a; c; d) in Fig. 2.

Using the Feynman rules corresponding to the vertices
and propagators in diagrams (a-d) from Fig. 2, we obtain
the following amplitudes:

Ma � eGFVud
ig�g������

2
p

�p� � p0��D

�
���p� � p0�

2p 
 k

	 �u�q��
�1� �5��6p� 6k�m���6
�u�p�; (14)

Mb � eGFVud
g�g������

2
p �p� � p0��D

��
�� �p� � p0�

	 ����D
��
���p� q��

��l�; (15)

Mc � �eGFVud
ig�g������

2
p

p� 
 ��

p� 
 k

	 �k� p� � p0��D
��
���p� q�l�; (16)

M d � eGFVud
ig�g������

2
p ���D

��
���p� q�l�: (17)

Owing to the Ward identity given in Sec. II, it is easy to
verify that the model-independent amplitude MMI �
Ma �Mb �Mc �Md is gauge-invariant, namely
MMI��

� ! k� � 0. The amplitude MMI differs from the
corresponding model-independent amplitude of Ref. [3] in
terms of order k and due to the effects of the magnetic
dipole moment of the �� meson. As we will see later, the
effects of 
�0� are negligible in the integrated observables
of this radiative decay. However, as it was discussed else-
where [2,17], its effects can be enhanced with a special
choice of the kinematics (see Sec. V D).

Just to end this section, we provide the Low’s amplitude
obtained from Eqs. (14)–(17) after expanding the ampli-
tude MMI around the soft-photon limit [the form factor
f��t� used here corresponds to the expression in Eq. (7)
when  � 0]:
-4
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τ−
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��
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�
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FIG. 2. Feynman diagrams of the model-independent (a-d) and model-dependent (e-k) contributions to �� ! ���0��� decays.
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M Low �
eGFVud���

2
p

�
f��t�

�
�� 
 p�
k 
 p�

�
�� 
 p
k 
 p

�
�p� � p0�

�l�

�
f��t�
2k 
 p

�u�q��6p� � 6p0�6k�6
��1� �5�u�p�

� f��t�
�
��� �

�� 
 p�
k 
 p�

k�
�
l� � 2

df��t�
dt

	

�
�� 
 p�
k 
 p�

k 
 p0 � �
� 
 p0

�
�p� � p0�

�l�

�
:

(18)

As it can be easily checked, this amplitude coincides with
the one obtained in Ref. [3]. As is dictated by Low’s soft-
photon theorem [16], the amplitude depends only on the
nonradiative amplitude and on the static electromagnetic
properties of the external particles.

B. Model-dependent contributions

The model-dependent contributions that appear within
our meson dominance model are shown in Figs. 2 (e-k).
The diagrams (e-g) contribute to an effective vector had-
ronic current, while the diagrams (h-k) give rise to an
113003
effective axial current. We can write these vector and axial
model-dependent contributions to the amplitude as fol-
lows:

M V � eGFVud����Ve�� � V
f
�� � V

g
���l

�; (19)

M A � eGFVud�
���Ah�� � A

i
�� � A

j
�� � A

k
���l

�: (20)

The explicit expressions for the vector and axial terms of
the hadronic vertex are the following:

Ve�� �
g�g�a1�g�a1����

2
p
e

�k 
 p0g�� � k�p0��D
��
a1
�k� p0�

	 ��k� p0� 
 �p� q�g��

� �k� p0���p� q���D���
��p� q�; (21)

Vf�� �
g�g�a1�g�a1����

2
p
e

�k 
 p�g�� � k�p���D
��
a1
�k� p��

	 ��k� p�� 
 �p� q�g�� � �k� p����p� q���

	D���
��p� q�; (22)
-5
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Vg�� �
g�g�!�g�!����

2
p
e

��0��0�p0
�0k�

0
D��
! �k� p0�

	 ��0��0�p��
0
�k� p0�

�0D���
��p� q�; (23)

Ah�� �
f�g���g������

2
p
e��p� q�2 �m2

��
��0��0�p0

�0k�
0
D��
���k� p0�

	 �p� q� p����p� q��; (24)

Ai�� �
f�g���g������

2
p
e��p� q�2 �m2

��
��0��0�p��

0
k�

0
D��
���k� p��

	 �p� q� p0���p� q��; (25)

Aj�� �
ifa1

g�a1�g������
2
p
e

��0��0�p0
�0k�

0
D��
���k�p0���k�p0�


 �p� q�g��� �k�p0���p� q���Da1�
��p� q�;

(26)

Ak�� �
ifa1

g�a1�g������
2
p
e

��0��0�p�
0

�k�
0
D��
���k�p����k�p��


 �p� q�g��� �k�p����p� q���Da1�
��p� q�:

(27)

All the couplings constants appearing in the above ex-
pressions can be easily identified from the corresponding
diagrams in Fig. 2. Their values can be fixed from mea-
sured decays of the a1, �, �, and ! mesons and will be
provided in the next section. Note that when the vector and
axial vector mesons become heavy degrees of freedom,
these model-dependent contributions vanish as required by
chiral symmetry [3].

As already anticipated, the above amplitudes are of
order 1 in the photon four-momentum k. Moreover, they
are individually gauge invariant since the conditions
k�Vm�� � k�An�� � 0 are satisfied. Of course, the vector
and axial amplitudes given above can be decomposed in
terms of a basis of four-independent vector and axial
tensors as pointed out in Ref. [3].

V. DECAY OBSERVABLES

As it was discussed in the previous section, the decay
amplitude of the radiative � lepton decay depends on a
large set of parameters (coupling constants and masses of
mesons). The parameters m�� ; g��� entering the model-
independent contributions where fixed from a fit to experi-
mental data [14] in the di-pion mass spectrum of the decay
�! ��� in the region below 1.1 GeV. Their values were
given in Eq. (9) of Sec. III. The other free parameter
entering the model-independent amplitude, namely, the
magnetic dipole moment 
�0� of the �� meson, is left as
a free parameter in order to study their effects on the
different observables of radiative � decays.
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The model-dependent contributions depend mainly on
the values of the coupling constants and masses of the
vector (�;!), axial a1 and pseudoscalar � mesons (we
assume isospin symmetry for the masses of neutral and
charged states). The values of the coupling constants can
be obtained from the measured decay rates of these mesons
(except for the weak coupling of the a1 meson whose value
is fixed from the Weinberg sum rule fa1

� g� [18]). As it
was the case for the nonradiative decay in Sec. III, we
expect that these effective couplings will give a good
estimate of the correct size for model-dependent effects.
Based on the experimental data compiled in Ref. [12], we
will use the following central values:

g� � 167 765:48 MeV; (28)

f� � 130:7 MeV; (29)

g�a1� � 4:843	 10�3 MeV�1; (30)

g�a1� � 2:9265	 10�4 MeV�1; (31)

g�!� � 0:012 MeV�1; (32)

g�!� � 7:1126	 10�4 MeV�1; (33)

g��� � 2:2092	 10�4MeV�1: (34)

Once we have fixed the values of these parameters, we
proceed to compute the different observables associated to
the radiative � lepton decay. Using the choice of kinemati-
cal variables described in the Appendix, we can write the
differential decay rate in terms of the five independent
kinematical variables as follows:

d � �

�0

2�4��6m2
�

1

2

X
pols

jMj2dxdtdE�d cos���d��� ; (35)

where 
�0 �
�����������������������
1� 4m2

�=t
p

is the magnitude of the pion
velocity in the di-pion rest frame. In order to integrate over
the relevant kinematical variables we have used the
VEGAS [19] integration routine. Next we focus on the
results obtained for each one of the computed observables.

A. Branching ratios

In this subsection we compute the predictions of our
model for the branching ratios. As it was done in Ref. [3],
we distinguish between the bremsstrahlung (model-
independent) and the full (that includes also model-
dependent terms) contributions to the decay rate. Since
the unpolarized probability is divergent for soft photons,
we introduce a cutoff energy Emin

� to regularize the integral.
In Fig. 3 we show the branching ratio as a function of Emin

� ,
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FIG. 4. Branching ratio of �! ���0�� as a function of the
soft-photon cutoff Emin

� for 
�0� � 1; 2; 3 (respectively, dashed,
solid, and dotted lines). Only the full contributions are plotted in
this case.
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FIG. 5. Photon spectrum in the �! ���0�� decay. The solid
line denotes the model-independent contributions, while the
dotted line is used for the full contributions. The dashed line
(almost superposed over the solid line) corresponds to the full
contribution obtained by excluding Fig. 2(g). The observable is
normalized to the nonradiative decay rate.
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FIG. 3. Branching ratio of �! ���0�� as a function of the
soft-photon cutoff Emin

� for 
�0� � 2. The dashed line denotes
the model-independent contributions and the solid line the full
contributions. The dotted line is obtained by excluding the
contribution of the ! meson, diagram 2(g). The points at E� �
100, 200, and 300 MeV correspond to the full contributions of
Ref. [3].
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for the normal value of the magnetic dipole moment

�0� � 2. We compare our results with the predictions
based on chiral perturbation theory [3] (the three squares
in Fig. 3).

We observe that if we exclude the!meson contribution,
diagram in Fig. 2(g), we find a very good agreement with
the calculation of Ref. [3]. However, according to the
VMD model, the contribution of the !�782� vector meson
cannot be excluded. This particular model-dependent con-
tribution becomes large due to a particular kinematic ac-
cident, namely, the almost degeneracy of the �� �!
system, and due to the small decay width of the ! meson
(�! � 8:44 MeV). This double resonance effect produces
an enhancement of the decay amplitude in approximately
the same kinematical region. In order to verify this expla-
nation we have increased the mass difference of the ��!
mesons and/or the width of the ! meson and have found
that the large effect of the ! meson is decreased in an
important way. We find that for photon cutoff energies of
order Emin

� � 200 MeV, the contribution of the ! meson
becomes already twice the value of all other contributions.
Therefore, a measurement of the radiative decay branching
ratio can help to discriminate among the two models.

The branching ratio is almost insensitive to reasonable
variations in the value of the ��-meson magnetic dipole
moment 
�0�. In Fig. 4 we show the full branching ratio as
a function of Emin

� for 
�0� � 1, 2, and 3. Thus, it is clear
that this observable cannot help to discriminate values of
the magnetic dipole moment.
113003
B. Photon spectrum

The photon spectrum can be obtained after integrating
over all the kinematical variables in Eq. (35) except E�.
This spectrum d�=dE� is plotted in Fig. 5 for 
�0� � 2.
The effect of the ! meson contribution is particularly
important for E� � 180 MeV. As in the case of the
branching ratio, the photon spectrum is not sensitive to
the value of the �� magnetic dipole moment.
-7
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FIG. 7. Di-pion invariant mass distribution in �! ���0��
decays for photon energies larger than 300 MeV. Description of
lines are the same as in Fig. 6. The observable is normalized to
the nonradiative rate.
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C. Di-pion invariant mass distribution

Another important observable associated to �� !
���0�� is the invariant mass distribution of the di-pion
system. In the case of the corresponding nonradiative
decay, this spectrum shows explicitly the peaks associated
to the production of vector resonances. It is interesting to
study how they are modified by the radiation of photons.
On another hand, a detailed study of this spectrum in
radiative decays is very important in order to remove the
hard bremsstrahlung from photon inclusive measurements
of �� ! ���0���� decays [1].

In Fig. 6 we plot the combined photon and di-pion
invariant mass spectra d�=�nrdE�dt (�nr is the nonradia-
tive decay rate) by choosing
�0� � 2. In order to avoid the
infrared divergences due to the emission of soft-photons,
we plot our results for a finite value of the photon energy
E�. Once again, we observe that the presence of the
!-meson contribution changes the spectrum in a sizable
way in all the region of t. However, the position of the
peaks associated to the photon emission off the �� and the
�� external lines are not affected. We also plot in Fig. 7 the
di-pion invariant mass distribution after integrating the
previous result for photons of energy larger than
300 MeV (unfortunately, a quantitative comparison with
results of Ref. [3] is not possible since they give their
results in arbitrary units). As in the case of the branching
ratios and of the photon spectrum studied in previous
subsections, the di-pion invariant mass distribution can
also help to distinguish between the present model and
the one based in chiral perturbation theory [3].
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2
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0.15

0.20
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dE

γd
t (
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10
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For Eγ=300 MeV

FIG. 6. Distribution in the photon energy and the invariant
mass of the di-pion system in �! ���0�� decays for E� �
300 MeV. The dashed line (dotted line) denotes the model-
independent (full) contributions. The solid line is obtained
when we exclude the meson !, diagram in Fig. 2(g). The
observable is normalized to the nonradiative rate.
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D. Angular and energy photon spectra

Previous studies of radiative decays involving the pro-
duction and decay of an on-shell charged vector meson
[17] have shown that the angular and energy photon spectra
are sensitive to the effects of the vector-meson magnetic
dipole moment when photons are emitted at small angles.
Therefore, we also compute this observable for the case of
�! ���� decays.
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θ=100

FIG. 8. Reduced angular and energy distribution of photons for
three different values of 
�0� � 1; 2; 3 (dotted, solid, and dashed
lines) and two different angles of the photon emitted with respect
to the �� three-momentum. The model-independent contribu-
tions [for 
�0� � 0] have been subtracted. The observable is
normalized to the nonradiative rate.
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2As it was concluded in Refs. [17], choosing such small angles
helps to suppress radiation off electric charges and make more
prominent the radiation off the magnetic dipole moment.
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In Fig. 8 we plot the angular and energy photon spectra
d�=�nrd cos�dE� as a function of the photon energy for
� � 10� and 20� (� is the angle between the photon and
the �� in the �� lepton rest frame) and three different
values of 
�0�. We have subtracted the (well-known) con-
tribution arising from the pure bremsstrahlung (terms of
order k�2 in the unpolarized probability) in order to make
more visible the effect of 
�0�. We observe that there are
some kinematical regions where the sensitivity to 
�0� is
increased and it may eventually help to measure this
property.

VI. CONCLUSIONS

In this paper we have considered the radiative two-pion
decay of the � lepton. This decay mode was considered
previously in Refs. [2,3]. The new ingredients of the
present study include (a) an electromagnetic gauge-
invariant description of the model-independent amplitude
including intermediate unstable �� mesons and (b) a com-
plete calculation of the model-dependent contributions
using a meson dominance model. In the framework of
the present model, all the meson states that are allowed
to contribute as intermediate particles were included in the
calculation of the radiative amplitude. In addition, we
study the effects of the �� magnetic dipole moment in
the observables of the radiative � lepton decay.

We have found that in the branching ratio, the photon
spectrum and the di-pion invariant mass spectrum of ra-
diative � lepton decays are sensitive to the model-
dependent contributions that include an ! meson inter-
mediate state [Fig. 2(g)]. This contribution produces an
important enhancement of these observables with respect
to all other contributions arising in the present model. The
origin of this enhancement can be traced back to the almost
degeneracy of the ��! masses and due to the small
decay width of the ! meson. In the absence of this con-
tribution, our model reproduces the results obtained in the
framework of chiral perturbation theory [3]. Since present
formulations of the chiral Lagrangian interactions do not
include the presence of vector-vector-pseudoscalar verti-
ces, it is natural that the calculation of Ref. [3] has not
included the contribution of diagram 2(g). Thus, experi-
mental measurements of the observables studied in this
paper can help to assess the approximation involved in
different models. Additionally, our calculation confirms
that the effects of the model-dependent axial contributions
are negligible [3].

The quantitative difference in model-dependent terms
may modify the size of the corrections applied to extract
the pion form factor from photon inclusive measurements
of �! ���� decays. As is well known [1], this pion form
factor seems to be a bit larger than the one obtained from
e�e� ! ���� annihilations for squared momentum
transfers larger than m2

�, even after known sources of
isospin breaking corrections are taken into account. Since
113003
this study must consider the effects of virtual radiative
corrections, we will consider it elsewhere [20].

The different observables studied in this paper are not
sensitive to the effects of the �� magnetic dipole moment.
As it was pointed out in Ref. [2] the photon emission off the
internal charged � meson line [Fig. 2(b)] is expected to
carry information about this important property which has
not yet been measured. The sensitivity on different values
of 
�0� is slightly increased when we consider the angular
and energy photon spectra for almost collinear �� � �
particles.2 Thus, only processes where the charged � vector
mesons are on their mass shell can offer a better sensitivity
to the magnetic dipole moment [17], since the radiation off
this electromagnetic moment enters at a lower order in the
photon momentum.
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APPENDIX: KINEMATICS

We discuss here the kinematics of the decay ���p� !
���p���

0�p0���q���k�; for simplicity we choose the iso-
spin limit p2

0 � p2
� � m2

�. The unpolarized squared am-
plitude for a four-body decay depends upon five
independent kinematical variables. We choose this set of
independent variables to be (we closely follow Ref. [21]):

�x; t; E�; cos��� ; ����: (A1)

The quantity t � �p� � p0�
2�x � �q� k�2� denotes the

squared invariant mass of the two-pion (��) system, E�
is the photon energy in the rest frame of the �, and
���� ; ��� are the spherical coordinate angles that define
the �� three-momentum in the � lepton rest frame.

The order of the limits of integration can be conveniently
chosen according to the energy or angular distribution that
we want to obtain for the observables. We consider four
possible choices (after integrating upon the angular varia-
bles):
(i) I
-9
f we integrate successively on E�, t, and x, the
limits of integration are given by

m2
� � x � �m� � 2m��

2; (A2)

4m2
� � t � �m� �

���
x
p
�2; (A3)

m2
��x� t�2X

4m�
�E��

m2
��x� t�2X

4m�
; (A4)
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where 2X �
���������������������
��m2

�; x; t�
p

, and m� is a cutoff pa-
rameter introduced to regularize the infrared
divergence.
(ii) I
f we exchange x$ t in the order of integration of
the previous case, their corresponding limits are

4m2
� � t � �m� �m��

2; (A5)

m2
� � x � �m� �

��
t
p
�2: (A6)
(iii) T
he successive order of integration over t, x, and
E�, requires the integration region to be defined as

m� � E� �
m2
� � 4m2

�

2m�
; (A7)

0 � x �
2E��m2

� � 4m2
� � 2m�E��

m� � 2E�
; (A8)
113003-10
4m2
� � t �

�m� � 2E���2m�E� � x�

2E�
: (A9)
(iv) A
nother useful choice is (the order of integration is
easily understood):

m� � E� �
m2
� � 4m2

�

2m�
; (A10)

4m2
� � t � m��m� � 2E��; (A11)

0 � x �
2E��m2

� � 2m�E� � t�

m� � 2E�
: (A12)
Other choices for the order of integrations are also pos-
sible. To verify that the different domains of integrations
are equivalent, we have performed the numerical integra-
tions using the different domains of integration described
above and have verified that the same results are obtained.
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