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Comment on ‘‘Self-dual teleparallel formulation of general relativity
and the positive energy theorem’’
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We give a correct tensor proof of the positive energy problem for the case including momentum on the
basis of conditions of the existence of the two-to-one correspondence between the Sen-Witten spinor field
and the Sen-Witten orthonormal frame. These conditions were obtained in our previous publications, but
the true significance of our works was not estimated properly by Chee, and these were not correctly quoted
in his publication. On other hand, the main result of our work is a substantial argument in favor of the
geometrical nature of the Sen-Witten spinor field.
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Ever since Witten developed the spinor method to prove
the positive energy theorem (PET) for gravity, the problem
of comparing this method with the tensor methods has been
a subject of continuing interest. Goldberg’s initial categori-
cal negation of the possibility that connections exist be-
tween these two methods [1] (‘‘For the first time spinors
have an intrinsic role for which tetrads cannot be substi-
tuted’’) was partially disproved by Dimakis and Müller-
Hoissen [2], and later by Frauendiener [3]. Dimakis and
Müller-Hoissen supposed that the spinor field could be
‘‘replaced’’ by some orthonormal frame field, so that the
existence of a global solution to the Sen-Witten equation
would imply the existence of globally defined orthonormal
frames on the Cauchy surface. But, in general, the solution
to the Sen-Witten equation will have zeros; from this
Dimakis and Müller-Hoissen concluded that each ortho-
normal frame field, as well as Nester’s special orthonormal
frame field (SOF, triad) on a spacelike hypersurface in an
asymptotically Minkowskian manifold, can exist almost
everywhere [2,4].

Frauendiener established that correspondence may exist
between the spinor field �A, which satisfies on a spacelike
hypersurface � the Sen-Witten equation (SWE)

D A
B�

B � 0;

and a triad, which satisfies on � a certain gauge condition,
and noted that this gauge is closely related to Nester’s. But
this Frauendiener result is valid only under the additional
assumption that the Sen-Witten spinor field has no zeros.

Nester’s SOF consists of the variables that describe the
physical degrees of freedom in general relativity.
Analogously, the preferred lapse N � �A��A � � and
shift Na � �

���
2
p

i���A�B�, constructed by Ashtekar and
Horowitz [5] from the Witten spinor, give an especially
simple form of gravitational Hamiltonian. Nevertheless,
degeneracy of Nester’s SOF or Ashtekar and Horowitz
preferred time variables, which is due to the existence of
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zeros of the spinor field, and may occur on subsets of
dimensions lower that 3 on the Cauchy hypersurface,
puts the physical sense of these two constructions in doubt.
Taking this degeneracy into account, Nester [6] had sup-
posed that a SOF exists at least for geometries in a neigh-
borhood of Euclidean space. Chee in his paper [7] states
that the Nester gauge condition can be derived from
Witten’s equation without any additional conditions for
all geometries, even on nonmaximal hypersurfaces.
Below we prove that this statement is not valid without
additional assumptions and give a corrected proof of the
PET for the case including momentum.

Indeed, the correspondence between the spinor field,
which satisfies the Sen-Witten equation, and a triad, which
satisfies a certain gauge condition, is correctly defined by
the Sommers transformation [8]
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�L� L�; �2 �
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�L� L�; �3 � ~L;

(1)

where �a is a coframe basis, L � ��A�B, � � �A�A�, and
~L �j L j�1 ��L ^ L� if and only if the spinor field �A

vanishes nowhere on �. This follows from the fact that the
bilinear form

1���
2
p nA _A�A� _A � �A�A� � �;

where n is the unit normal one-form to �, is Hermitian
positive definite, and � does not vanish at a point on � if
the solution �A does not have a zero at this point. But �A is
the solution of the SWE, which is of elliptic type; zeros of
solutions to such equations not only may, but must exist,
and these have a clear physical meaning: for example,
zeros of solution to the equation for vibrations of a flat
membrane are the node lines of standing waves.

In Chee’s work, the possible existence of node mani-
folds for the SWE is not excluded but it is ignored com-
pletely—there even is no mention of the assumption
�2 � � � �A�A� � 0. As a result, the Sommers trans-
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formation (1), written by Chee as formula (47), does not
exist on node manifolds, and, consequently his conditions
(48), which are Nester’s conditions, are not fulfilled. Then
equation (51) for the boundary term

I
S

~B�AB�dSAB

is not fulfilled, the choice N � �A�A� is not possible, and
this means that the last formula (53) of publication [7],
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in general is not correct.1

We now give the corrected proof of the PET for the case
including momentum on the basis of conditions for the
existence of the correspondence between Nester’s gauge
and the SWE, obtained by us in publications [10–12].

Definition 1.—A point where the solution for an elliptic
system of equations is equal to zero is called a node point
of the solution.

From the general theory of elliptic differential equations
it is known that nontrivial solutions cannot vanish on an
open subdomain, but they can become zero on subsets of
lower dimensions k; k � 0; 1; . . . n� 1, where n is the
dimension of the domain.

Definition 2.—A node submanifold of dimension s; s �
1; 2; . . . n� 1, is a maximal connected subset of dimension
s consisting of node points of the solution.

In the case of a single self-adjoint elliptic equation in V3,
the node submanifolds can only be surfaces that divide the
domain, but in the case of a system of equations the
topology of node submanifolds has greater variety: it can
be also that of lines or of points.

Let us consider first the case when the Cauchy hyper-
surface is maximal.

Theorem 1.—[10] Let �C satisfy Reula’s condition [13]
and be a solution of the SWE with an asymptotically flat
initial data set, satisfying the dominant energy condition.
Then on a maximal hypersurface �, the solution �C is
everywhere free from the node point.

On the basis of this theorem we obtain the following.
Theorem 2.—Let an initial data set �h��;K��� on a

maximal hypersurface � be asymptotically flat and satisfy
the dominant energy condition. Then everywhere on � the
Sen-Witten equation with Reula conditions for the spinor
field [13] and Nester’s gauge are equivalent (up to the sign
of the spinor).
1For an absolutely correct proof, it is also necessary to
abandon the application of a three-dimensional truncation of
the four-dimensional Gauss theorem [9].
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Therefore, in this simple case of maximal hypersurface,
the Chee proof is correct, if the hypersurface is asymptoti-
cally flat and the dominant energy condition is fulfilled.

To investigate the node manifolds of the SWE on non-
maximal hypersurfaces in [11], we had developed an os-
cillation theory for general double-covariant systems2 of
elliptic equations of 2nd order in R3. Applying it in the
same work to the SWE for solutions of the form �C �
�C1 � 	

C, where �C1 is an asymptotically covariant con-
stant spinor field on �, and 	C is an element of the Hilbert
space H , defined in [13] (we call these conditions for
solution the Reula conditions for the spinor field), we had
obtained the following theorem.

Theorem 3.—Let:

(a) th
We
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and co
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e initial data set be asymptotically flat;

(b) (
b) the matrix of the spinorial tensor
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have everywhere on � at least one non-negative
eigenvalue, for definiteness C0;
(c) R
e�0
1 or Im�0

1 be asymptotically nowhere equal to
zero.
Then the asymptotically constant nontrivial solution �C of
the SWE does not have node points on � .

This theorem allowed us to prove in Theorem 4 the
existence everywhere on � of a certain class of orthonor-
mal three-frames, which generalize Nester’s special three-
frame (Sen-Witten orthonormal three-frame, SWOF). This
class of SWOF satisfies the gauge conditions

"abc!abc � �q � 0; !a
1a � �~q1 � F1;

!a
2a � �~q2 � F2; !a

3a � �~q3 �K� F3;
(2)

where !abc are the connection one-form coefficients, and
F � d ln�; conditions (2) coincide with Nester’s gauge if
and only if the one-form K���A�B� is exact.

Theorem 4.—Let conditions of Theorem 3 be fulfilled.
Then a two-to-one correspondence between the Sen-
Witten spinor and the Sen-Witten orthonormal frame exists
everywhere on �.

That is why in the case of nonmaximal hypersurfaces the
tensor proof of the PET for the case including momentum
is valid only if conditions (a) and (b) of our Theorem 3 are
fulfilled.

I wish to thank D. Brill for a helpful discussion.
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