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Recursive method to obtain the parametric representation of a generic Feynman diagram
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A recursive algebraic method which allows one to obtain the Feynman or Schwinger parametric
representation of a generic L-loops and �E� 1� external lines diagram, in a scalar �3 ��4 theory, is
presented. The representation is obtained starting from an initial parameters matrix, which relates the
scalar products between internal and external momenta, and which appears directly when this parame-
trization is applied to the momentum space representation of the graph. The final product is an algebraic
formula that shows explicitly the external momenta dependence and also an algorithm that can be easily
programmed, either in a computer programming language (C/C++, Fortran, . . .) or in a symbolic
calculation package (MAPLE, MATHEMATICA, . . .).
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I. INTRODUCTION

An important mathematical problem in elementary par-
ticle physics is the evaluation of Feynman integrals, which
usually appear in the perturbative treatment of quantum
field theory amplitudes. Besides the intrinsic difficulty in
solving the integrals associated with a specific graph, in
general the number of diagrams grows rapidly when the
number of loops is increased, which makes it necessary to
develop methods that allow for the automatization both in
the generation and the evaluation of such integrals. The
first problem that we face in dealing with a Feynman
diagram is to decide which integral representation is the
most convenient in order to start the process for finding a
solution. Among the different alternatives we have the
parametric representations, in particular, the Feynman pa-
rametrization [1–3] and the Schwinger parametrization
(�-parameters) [1,3,4], which allow for the transformation
of the loop integrals into scalar multidimensional integrals.
These representations also permit, using dimensional regu-
larization, a clear and direct analysis of the convergence
problem, and furthermore the property of Lorentz invari-
ance is also explicit in these representations. Recently very
efficient analytical and numerical methods for evaluating
loop integrals have been proposed, which use as a starting
point a scalar representation. In particular the Mellin-
Barnes [5] representation allows for analytical solutions
of complicated diagrams, starting from a Feynman pa-
rameters integral. In numerical calculations an excellent
technique is the so-called sector decomposition [5–7],
which allows one to find the Laurent series of the diagram
in terms of the dimensional regulator ���, systematically
separating by integration sectors the divergences in the
Feynman parameters integral. From this point of view, it
would be convenient to find an accessible way for obtain-
ing the above-mentioned parametric representations.
Although at present there are in the literature algorithms
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of topological nature [8], its implementation is quite com-
plicated from the point of view of the automatization.

We will consider here a scalar theory. The final result is a
simple algorithm which allows one to find the parametric
representation of any loop integral, and which can be easily
programmed computationally. The basis of this formalism
is a generalization of the completion of the squares proce-
dure used in mathematics structures denominated qua-
dratic forms [9–11], which are precisely those that
appear when applying a scalar parametrization to the mo-
mentum space integral representations. In essence, the
expression of the form QtMQ is a quadratic form, where
Q is an �L� E�-vector that contains all the independent
internal and external momenta of the graph and M is a
matrix denominated initial parameters matrix (IPM). The
end result of the process is a recurrence equation that is the
support of the algorithm.

This study is developed making emphasis on the differ-
ences that exist in the way of finding the parametric rep-
resentation and the resultant mathematical structure,
between the usual method and the one proposed here. We
also find that the parametric representation can be ex-
pressed in two equivalent and directly related ways, the
first one in terms of matrix elements generated by recursion
starting from the IPM and the second in terms of determi-
nants of submatrices of the IPM. The relationship between
both representations is demonstrated in Appendices A and
B. Finally, two detailed examples are presented, illustrat-
ing the procedure for obtaining the parametric representa-
tion of a Feynman diagram, and which allow one to
compare in practical terms the usual method and the one
proposed here. We also add the explicit code to generate
the recursive elements of the scalar representation, in the
symbolic calculation package MAPLE.
II. THE FORMALISM

Let us consider a generic topology G that represents a
Feynman diagram in a scalar theory, and suppose that this
graph is composed of N propagators or internal lines, L
-1 © 2005 The American Physical Society
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loops (associated to independent internal momenta q �
fq1; . . . ; qLg, and E independent external momenta p �
fp1; . . . ; pEg. Each propagator or internal line is character-
ized by an arbitrary and in general different mass, m �
fm1; . . . ; mNg.

Using the prescription of dimensional regularization, we
can write the momentum space integral expression that
represents the diagram in D � 4� 2� dimensions as

G � G�p;m�

�
Z dDq1

i�D=2
� � �

dDqL
i�D=2

�
1

�B2
1 �m

2
1 � i0�

�1
� � �

1

�B2
N �m

2
N � i0�

�N
: (1)

In this expression the symbol Bj represents the momentum
of the j propagator or internal line, which in general
depends on a linear combination of external fpg and inter-
nal fqg momenta: Bj � Bj�q; p�.

We also define the set � � f�1; . . . ; �Ng as the set of
powers of the propagators, which in general can take
arbitrary values.

Here we will study two well-known parametric repre-
sentations: the Feynman parametrization and the
Schwinger parametrization. In the next sections we will
show how to express Eq. (1) in terms of these two scalar
representations. The technique consists in transforming the
product of denominators in (1) into a sum through the use
of an integral identity.

A. Momentum representation and his scalar
parametrization

1. Feynman parametrization

Using the identity

1QN
j�1A

�j
j

�
���1������N�
���1� . . .���N�

Z 1

0
dx1 .. .dxN�

�
1�

XN
j�1

xj

�

�

QN
j�1x

�j�1
j

	
PN
j�1xjAj


�1������N
(2)

and after defining Aj � �B2
j �m

2
j �, we can replace (2) into

Eq. (1) and thus obtain the following generic result:

G �
��N��

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�
Z QL

j�1 d
Dqj

�i�D=2�L
1

	
PN
j�1 xjB

2
j �

PN
j�1 xjm

2
j 

N�
: (3)

For simplicity, from now on we use the following notation:

d~x � dx1 . . . dxN
QN
j�1 x

�j�1
j and N� � ��1 � � � � � �N�.
106006
2. Schwinger parametrization

The fundamental identity for this specific parametriza-
tion is given by the equation

1

A
�j
j
�
Z 1

0
dxjx

�j�1
j exp��xjAj�; (4)

which allows, after replacing Aj � �B2
j �m

2
j �, to express

Eq. (1) in the following general form:

G �
1

���1� . . . ���N�

Z 1
0
d~x exp

�XN
j�1

xjm2
j

�Z QL
j�1 d

Dqj
�i�D=2�L

� exp
�
�
XN
j�1

xjB2
j

�
: (5)

The next step is integrating (3) and (5) with respect to the
internal momenta, obtaining in this way the corresponding
scalar parametrization.

B. Loop momenta integration and parametric
representation (usual method)

The usual way to integrate over internal momenta con-
sists in expanding the sum

PN
j�1 xjB

2
j and reorder it in the

following manner:

XN
j�1

xjB
2
j �

XL
i�1

XL
j�1

qiAijqj � 2
XL
i�1

kiqi � J; (6)

or expressed more compactly in matrix form:

XN
j�1

xjB
2
j � qtAq� 2ktq� J; (7)

where the following quantities have been defined:

A S
-2
ymmetric matrix of dimension L� L, whose elements
are functions of the parameters x only: A � A�x�.
q L
-vector, whose components are the loop or internal 4-
vector momenta: q � 	q1 . . . qL
t.
k L
-vector, whose components are linear combinations of
external momenta, with coefficients that are functions
of the parameters x only, so k � k�x; p�.
J S
calar term, which is a linear combination of scalar
products of external momenta, with coefficients that
depend on the parameters x only, J � J�x; p�.
Evidently the specific form of each of these quantities

depends on the topology of the corresponding diagram, and
is made explicit once the parametrization formula is ap-
plied to Eq. (1). With the reordering presented in (7), we
can write both parametrizations and their respective solu-
tions after performing the momenta integrations.
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1. Feynman parametrization

G �
��N��

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�Z QL
j�1 d

Dqj
�i�D=2�L

�
1

	qtAq� 2ktq� J�
PN
j�1 xjm

2
j 

N�
; (8)

which, once the loop momenta integrals are performed,
gives finally the Feynman parametric representation:

G �
��1�N���N� �

LD
2 �

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�
	detA
N���L�1��D=2�

	detA�
PN
j�1 xjm

2
j � J� ktA�1k�
N��	�LD�=2


: (9)

2. Schwinger parametrization

G �
1

���1� . . . ���N�

Z 1
0
d~x exp

�XN
j�1

xjm
2
j � J

�

�
Z QL

j�1 d
Dqj

�i�D=2�L
exp��qtAq� 2ktq�: (10)

In an analogous way, after integration over internal mo-
menta, we obtain Schwinger’s parametrization of G:

G �
��1��LD�=2

���1� . . . ���N�

Z 1
0
d~x	detA
�D=2

� exp
�XN
j�1

xjm2
j � J� ktA�1k

�
: (11)

The techniques for solving the momenta integrals in (8)
and (10) can be found in detail in the literature, both for the
Feynman parametrization case [1,2], as well as for the
Schwinger [1] case. This last one is usually solved using
products of D-dimensional Gaussian integrals, in
Minkowski or Euclidean spaces.

Notice that in both parametrizations [Eqs. (9) and (11)]
it is necessary to evaluate a matrix product that involves an
inverse matrix calculation.

C. Alternative procedure for obtaining the parametric
representation (I)

Starting from Eqs. (3) and (5), we can choose to repre-
sent the term

PN
j�1 xjB

2
j as a function of both internal and

external momenta scalar products, related through the
symmetric matrix M�1�, which we will call IPM. The
dimension of this matrix is therefore �L� E� � �L� E�.

For convenience, let us define the momentum:

Qj �

�
qj if L � j � 1
pj�L if E � j > L;

(12)

and the �L� E�-vector Q � 	Q1 Q2 . . .Q�L�E� 
t.
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Using this definition we can reorder the sum
PN
j�1 xjB

2
j ,

and rewrite it as

XN
j�1

xjB
2
j �

XL�E
i�1

XL�E
j�1

QiM
�1�
ij Qj � QtM�1�Q; (13)

where M�1� is clearly a matrix that only depends on
parameters.

The difference in the matrix structure, with respect to the
usual method of finding the parametric representation, is
that here we include both external and internal momenta in
the same quadratic representation, and not only the internal
ones as in the usual case we presented above [see Eq. (7)],
which produces matrix A. In fact, matrix A is a submatrix
of M�1�, which already shows an important difference in
the parametrization starting point, with respect to the usual
method. More explicitly we have that

A �

a11 . . . a1L

..

. ..
.

aL1 . . . aLL

0
BB@

1
CCA; (14)

whereas the initial parameters matrix is given by

M�1� �

a11 . . . a1L

..

. ..
.

aL1 . . . aLL

. . . M�1�1�L�E�

..

.

..

.

M�1�
�L�E�1 . . .

. .
.

M�1�
�L�E��L�E�

0BBBBBBBB@

1CCCCCCCCA
;

(15)

with M�1�ij �
�aij if L � i � 1; L � j � 1

M�1�ij in other cases:
(16)

In Appendix A we show a generalization of the square
completion method for diagonalizing quadratic forms,
which is what appears when we parametrize the loop
integrals. Looking at the definition of Q in (12), and since
we have to integrate only the first L momenta, only the
main L� L submatrix has to be diagonalized; that is, we
need to perform a change of variables in the first L mo-
menta of the �L� E�-vector Q. This can be summarized in
the following expression:

Q tM�1�Q �
XL
j�1

M�j�jj ~Q2
j �

XL�E
i�L�1

XL�E
j�L�1

QiM
�L�1�
ij Qj:

(17)

Using the definition (12), the double sum can be expressed
in terms of the external momenta:

XL�E
i�L�1

XL�E
j�L�1

QiM
�L�1�
ij Qj �

XE
i�1

XE
j�1

M�L�1�
�L�i��L�j�pi � pj:

(18)
-3
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Thus the quadratic form of the momenta Q can be written
as

Q tM�1�Q �
XL
j�1

M�j�jj ~Q2
j �

XE
i�1

XE
j�1

M�L�1�
�L�i��L�j�pi � pj:

(19)

When the square completion procedure is performed to the
quadratic form (13), the linear transformation for each
internal momentum is given in general by an expression
of the form

~Q j � Qj � f�x;Qj�1; . . . ; QL�E� with j � 1; . . . ; L;

(20)

whose Jacobian is equal to unity. The matrix elements of
the type M�k�ij are defined through the following recursion
relation (see Appendix A):

M�k�1�
ij �

8>><>>:
0 if i< �k�1�_j< �k�1�

M�k�ij �
M�k�ik M

�k�
kj

M�k�kk
in other cases:

(21)

Therefore in a generic way the first L momenta of the
vector Q have been diagonalized, using the square com-
pletion method. Once this has been done, we are in a
position to obtain the desired parametric representation.

1. Feynman parametrization in terms of the matrix
elements M�k�ij

Using Eq. (13), the identity (3) can be written in terms of
the vector Q, and thus we get the following equality:

G �
��N��

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�
Z QL

j�1 d
DQj

�i�D=2�L
1

	QtM�1�Q�
PN
j�1 xjm

2
j 

N�
: (22)

Then we expand the denominator of the previous equation,
using equality (19), and therefore we obtain a more explicit
expression with respect to the integration variables ~Qj:

G �
��N��

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�Z QL
j�1 d

D ~Qj

�i�D=2�L

�
1

	
PL
j�1 M

�j�
jj

~Q2
j ��
N�

; (23)

where it has been defined

� �
XN
j�1

xjm2
j �

XE
i;j�1

M�L�1�
�L�i��L�j�pi � pj: (24)

If we now make a second change of variables, such that
106006
~~Q j � 	M
�j�
jj 


1=2 ~Qj ) ~Qj � 	M
�j�
jj 

�1=2 ~~Qj; (25)

then

dD ~Qj � dD�	M�j�jj 

�1=2 ~~Qj� � 	M

�j�
jj 

�D=2dD ~~Qj

with j � 1; . . . ; L (26)

and, replacing this in Eq. (23), we will have the following
transformed loop momenta integral:

G �
��N��

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�Z QL
j�1 d

D ~~Qj

�i�D=2�L

�
	M�1�11 . . .M�L�LL


�D=2

	
PL
j�1

~~Q
2
j � �
N�

: (27)

In order to perform the integral with respect to the variables
~~Qj, let us define now the hypermomentun R of �LD�
components in Minkowski space, such that

R2 �
XL
j�1

~~Q
2
j (28)

dD ~~Q1 . . . dD ~~QL � dLDR: (29)
Then the expression (27) is reduced to

G �
��N��

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�
Z dLDR

�i�D=2�L
	M�1�11 . . .M�L�LL


�D=2

�R2 � ��N�
: (30)

The solution of this integral, with respect to the hyper-
momentum R, can be found using the following identity:Z dLDR

�i�D=2�L
1

	R2 ��
N�
� ��1�N�

��N� �
LD
2 �

��N��

�
1

�N��	�LD�=2

; (31)

and which finally applied to Eq. (30) gives us the scalar
integral, that is the Feynman parametric representation of
G,

G �
��1�N���N� �

LD
2 �

���1� . . . ���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�
	M�1�11 . . .M�L�LL


�D=2

	
PN
j�1 xjm

2
j �

PE
i;j�1 M

�L�1�
�L�i��L�j�pi � pj


N��	�LD�=2

;

(32)

where the matrix elements M�L�1�
�L�i��L�j� can be easily ob-

tained from the IPM using the recursion formula:

M�L�1�
�L�i��L�j� � M�L�

�L�i��L�j� �
M�L�
�L�i�LM

�L�
L�L�j�

M�L�LL
: (33)
-4
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2. Schwinger parametrization in terms of the matrix
elements M�k�ij

Analogously, using Eq. (13), the identity (5) can be
written in terms of the vector Q as

G �
1

���1� . . . ���N�

Z 1
0
d~x exp

�XN
j�1

xjm2
j

�Z QL
j�1 d

DQj

�i�D=2�L

� exp
�
�QtM�1�Q

�
; (34)

or equivalently, using the expansion given in Eq. (19), we
get

G �
1

���1� . . . ���N�

Z 1
0
d~x exp���

Z QL
j�1 d

D ~Qj

�i�D=2�L

� exp
�
�
XL
j�1

M�j�jj ~Q2
j

�
; (35)

where again we have defined

� �
XN
j�1

xjm
2
j �

XE
i;j�1

M�L�1�
�L�i��L�j�pi � pj: (36)

Now we can solve the momentum integral:

Z QL
j�1 d

D ~Qj

�i�D=2�L
exp

�
�
XL
j�1

M�j�jj ~Q2
j

�

�
Z dD ~Q1

i�D=2
exp��M�1�11

~Q2
1� . . .

Z dD ~QL

i�D=2
exp��M�L�LL ~Q2

L�:

(37)

In order to find a solution of this integral we make use of
the Minkowski space identity:

Z dD ~Qj

�i�D=2�
exp��M�j�jj ~Q2

j � �
��1�D=2

	M�j�jj 

D=2

; (38)

which will allow to evaluate (37). Replacing afterwards
this result in (35), we obtain finally the Schwinger para-
metric representation for the generic graph G:

G �
��1��LD�=2

���1� . . . ���N�

Z 1
0
d~x	M�1�11 . . .M�L�LL


�D=2

� exp
�XN
j�1

xjm2
j �

XE
i;j�1

M�L�1�
�L�i��L�j�pi � pj

�
; (39)

in terms again of the matrix elements M�L�1�
�L�i��L�j�, which as

we have said before can be readily obtained from the IPM
using the recursion formula equation (33).

D. Alternative procedure for obtaining the parametric
representation (II)

There exists a direct relation between the matrix ele-
ments M�k�ij and the determinants of submatrices of the
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IPM. Such a relation can be expressed by the identity

M�k�1�
ij �

��k�1�
ij

��k�kk
; (40)

where ��k�1�
ij is a determinant which in general is defined

by the equation

��k�1�
ij �

�����������������������

M�1�11 � � � M�1�1k M�1�1j

..

. ..
. ..

.

M�1�k1 � � � M�1�kk M�1�kj
M�1�i1 � � � M�1�ik M�1�ij

�����������������������
: (41)

This result is shown in Appendix B. There we also present
several relations that are fulfilled by these determinants and
the matrices M�k�, and furthermore show how it is possible
to evaluate them directly in terms of the matrix element
M�k�ij . Meanwhile, let us express the results we have found
in (32) and (39), in terms of determinants, using for such a
purpose the identity (40). Then, by direct replacement, we
find the following final expressions for both
parametrizations.

1. Feynman parametrization

After replacing the matrix elements M�k�ij for the result
given defined in (40), Eq. (32) is written as

G�
��1�N���N��

LD
2 �

���1� . . .���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�

	
��1�11

��0�00

��2�22

��1�11

���
��L�LL

��L�1�
�L�1��L�1�


�D=2

	
PN
j�1xjm

2
j�

PE
i;j�1

��L�1�
�L�i��L�j�

��L�LL
pi �pj
N���LD�=2

: (42)

After a little algebra, we get the final Feynman parametric
representation:

G�
��1�N���N��

LD
2 �

���1�...���N�

Z 1

0
d~x�

�
1�

XN
j�1

xj

�

�
	��L�LL


N���L�1��D=2�

	��L�LL
PN
j�1xjm

2
j�

PE
i;j�1 ��L�1�

�L�i��L�j�pi �pj

N���LD�=2

:

(43)
2. Schwinger parametrization

In an analogous way, applying identity (40) to (39), we
obtain
-5
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G �
��1��LD�=2

���1� . . . ���N�

�
Z 1

0
d~x
�

��1�11

��0�00

��2�22

��1�11

� � �
��L�LL

��L�1�
�L�1��L�1�

�
�D=2

� exp
�XN
j�1

xjm2
j �

XE
i;j�1

��L�1�
�L�i��L�j�

��L�LL
pi � pj

�
; (44)

or simply

G �
��1��LD�=2

���1� . . . ���N�

Z 1
0
d~x	��L�LL


�D=2

� exp
���L�LL

PN
j�1 xjm

2
j �

PE
i;j�1 ��L�1�

�L�i��L�j�pi � pj

��L�LL

�
;

(45)

which corresponds to Schwinger’s parametric representa-
tion. In Appendix B it is shown that these determinants can
be evaluated from the matrix elements obtained using a
recursion relation starting from the IPM, using the follow-
ing rule:

��k�1�
ij � M�1�11 . . .M�k�kk M

�k�1�
ij : (46)

This identity is important since it allows one to evaluate the
determinants that appear in the parametric representations
obtained in (43) and (45). We should point out that the
matrix A, defined in Sec. II B, has a determinant which is
equal to ��L�LL, that is,

detA � ��L�LL; (47)

a very useful identity for comparing more rigorously the
different methods for finding parametric representations of
Feynman diagrams.
p1 p1

FIG. 1. Sunset diagram.
III. THE COMPUTATIONAL CODE

The fundamental equation, which allows one to evaluate
the matrices M�k� starting from the initial parameters ma-
trix is given by the recursive relation:

M�k�1�
ij � M�k�ij �

M�k�ik M
�k�
kj

M�k�kk
; (48)

or equivalently

M�k�ij � M�k�1�
ij �

M�k�1�
i�k�1�M

�k�1�
�k�1�j

M�k�1�
�k�1��k�1�

; (49)

which can be easily programmed in any computer lan-
guage, and also in a CAS (Computer Algebra System).
The codification of this equation gives rise to a simple
recursive procedure, which we present here in MAPLE:

>R:=proc(m,k,i,j) local val:
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>if k=1 then val:=m[i,j]:
>else val:=simplify(R(m,k-1,i,j)-R(m,k-1,i,k-1)

*R(m,k-1,k-1,j)/R(m,k-1,k-1,k-1) ):
>fi:end:
In this procedure we have codified the recursive function

R�m; k; i; j�, where the input parameters are given by the
following definitions:

m C
-6
orresponds to the IPM, which is obtained at the
beginning of the parametrization process. The matrix
that relates internal and external momenta in the qua-
dratic form QtM�1�Q (Q � 	q1 . . . qLp1 . . .pE
 and
m �M�1�).
k C
orresponds to the order of recursion of the matrix.
The case k � 1 represents the IPM, and the cases k >
1 correspond to matrices obtained by recursion starting
from the IPM.
i; j T
he matrix element to be evaluated.

The algorithm is very simple. It is only necessary to

parametrize the loop integral and recognize the matrix
M�1�. Then we make m �M�1�. Finally if we want to
evaluate any matrix element M�k�ij , we just execute the
following command or instruction in MAPLE: >R(m,k,i,j);.
IV. APPLYING THE ALGORITHM, SIMPLE
EXAMPLES

A. Example I

Now we will compare in actual calculations the usual
form and the one presented here for finding the parametric
representation in terms of Feynman parameters. For that
purpose let us consider the following diagram, Fig. 1,
where the masses associated at each propagator are taken
as different.

First we write the momentum representation of the
graph:

G �
Z dDq1

i�D=2

dDq2

i�D=2

1

�B2
1 �m

2
1�

1

�B2
2 �m

2
2�

1

�B2
3 �m

2
3�
;

(50)

where the branch momenta Bj are in this case defined as

B1 � q1; B2 � q1 � q2; B3 � p1 � q2: (51)

Applying Feynman parametrization we obtain the follow-
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ing integral:

G � ��3�
Z 1

0
dx1dx2dx3��1� x1 � x2 � x3�

�
Z dDq1

i�D=2

dDq2

i�D=2

1

�3 ; (52)

where we define

� �
X3

j�1

xjB2
j �

X3

j�1

xjm2
j : (53)

Then, expanding the previous sum and factorizing the
result in terms of internal momenta, we get a quadratic
form in these momenta, which reads

� � �x1 � x2�q
2
1 � 2x2q1 � q2 � �x2 � x3�q

2
2

� 2x3p1 � q2 � x3p2
1 �

X3

j�1

xjm2
j : (54)
1. Usual method of finding the parametric representation

According to the previous formulation [see Eq. (7)], we
can identify the necessary basic elements for finding the
parametric representation. These are

A �
x1�x2 x2

x2 x2�x3

� �
; k��0 �x3p1 �

t; J�x3p2
1:

(55)

We start from the general result that we found in Eq. (9) for
Feynman’s parametrization:

G �
��1�N���N� �

LD
2 �

���1� . . . ���N�

Z
d~x�

�
1�

XN
j�1

xj

�

�
	detA
N���L�1�D=2

	detA�
PN
j�1 xjm

2
j � J� ktA�1k�
N��L�D=2�

:

(56)

In the present case this gives

G � ��1�3��3�D�
Z
dx1 . . . dx3�

�
1�

X3

j�1

xj

�

�
	detA
3�3�D=2�

	detA�
PN
j�1 xjm

2
j � J� ktA�1k�
3�D

: (57)

Evaluating the terms that are involved here we get
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detA � x1x2 � x1x3 � x2x3;

A�1 �
1

x1x2 � x1x3 � x2x3

�
x1 � x2 �x2

�x2 x2 � x3

 !
;

ktA�1k �
x2

3�x1 � x2�p2
1

x1x2 � x1x3 � x2x3
;

detA��J� ktA�1k� � ��x1x2x3�p
2
1;

(58)

and considering also the fact that D � 4� 2�, one finally
obtains the Feynman parametric representation:

G�����1�2��
Z 1

0
d~x�

�
1�

X3

j�1

xj

�

�
	x1x2�x1x3�x2x3


�3�3�

	�x1x2�x1x3�x2x3�
P3
j�1xjm

2
j��x1x2x3�p2

1

�1�2� ;

(59)

with d~x � dx1dx2dx3.

2. Obtaining the scalar representation by recursion

Remembering the general formula that is used in this
method for the parametric representation:

G �
��1�N���N� �

LD
2 �

���1� . . . ���N�

Z
d~x�

�
1�

XN
j�1

xj

�

�
	M�1�11 . . .M�L�LL


�D=2

	
PN
j�1 xjm

2
j �

PE
i;j�1 M

�L�1�
�L�i��L�j�pi � pj


N��	�LD�=2

;

(60)

which in the present case gets reduced to the following:

G � ����1� 2��
Z
dx1dx2dx3�

�
1�

X3

j�1

xj

�

�
	M�1�11M

�2�
22 

�2��

	
P3
j�1 xjm

2
j �M

�3�
33p

2
�1�2�
: (61)

From Eq. (54) one can find immediately the IPM:

M �1� �M �

x1 � x2 x2 0
x2 x2 � x3 x3

0 x3 x3

0@ 1A: (62)

It is now only necessary to calculate the matrix elements
using the recursive function described in Sec. III. Basically
we need to evaluate the following identities:

M�1�11 � R�M; 1; 1; 1�; M�2�22 � R�M; 2; 2; 2�;

M�3�33 � R�M; 3; 3; 3�:
(63)
-7
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The results, after writing the commands in MAPLE are
respectively:
>
R(M,1,1,1);

x1 � x2
>
R(M,2,2,2);

x1x2 � x1x3 � x2x3

x1 � x2
>
R(M,3,3,3);

x1x2x3

x1x2 � x1x3 � x2x3
:

Thus replacing these expressions into Eq. (61), we obtain

G � ����1� 2��
Z
d~x�

�
1�

X3

j�1

xj

�

�
	x1x2 � x1x3 � x2x3


�2��

	
P3
j�1 xjm

2
j �

x1x2x3

x1x2�x1x3�x2x3
p2
�1�2� ; (64)

and then we have the same scalar representation as found
before in (59).

B. Example II

Let us consider now the following diagram (Fig. 2).
The loop integral is given in this case by

G �
Z dDq1

i�D=2

1

�B2
1 �m

2
1�

1

�B2
2 �m

2
2�

1

�B2
3 �m

2
3�
; (65)

where the branch momenta Bj have been defined in the
following way:

B1 � q1; B2 � p1 � q1; B3 � p1 � p2 � q1:

(66)

The next step is to apply Feynman’s parametrization, ob-
taining the following integral:
p3

p1

p2

q1

FIG. 2. Triangle diagram.
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G � ��3�
Z 1

0
dx1dx2dx3�

�
1�

X3

j�1

xj

�Z dDq1

i�D=2

1

�3 ;

(67)

where the denominator � is given in terms of the internal
momenta by

� � �x1 � x2 � x3�q
2
1 � 2	�x2 � x3�p1 � x3p2
 � q1

� �x2 � x3�p2
1 � 2x3p1 � p2 � x3p2

2 �
X3

j�1

xjm2
j :

(68)
1. Usual method of finding the parametric representation

Starting from Eq. (68) we can recognize right away the
basic necessary elements for finding the parametric repre-
sentation. These are

A � �x1�x2 � x3�; k � ��x2 � x3�p1 � x3p2;

J � �x2 � x3�p2
1 � 2x3p1:p2 � x3p2

2; (69)

and therefore the resulting scalar integral will be given in
this case by the expression

G � ��1�3�
�

3�
D
2

�Z
dx1 . . . dx3�

�
1�

X3

j�1

xj

�

�
	detA
3�D

	detA�
PN
j�1 xjm

2
j � J� ktA�1k�
3�D=2

: (70)

Evaluating each term, we obtain

detA � x1 � x2 � x3; A�1 �
1

x1 � x2 � x3
;

ktA�1k �
	�x2 � x3�p1 � x3p2


2

x1 � x2 � x3

(71)

and

detA��J�ktA�1k����x1x2�x1x3�p
2
1�2x1x3p1 �p2

��x1x3�x2x3�p2
2

��x1x2p2
1�x2x3p2

2

�x1x3�p1�p2�
2

��x1x2p2
1�x2x3p2

2�x1x3p2
3; (72)

where we have used the condition �p1 � p2�
2 � p2

3, and
then put D � 4� 2�. Thus we finally arrive at Feynman’s
parametric representation:
-8
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G � ���1� ��
Z 1

0
d~x�

�
1�

X3

j�1

xj

�
	x1 � x2 � x3


�1�2�

	�x1 � x2 � x3�
P3
j�1 xjm

2
j � �x1x2�p

2
1 � �x2x3�p

2
2 � �x1x3�p

2
3


1�� ; (73)

with d~x � dx1dx2dx3.
2. Obtaining the scalar representation by recursion

In this method the general formula for the parametric representation is

G �
��1�N���N� �

LD
2 �

���1� . . . ���N�

Z
d~x�

�
1�

XN
j�1

xj

�
	M�1�11 . . .M�L�LL


�D=2

	
PN
j�1 xjm

2
j �

PE
i;j�1 M

�L�1�
�L�i��L�j�pi � pj


N���LD�=2
; (74)

which in our case is reduced to the following in D � 4� 2� dimensions:

G � ���1� ��
Z
dx1dx2dx3�

�
1�

X3

j�1

xj

�
	M�1�11 


�2��

	
P3
j�1 xjm

2
j �M

�2�
22p

2
1 �M

�2�
23 p1 � p2 �M

�2�
32p2 � p1 �M

�2�
33p

2
2


1��
: (75)
The next step consists in the evaluation of the matrix
elements of M�k�ij . In order to do this, and starting from
Eq. (68) we find the IPM:

M �1� �M �

x1 � x2 � x3 x2 � x3 x3

x2 � x3 x2 � x3 x3

x3 x3 x3

0@ 1A: (76)

Using the recursive routine proposed in Sec. III, the neces-
sary matrix elements M�k�ij are evaluated:

M�1�11 � R�M; 1; 1; 1�; M�2�22 � R�M; 2; 2; 2�;

M�2�23 � M�2�32 � R�M; 2; 2; 3�; M�2�33 � R�M; 2; 3; 3�;

(77)

and executing the MAPLE commands, we get the following
results:
>
R(M,1,1,1);

x1 � x2 � x3
>
R(M,2,2,2);
x1x2 � x1x3

x1 � x2 � x3
>
R(M,2,2,3);
x1x3

x1 � x2 � x3
106006
>
R(M,2,3,3);
x1x3 � x2x3

x1 � x2 � x3
:

For the sum
P2
i;j�1 M

�L�1�
�L�i��L�j�pi � pj, we get

X2

i;j�1

M�L�1�
�L�i��L�j�pi � pj

�
�x1x2 � x1x3�p2

1 � 2x1x3p1 � p2 � �x1x3 � x2x3�p2
2

x1 � x2 � x3

�
�x1x2�p2

1 � �x2x3�p2
2 � �x1x3�p2

3

x1 � x2 � x3
: (78)
Thus, replacing these quantities in (75), we obtain

G � ���1� ��
Z
dx1dx2dx3�

�
1�

X3

j�1

xj

�

�
	x1 � x2 � x3


�2��

	
P3
j�1 xjm

2
j �

�x1x2�p2
1��x2x3�p2

2��x1x3�p2
3

x1�x2�x3

1��

; (79)
which finally is reduced to the same parametric represen-
tation deduced before in (73)
G � ���1� ��
Z
d~x�

�
1�

X3

j�1

xj

�
	x1 � x2 � x3


�1�2�

	�x1 � x2 � x3�
P3
j�1 xjm

2
j � �x1x2�p

2
1 � �x2x3�p

2
2 � �x1x3�p

2
3


1�� ; (80)
where d~x � dx1dx2dx3.

V. CONCLUSIONS

There are two main aspects that need to be emphasized
in the present work. The first is the simplicity of the
method, both in the actual calculation and in its application
to a particular topology. From the point of view of the
mathematical structure of the final scalar representation,
there is a remarkable difference with the usual method. In
the usual parametric form of a loop integral, it is necessary
-9
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to evaluate a scalar term and a matrix product that involves
an inverse matrix calculation. The method proposed in this
work is based on a simple change in the initial procedure in
the search for a parametric representation of the momen-
tum integral, so that both the scalar term and the matrix
product with inverse matrix are included in an explicit
expansion of internal products of external momenta, in
which the coefficients of such expansion are determinants
of submatrices of the matrix that relates internal and ex-
ternal momenta (IPM). Moreover, the most important as-
pect is that such determinants can be in turn calculated
from matrix elements obtained using a recursion relation
starting from the IPM, in a simple and straightforward way.

The second relevant aspect is that this method can be
easily implemented computationally. This allows for a fast
automatization of Feynman diagram generation, obtaining
simply and directly the parametric representation as a step
towards a complete numerical or analytical evaluation
whenever possible.

APPENDIX A: QUADRATIC FORMS AND ITS
DIAGONALIZATION BY SQUARE COMPLETION

A quadratic form in n variables is an expression which
can be written in matrix form as the product xtMx, where
106006
x is an n-dimensional vector, given by x � 	x1; . . . ; xn

t,

and M is a generic n� n dimensional matrix. That is

x tMx �
Xn
i�1

Xn
j�1

xiMijxj: (A1)

Let D be an n� n diagonal matrix. The expressions xtMx
and ytDy are equivalent if there exists a linear transforma-
tion y � Px and y � Px such that xtMx � ytDy, that is,

M � PtDP: (A2)

The quadratic form is then transformed into a sum of n
linear terms of the type yiyj�ij.

1. Square Completion Procedure

a. Completing the square for x1

Every quadratic form can be diagonalized using the
square completion procedure, which generates the required
linear transformation. First we define a matrix M �M�1�,
and then we expand the matrix product xtM�1�x in order to
complete the square associated to the parameter x1. Then
we arrive at the following result:
x tM�1�x �
Xn
i�1

Xn
j�1

xiM
�1�
ij xj � M�1�11 x

2
1 � x1

�Xn
j�2

M�1�1j xj

�
�

�Xn
i�2

xiM
�1�
i1

�
x1 �

Xn
i;j�2

xiM
�1�
ij xj

� M�1�11

�
x2

1 � x1

�Xn
j�2

M�1�1j

M�1�11

xj

�
�

�Xn
i�2

xi
M�1�i1
M�1�11

�
x1

�
�

Xn
i;j�2

xiM
�1�
ij xj

� M�1�11

��
x1 �

Xn
i�2

xi
M�1�i1
M�1�11

��
x1 �

Xn
j�2

M�1�1j

M�1�11

xj

��
�

Xn
i;j�2

xi

�
M�1�ij �

M�1�i1 M
�1�
1j

M�1�11

�
xj: (A3)
Let us define now the new variables

y 1 � x1 �
Xn
i�2

xi
M�1�i1
M�1�11

; y1 � x1 �
Xn
j�2

M�1�1j

M�1�11

xj; (A4)

and also the matrix M�2� � fM�2�ij g, such that the elements
of this be given by the relation

M�2�ij � M�1�ij �
M�1�i1 M

�1�
1j

M�1�11

: (A5)

Therefore we can rewrite the quadratic form (A1), with the
first parameter already diagonalized in the following way:

x tM�1�x � M�1�11 y1y1 �
Xn
i�2

Xn
j�2

xiM
�2�
ij xj: (A6)

The second term in the right-hand side can be simplified,
since from Eq. (A5) one obtains that M�2�j1 � M�2�1j � 0, for
1 � j � n. Thus we can write
Xn
i�2

Xn
j�2

xiM
�2�
ij xj �

Xn
i�1

Xn
j�1

xiM
�2�
ij xj � xtM�2�x: (A7)
In summary, in the quadratic expansion the first term has
been already diagonalized, a fact that can be described by
the following expression:
x tM�1�x � M�1�11 y1y1 � xtM�2�x: (A8)
b. Completing the square for x2

Now we take the second term of (A8), and the same
procedure followed above is repeated in order to complete
the square for the parameter x2, which gives
-10
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xtM�2�x �
Xn
i�2

Xn
j�2

xiM
�2�
ij xj

� M�2�22 x
2
2 � x2

�Xn
j�3

M�2�2j xj

�
�

�Xn
i�3

xiM
�2�
i2

�
x2

�
Xn
i;j�3

xiM
�2�
ij xj

� M�2�22

��
x2 �

Xn
i�3

xi
M�2�i2
M�2�22

��
x2 �

Xn
j�3

M�2�2j

M�2�22

xj

��

�
Xn
i;j�3

xi

�
M�2�ij �

M�2�i2 M
�2�
2j

M�2�22

�
xj: (A9)

Let us define, analogously to Eq. (A4), the new variables:

y 2 � x2 �
Xn
i�3

xi
M�2�i2
M�2�22

; y2 � x2 �
Xn
j�3

M�2�2j

M�2�22

xj;

(A10)

and the matrix M�3� � fM�3�ij g, where we setM�3�ij � M�2�ij �

�M�2�i2 M
�2�
2j �=M

�2�
22 . Then we obtain

x tM�2�x � M�2�22 y2y2 �
Xn
i�3

Xn
j�3

xiM
�3�
ij xj: (A11)

The expression for the matrix element M�3�ij implies that

M�3�2j � M�3�j2 � 0, with 2 � j � n, and since we also had

that M�2�1j � M�2�j1 � 0, then M�3�1j � M�3�j1 � 0, where 1 �

j � n. In this way we can write the second term as

Xn
i�3

Xn
j�3

xiM
�3�
ij xj �

Xn
i�1

Xn
j�1

xiM
�3�
ij xj � xtM�3�x; (A12)

and therefore now the first two components of x have been
diagonalized:

x tM�1�x � M�1�11 y1y1 �M
�2�
22 y2y2 � xtM�3�x: (A13)
c. Generalization of the square completion procedure
for xj

Notice that the last term in (A13) is another quadratic
form, which then will allow us to complete the square for
the parameter x3. The procedure can be repeated succes-
sively for x3; . . . ; xn, and therefore the following relations
are determined by induction:
106006
y l � xl �
Xn
i�l�1

xi
M�l�il
M�l�ll

; yl � xl �
Xn
j�l�1

M�l�lj

M�l�ll
xj;

M�l�1�
ij �

8<:
0 if i < �l� 1� _ j < �l� 1�

M�l�ij �
M�l�il M

�l�
lj

M�l�ll
in other cases:

(A14)

Here the matrix M�k� (with 1 � k � n) has the following
generic structure:

M �k� �

0 � � � 0
..
.

..

.
0 � � � 0
..
.

M�k�kk � � � M�k�kn
..
. ..

.

0 � � � 0 M�k�nk � � � M�k�nn

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: (A15)

In general, the procedure of square completion of the
k-element of x, for 1 � k < n, transforms the initial qua-
dratic form into

x tM�1�x � M�1�11 y1y1 � � � � �M
�k�
kk ykyk � xtM�k�1�x:

(A16)

The complete process, that is after n square completions,
diagonalizes the quadratic form xtM�1�x and transforms it
into a diagonal bilineal structure, of the form

x tM�1�x � M�1�11 y1y1 � � � � �M
�n�
nn ynyn � ytDy; (A17)

where we identify

D � diag	M�1�11 ;M
�2�
22 ; . . . ;M�n�nn 
; y � 	y1; . . . ; yn
t;

y � 	y1; . . . ; yn
t: (A18)
2. Some properties
(1) T
-11
he relation between the vectors y; y and x, is de-
fined by Eq. (A14), and from it we can identify the
transformation matrices that fulfill the equations:

y � Px ^ y � Px: (A19)

Specifically, it is possible to determine P and P,
given by

P �

1
M�1�12

M�1�11

M�1�13

M�1�11

� � �
M�1�1n

M�1�11

0 1
M�2�23

M�2�22

� � �
M�2�2n

M�2�22

..

.
0 1 ..

.

. .
. . .

.

0 � � � 0 1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(A20)
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P �

1
M�1�21

M�1�11

M�1�31

M�1�11

� � �
M�1�n1

M�1�11

0 1
M�2�32

M�2�22

� � �
M�2�n2

M�2�22

..

.
0 1 ..

.

. .
. . .

.

0 � � � 0 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: (A21)
(2) F
rom the equations in (A14), we find that

y n � yn � xn; M�n�1� � f0g: (A22)
(3) T
he transformation matrices P and P have the fol-
lowing property:

detP � detPt � 1; detP � detPt � 1: (A23)
(4) I
f M�1� � 	M�1�
t (symmetric case), then the follow-
ing identities hold:

y � y; P � P; M�k� � 	M�k�
t;

xtM�1�x � ytDy; M�1� � PtDP; ;
(A24)

where the matrix D is the diagonal matrix given by

D � diag	M�1�11 ;M
�2�
22 ; . . . ;M�n�nn 
: (A25)
3. Evaluation of the determinant of M�1�

From the previous results, the determinant of M�1� is
given by

detM�1� � detPtDP � detPt � detD � detP

� M�1�11M
�2�
22 . . .M�n�nn : (A26)

The conditions for evaluating this determinant are given in
Appendix B.
APPENDIX B: MATRICES M�k�

1. Generalization of the matrices M�k�

It is possible to generalize the n� n dimensional ma-
trices M�k� starting from the recurrence equation

M�k�1�
ij � M�k�ij �

M�k�ik M
�k�
kj

M�k�kk
: (B1)

As an example let us consider a generic matrix An�n �

faijg, and define an input matrix M�1� 
 An�n.

a. Generating M�2�

Let us evaluate the particular cases of the first row and
first column. That is,
106006
M�2�1j � M�1�1j �
M�1�11M

�1�
1j

M�1�11

� 0; �j � 1; . . . ; n� (B2)

M�2�i1 � M�1�i1 �
M�1�i1 M

�1�
11

M�1�11

� 0; �i � 1; . . . ; n�: (B3)

The other matrix elements do not present a particular
interest, and are evaluated using the recursion relation
(B1). Then the matrix M�2� gets structured in the following
manner:

M �2� �

0 � � � 0
..
.

M�2�22 � � � M�2�2n

..

. ..
.

0 M�2�n2 � � � M�2�nn

0
BBBBB@

1
CCCCCA: (B4)

Notice that M�2� is computable only if M�1�11 � 0.

b. Generating M�3�

Having M�2� already evaluated, one can construct M�3�.
Let us analyze the first and second row. For the first row we
have that

M�3�1j � M�2�1j �
M�2�12M

�2�
2j

M�2�22

� 0;

since M�2�1j � 0 �j � 1; . . . ; n�;

(B5)

while for the second row

M�3�2j � M�2�2j �
M�2�22M

�2�
2j

M�2�22

� 0: (B6)

Analogously, for the first and second column we have the
following values, respectively:

M�3�i1 � M�2�i1 �
M�2�i2 M

�2�
21

M�2�22

� 0;

since M�2�i1 � 0 �i � 1; . . . ; n�

(B7)

and

M�3�i2 � M�2�i2 �
M�2�i2 M

�2�
22

M�2�22

� 0: (B8)

The other elements have values according to (B1). Finally
the matrix M�3� gets the following form:

M �3� �

0 � � � � � � 0
..
.

0 � � � 0
..
.

M�3�33 � � � M�3�3n

..

. ..
. ..

.

0 0 M�3�n3 � � � M�3�nn

0
BBBBBBBB@

1
CCCCCCCCA
: (B9)
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The matrix is defined only if the matrix element M�2�22 � 0.
The procedure can be repeated successively for the rest of
the matrices generated by recursion, thus finding that for
k 2 	1; . . . ; n
 one gets

M �k� �

0 � � � � � � 0
..
. ..

.

0 � � � 0
..
.

M�k�kk � � � M�k�kn
..
. ..

. ..
.

0 � � � 0 M�k�nk � � � M�k�nn

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; (B10)

with the condition that M�k� is defined only if M�k�kk � 0 or
k � 1; 2; . . . ; n� 1.

2. Elements M�k�ij
From the previous results we can find the relation that

exists between the matrix elements generated by recursion
and the input matrix elements M�1� � An�n � faijg. For

M�2�ij ,

M�2�ij � M�1�ij �
M�1�i1 M

�1�
1j

M�1�11

�
M�1�11M

�1�
ij �M

�1�
i1 M

�1�
i1

M�1�11

�

��������M
�1�
11 M�1�i1

M�1�i1 M�1�ij

��������
jM�1�11 j

; (B11)

or equivalently

M�2�ij �

�������� a11 a1j

ai1 aij

��������
ja11j

: (B12)

For M�3�ij we have that

M�3�ij � M�2�ij �
M�2�i2 M

�2�
2j

M�2�22

�

�������� a11 a1j

ai1 aij

��������
ja11j

�

�������� a11 a12

ai1 ai2

��������
�������� a11 a1j

a21 a2j

��������
ja11j

�������� a11 a12

a21 a22

��������
:

(B13)

Some simple algebra gives the following result:

M�3�ij �

��������
a11 a12 a1j

a21 a22 a2j

ai1 ai2 aij

���������������� a11 a12

a21 a22

��������
: (B14)

Let us now define the determinant ��k�1�
ij , such that it

corresponds to the determinant of a submatrix of the input
106006
matrix M�1� � An�n, whose dimension is �k� 1� � �k�
1�, and which is given by the following identity:

��k�1�
ij �

��������������������

a11 � � � a1k a1j

..

. ..
. ..

.

ak1 � � � akk akj
ai1 � � � aik aij

��������������������
: (B15)

Let us see the following examples.

a. Example I

��2�34 �

�������� a11 a14

a41 a34

��������: (B16)
b. Example II

��3�33 �

�����������
a11 a12 a13

a21 a22 a23

a31 a32 a33

�����������: (B17)

Applying this definition in Eqs. (B12) and (B14), we obtain

M�2�ij �
��2�ij

��1�11

; (B18)

M�3�ij �
��3�ij

��2�22

: (B19)

Through an induction process we can directly generalize
the relation that exists between the matrix elements ofM�k�ij
and the input matrix M�1� � An�n. In general, one gets

M �k�1�
ij �

��k�1�
ij

��k�kk
: (B20)
3. The matrix M�k� in terms of determinants of
submatrices of M�1�

In Appendix A it was previously shown that the deter-
minant of the input matrix M�1� � An�n is given by the
expression

detA � detM�1� � M�1�11M
�2�
22 . . .M�n�nn : (B21)

Using Eq. (B20) we can write the matrix elements M�k�kk as
ratios of determinants of submatrices of M�1�. Then we
have that

detAn�n � detM�1� �
��1�11

��0�00

��2�22

��1�11

. . .
��n�1�
�n�1��n�1�

��n�2�
�n�2��n�2�

��n�nn

��n�1�
�n�1��n�1�

�
��n�nn

��0�00

: (B22)
-13
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Here ��0�00 � 1, which can be shown by calculating the
determinant of a scalar. Let us evaluate the determinant
of the matrix M�1� � A1�1 � �a11�, that is,

detA1�1 � detM�1� � a11:

On the other hand, we have that

detA1�1 � detM�1� � M�1�11 �
4�1�11

4�0�00

; (B23)

and applying Eq. (B15) one obtains that4�1�11 � a11, which
by comparison gives

4�0�00 � 1: (B24)

Finally it is shown that

detAn�n � detM�1� � ��n�nn �

������������
a11 � � � a1n

..

. ..
.

an1 � � � ann

������������;
(B25)

a result that is evidently correct. In summary we can
rewrite the matrix M�k� in terms of subdeterminants of
M�1� � An�n, that is,

M �k� �
1

��k�1�
�k�1��k�1�

0 � � � � � � 0
..
. ..

.

0 � � � 0
..
.

��k�kk � � � ��k�kn
..
. ..

. ..
.

0 � � � 0 ��k�nk � � � ��k�nn

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

(B26)
106006
Notice that the relation of the recursive matrix elements
with the ratios of determinants provides the condition for
evaluating the matrix M�k�. This is that the determinants
��k�1�
�k�1��k�1� (principal minors) be nonvanishing, a condition

that is evident in identity (B26).

4. Evaluation of determinants ��l�ij in terms of the
matrix elements of M�k�

The relation that we found for the recursive matrix
elements in terms of a ratio of determinants is given by
the equation

M�k�1�
ij �

��k�1�
ij

��k�kk
: (B27)

We can reorder this such that

��k�1�
ij � ��k�kkM

�k�1�
ij ; (B28)

where ��k�kk corresponds to a determinant called the princi-
pal minor of order k� k, which can be expressed directly
in terms of recursive matrix elements, such that

��k�kk � M�1�11 . . .M�k�kk (B29)

and therefore we obtain the identity

��k�1�
ij � M�1�11 . . .M�k�kk M

�k�1�
ij ;

which allows for the possibility of evaluating any subde-
terminant of the matrix M�1�.
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