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High energy QCD from Planckian scattering in AdS space and the Froissart bound
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We reanalyze high-energy QCD scattering regimes from scattering in cutoff AdS space via gravity-
gauge dualities (a la Polchinski-Strassler). We look at ’t Hooft scattering, Regge behavior, and black hole
creation in AdS space. Black hole creation in the gravity dual is analyzed via gravitational shockwave
collisions. We prove the saturation of the QCD Froissart unitarity bound, corresponding to the creation of
black holes of AdS size, as suggested by Giddings.
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I. INTRODUCTION

Gravity-gauge dualities have been an important tool in
getting information about nonperturbative Yang-Mills
theories, since the original work of Maldacena [1] (see
also [2]). But the contact with real high-energy experi-
ments has been lacking, partly because of the absence of
a gravity dual of QCD. However, in the work of Polchinski
and Strassler [3] (and the later [4] dealing with deep
inelastic scattering) it was shown that one can derive a
lot of information from just a simple gravity dual model of
AdS cutoff in the IR (where the mass gap is related to a
modification of the geometry) and maybe in the UV; in
other words the two-brane Randall-Sundrum (RS) model
[5].

High-energy QCD scattering of colorless objects (e.g.
glueballs) is thus related to scattering in the cutoff AdS
space via convoluting the scattering amplitude with AdS
wave functions. This simple model still allows one to get a
lot of information about QCD at high energy, when the IR
modifications due to the mass gap are not so important.

Giddings [6] took this proposal further and analyzed the
scattering inside AdS space in the extreme inelastic case,
when black holes are being formed. He analyzed the black
hole formation using a simple model, devised in [7,8] (see
also earlier work in [9]), the cross section for black hole
formation being equated with the geometric area of the
black hole horizon of mass equal to the center of mass
energy [� � �r2

H, rH � rH�
���
s
p
�]. At moderate energies,

the black holes being formed can be taken to be in flat
space, but at higher energies, the size of AdS space be-
comes important. Giddings argued, by calculating the
Newton-like potential (linearized Einstein gravity), that
the horizon of a black hole formed on the RS IR brane
will be such as to give a saturation of the Froissart unitarity
bound for the cross section:
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But there are a lot of uncertainties about this calculation.
In a previous paper [10], we addressed some of these
uncertainties by looking at black hole formation via shock-
wave collisions (a technique first proposed in [11]) and
estimated the maximum impact parameter bmax for which a
black hole is being formed and calculated the minimum
mass of the formed black hole. The calculation was done in
flat d > 4, as well as in the background of the one-brane RS
model (‘‘alternative to compactification’’ [12]), as was
appropriate for the various low MPl scenarios [5,13,14] in
which one could detect black holes at accelerators. We
have set up the general formalism in a way to be used for
the AdS and two-brane RS calculations needed for the
QCD dual scattering. We also analyzed the effect of string
(�0) corrections to the black hole creation. Quantum cor-
rections were also analyzed in a different way in [15,16]
and ’t Hooft scattering inside AdS space was analyzed
using different methods in [17]. The advantage in this
semiclassical formalism is that now � � �b2

max is
rigorous.

In this paper we will explore the consequences of the
calculations in [10] for the high-energy QCD scattering,
and we will revisit some of the previous results to see if we
can gain more insight. We will try to use consistently the
Polchinski-Strassler (PS) setup, in particular finding how
to turn the classical scattering with black hole formation,
happening at a certain point in the gravity dual, into an
integration over the gravity dual. We will use a simple
black disk model to turn the classical scattering into an
imaginary elastic amplitude for which we can use the PS
formalism. The most important piece of information
learned in this paper will be that we are able to justify in
a more rigorous way the appearance of the Froissart bound.
Given the Polchinski-Strassler setup, we will calculate the
maximum impact parameter being formed in the scattering
of two shockwaves and thus get � � �b2

max. The impor-
tance of this formalism is that the shockwaves are exact
solutions (not linearized ones) giving an advantage over
the horizon calculation in [6].

We should note here that we are not attempting to define
a general amplitude (nor a S matrix) for a general scatter-
ing inside AdS space. We will see in the next two sub-
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sections that for our purposes it is enough to assume the
existence of a nonperturbative amplitude (and correspond-
ing cross section) when the external legs are situated in a
flat 4D slice of AdS space. We will define a simple black
disk model for this amplitude that mimics the (as yet
unknown and undefined) nonperturbative amplitude by
giving the same cross section. For external legs living in
a flat 4D slice, one can certainly define amplitudes and
cross sections in the usual manner.

The paper is organized as follows: In Sec. II we review
the formalism of high-energy scattering in QCD from
scattering in cutoff AdS space. In Sec. II A we show how
to take a classical scattering in the gravity dual, character-
ized by a bmax�s�, and turn it into a quantum amplitude,
which we can relate to QCD. In Sec. III we describe the
general formalism for calculating bmax�s� for black hole
formation in the scattering of two Aichelburg-Sexl (AS)
waves in a background of AdS type. In Sec. IV we apply
this formalism for the case of scattering inside AdS space
and on the IR brane in the two-brane RS model. Section V
is the most important section in which we put together all
the pieces of information and analyze the various QCD
energy regimes and discuss the saturation of the Froissart
bound as well as string corrections in the gravity dual. In
Sec. VI we conclude, and in the Appendix we show the
details of the calculation of the trapped surfaces being
created when two AS shockwaves scatter inside AdS and
on the IR brane.

II. HIGH-ENERGY QCD FROM ADS

Polchinski and Strassler [3] have found a simple model
for relating high-energy QCD scattering with scattering
inside AdS space.

For a conformal field theory, the corresponding near
horizon (r! 0) metric for the brane configuration is

ds2 �
r2

R2 d~x
2 �

R2

r2 dr
2 � R2ds2

X: (2.1)

The global momentum p� � �i@� (momentum for gauge
theory scattering, for instance) is thus related to the local
inertial momentum (of a local inertial observer in AdS
space) by

~p� �
R
rp��~p� ~p��

�� � p�p�g
���: (2.2)

Thus high energy is large r and low energy is small r.
And then a nonconformal gauge theory like QCD will just
be modified at small r (low energy), at high energy remain-
ing conformal.

Since the low energy cutoff for the conformality of the
gauge theory should be of the order of the mass of the
lightest glueball state �, the cutoff on the AdS geometry is

rmin � R2�: (2.3)

Thus in theories with mass gap like QCD the warp factor
becomes bounded, and the simplest effective description
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that we are going to use throughout the paper is just to cut
off the integration over r at rmin. We can also cut off the
theory at high energy, and with UV and IR cutoffs we have
the two-brane Randall-Sundrum model [5].

Corresponding to the string tension in AdS space there is
also a gauge theory string tension �̂0 � �gN��1=2��2 and�����
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p: (2.4)

A glueball corresponds in AdS space to a state with wave
function

eipx �r;�� (2.5)

(plane wave in 4D and some wave function for r and X).
We assume that scattering of gauge invariant states (e.g.
glueballs) within Yang-Mills is equated by AdS-CFT with
a scattering inside AdS space of the above states; more-
over, assuming that the states scatter locally according to
the flat space amplitude, we get

A �p� �
Z
drd5�

���
g
p

Astring�~p�
Y
i

 i: (2.6)

Then integrating over r corresponds to integrating over
scattering energies in the local frame (~p). In this picture
�0 is a constant, as in flat space string theory, but momenta
(~p) ‘‘run’’ as r is varied, as can be seen from (2.4). It is also
clear from (2.4) that one can consider ~p to be fixed and �0

to run, but our interpretation makes it clear that we are
integrating over string theory momenta. One should also
note that although originally in the formula (2.6) Astring�~p�
was meant as a world sheet string amplitude (with vertex
operator insertions) that in flat space gives the perturbative
spacetime amplitude for scattering particle states (e.g.
gravitons); we are now extending its meaning. We will
first consider it at a nonperturbative level, thus we will
assume that there is a result for the flat space amplitude at
the nonperturbative level even if we do not know it. Indeed,
we are interested in black hole production, for which we
can calculate the cross section, but not the amplitude, thus
in the next section we will model the nonperturbative
amplitude with a simple black disk that reproduces the
cross section. Second, the amplitude that we will extract
has external legs defined only in a flat 4D slice of AdS
space, not in a general direction in AdS space, which is
however sufficient for our purposes of convolution with  i
according to (2.6).

Under the assumption that the local string scattering is
dominated by the momenta of the order of the string scale,
1=

�����
�0
p

(which we will shortly see that it is not as innocent
as it looks), we get by the above (2.4) that

rscatt � rmin�
�����
�̂0
p

p�; (2.7)

and if
�����
�̂0
p

p� 1 (high-energy scattering in the gauge
theory) we see that the integral will be concentrated at
rscatt � rmin, where
-2
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 � Cf�r=rmin�g��� � C�r=rmin�
��g���: (2.8)

Then
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�

�
�

p

�P
�i�4

; (2.9)

as in QCD, and this result was obtained only from confor-
mal invariance. Moreover, for states with spin, we replace
� with �i � �i � �i as in QCD. So the scaling with
momenta comes from the large r asymptotics of the
wave function, which itself comes from conformal
invariance.

But the last scaling relation treats all momenta the same.
As we will mostly be interested in the small angle regime,
s� t, let us look what happens for the amplitudes as a
function of s and t.

Given that Astring �Astring��0~s; �0~t� we take � �
�0j~tj � ��0~t as integration variable (r � ��1=2rmin

�������
�̂0t
p

)
and since s=t � ~s=~t, we have in the new variable (� 	
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Note that the main assumption in deriving this was the
large r AdS behavior of the wave function (2.8). We will
have to remember this as a caveat of the formula, but we
will continue nevertheless to use it—it being the simplest
model we can have of an AdS-QCD relation.

In this Polchinski-Strassler form for the QCD amplitude,
�max � �̂0t and the amplitude to be integrated over is ex-
pressed as A��0~s; �0~t�.

Let us observe how a few possible behaviors of the string
amplitude translate into QCD amplitudes, for future use.
We will see in the next subsection that these types of
amplitudes (power laws plus logarithms) appear from vari-
ous possible classical cross sections for scattering in the
gravity dual, characterized by bmax�s�. The various bmax�s�
of relevance are analyzed together in Sec. V,
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(2.11)
Giddings [6] points out that as one increases the energy
of the gauge theory scattering, by (2.4) one increases also
the relevant energy in string theory. In (2.4), we have seen
that corresponding to the string scale 1=

�����
�0
p

there is a
gauge theory scale 1=

�����
�̂0
p

. But there are three further
(higher) energy scales (in the case when the string coupling
gs is small but gsN is large).

The first is the Planck scale

MP � g
�1=4
s

�
1=

�����
�0
p �

�
N1=4

R
� N1=4

�����������
�

rmin
:

s
(2.12)

Note that we can rescale 4D coordinates such that rmin �

R, which, since �̂0 � ��2�gsN��1=2, translates also into
�̂0 � �0. Then MP � N1=4�.

In any case, the Planck scale corresponds in gauge
theory to

M̂ P � g�1=4
s =

�����
�̂0
p

� N1=4�; (2.13)

which is the scale at which (real) black holes start to form.
Giddings [6] proposes that afterwards the black hole

production cross section is approximated by � ’ �r2
H �

E2=�d�3� (E2=7 if we have approximately 10D flat space). As
we can see, this is based on the simple geometrical picture
of a static black hole at a given point in AdS space, with the
cross section equaling its horizon area. We will try to see
whether this picture is valid.

The second scale is the string correspondence principle
crossover scale, at which one has to stop talking about
string intermediate states and instead use black hole virtual
states. That scale is

Ec � g�2
s =

�����
�0
p

� g�7=4
s MP � N7=4MP=�gsN�7=4

� N2

��������
�

rmin

s
1

�gsN�
7=4
; (2.14)

or in the gauge theory

Ê c �
N2�

�gsN�
7=4
: (2.15)

The third energy regime is the most interesting, attained
when the size of the black hole rH that was created reaches
the AdS space size R:

E�M8
Pr

7
H�M

d�2
P rd�3

H � ! ER � M8
PR

7; (2.16)

or in the gauge theory,
-3
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Ê R � N2�: (2.17)

At that energy, the behavior of rH with E changes from
(2.16) and then so does the cross section. The proposal of
[6] is that after this scale we have the onset of the Froissart
bound in the gauge theory.

Let us now note that at least after the onset of the
Froissart behavior we have black holes being created
with Schwarzschild radius greater than the size of AdS
space, so one might ask how come we are still using the
Polchinski-Strassler formula (2.6) which implies some
locality for the scattering in the extra dimensions? In
fact, in this regime the PS formula becomes less and less
relevant, since the effective scattering region (where the PS
integral is concentrated) is small and close to the IR cutoff
(as we will see in the following), and the size of the black
hole is larger than it. So in this limit, the scattering inside
AdS space becomes more and more classical (the fluctua-
tions due to the PS integral become less than the size of the
black hole), and the classical cross section calculations in
this paper become more directly relevant.

A. Black disk calculations

In the following calculations, we will analyze a classical
scattering with black hole creation, out of which we get a
classical value for a bmax�s�, and correspondingly a cross
section for black hole creation, � � �b2

max. But in order to
use the Polchinski-Strassler formalism and relate it to
QCD, we must find a quantum amplitude generating the
same AdS cross section. So we will study first how we get a
quantum amplitude out of the classical picture.

Ideally, one should do a quantum calculation for the
amplitude of the AdS scattering, not just for the cross
section (for which we were able to use the formalism of
AS shockwave scattering described in the next section) but
that would require knowledge of the full nonperturbative
quantum gravity. As we do not have that, we will try to
make a model for the amplitude that reproduces the clas-
sical cross section calculation, � � �b2

max�s�.
The simplest thing one can do is to create an eikonal that

corresponds to a black disk, that is

Re�	�b; s�� � 0; Im�	�b; s�� � 0; b > bmax�s�;

Im�	�b; s�� � 1; b < bmax: (2.18)

Then the eikonal amplitude at a fixed flat 4D slice inside
AdS space that reproduces the classical bmax�s� for scat-
tering constrained to lie in the slice in s; t variables is

1

s
A�s; t� � �i

Z
d2bei ~q ~b�ei	 � 1�

� i
Z bmax�s�

0
bdb

Z 2�

0
d
eiqb cos


� 2�i
bmax�s���

t
p J1�

��
t
p
bmax�s��: (2.19)
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We will take the amplitude (2.19) to be the amplitude for
scattering inside AdS space, parallel to a fixed 4D slice.
Here bmax�s� will be determined from black hole produc-
tion in the scattering of two Aichelburg-Sexl shockwaves
inside the curved AdS background.

In general, the notion of scattering inside AdS space and
the associated notions of S matrix and in and out states are
hard (if not impossible) to define. In particular, the original
definition of the AdS-CFT correspondence states that a set
of good quantities that can be related to the boundary CFT
are the corellators with legs on the AdS boundary, not S
matrices. There were several attempts to define S matrices
in AdS-CFT by taking the flat space limit of AdS, e.g. [18–
20], but none was entirely satisfactory. What we are pro-
posing here is less radical. First of all, unlike these other
cases, we are not dealing with global AdS, and we are not
relating in and out states defined at the boundary of AdS
space (which would be in the Poincare patch at r � 0 and
r � 1). Rather, we are looking at scattering amplitudes
that happen in a 4D slice, at fixed r. Second, when we talk
about cross sections we refer to 4D quantities, inside the
4D slice. We are not attempting to define a 5D cross section
for scattering inside AdS space. Here the fifth coordinate of
AdS space, r, has just the usual role of energy scale
(according to the usual UV-IR relation in AdS-CFT), as
can be easily seen in (2.6).

We note that if
��
t
p
bmax�s� 
 1, the result becomes

�b2
max, so if we take the imaginary part of the forward (t �

0) scattering amplitude we get

1
s ImAelastic�k1; k2 ! k1; k2� � �tot�k1; k2 ! anything�

� �b2
max: (2.20)

But we still need to integrate the amplitude over the AdS
slice, using the PS formula.

We use the Polchinski-Strassler formula (2.10), i.e.

A QCD �
K

��̂0t��=2�2

Z �max��̂0t

0
d���=2�3A

�
�
s
jtj
; �
�
:

Upon inserting the eikonal amplitude (2.19) into (2.10), we
get

AQCD �
s
jtj

�����
�0
p

2�iK

��̂0t��=2�2

Z �max��̂
0t

0
d�����5�=2bmax

�

�
�s
�0jtj

�
J1

 �����
�
�0

r
bmax

�
�s
�0jtj

�!
: (2.21)

Let us now look at particular cases that will be of
interest later on. In all the three cases we will study, the
result for AQCD will be of the type mass dimension �

2 constant �Ka1; Ka
2=�1�2��
2 ; Ka2

3� � function of
��̂0s; �̂0t;�; and c�. Here c stands for a dimensionless
number calculable in the gravity dual (a1=�0,
a2=�1�2��

2 =�0, a2
3=�

0). Here a1; a2; a3 are calculable in the
gravity dual and K encodes the details of the transition to
-4
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QCD, i.e. it depends heavily of the details of the IR cutoff
of the gravity dual, as can be seen from its expression in
(2.10).

1. Approximately 4D case: bmax�s� � a1
���
s
p

Using

I�a; b� �
Z 1

0
xbJ1�ax�dx

�
a1F2�1� b=2; 2; 2� b=2;�a2=4�

4� 2b
; (2.22)

we get

AQCD � �
2�ia2

1K
�

�̂02s2

�0
F2

�
�

4
; 2;

�� 4

4
;�
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1�̂
02st

4�02

�

� Ka1 � fct
�
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�0
; �̂0s; �̂0t;�

�
: (2.23)

To evaluate the hypergeometric function at large argument
(variable), we use that

J1�ax� ’ �

���������
2

�ax

s
cos�ax� �=4�; (2.24)

and then
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1�������
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We get
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(2.26)

in the limit
a2

1

�02 �̂
02st� 1. In the opposite limit,

a2
1

�02 �̂
02st


1, we get

A QCD ’ �
2�ia2

1K
�

�̂02s2

�0
: (2.27)
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2. Flat d dimensional case:
bmax�s� � a2s

1=�2�d�3�� � a2s
�

Using the same formulas, we get
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�
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It has the limit
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�
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�
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�0
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2�
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If d � 5, so � � 1=4, we get

A QCD � k0s�����4�=6t�1���=3�̂0s: (2.30)

Another limit is

AQCD ’
2�ia2

2K
4�� �� 2

�
�̂0s
�0

�
2�
�̂0s;

�̂0t
�0

�
�̂0s
�0

�
2�

 1:

(2.31)
3. Log behavior: bmax�s� � a3 log�s�

The log behavior bmax�s� � a3 log�s� would correspond
to the onset of the Froissart bound, at least in the calcu-
lation in [6]. We get

AQCD �
�����
�0
p
��̂0s�

2�ia3K�������
�̂0t
p

�
Z 1

0
dyy���5�=2�lny� AJ1�B

���
y
p
�lny� A�

� Ka2
3 � fct

�
a2

3

�0
; �̂0s; �̂0t;�

�
;

A � ln
�
�̂0s
�0

�
; B � a3

�������
�̂0t
�0

s
;

(2.32)

that unfortunately cannot be algebraically solved exactly.
But in the case of A large, c � AB large, we can do the

integral, using the large argument expansion of the Bessel
function, and using
-5
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Z 1
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and we get
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�a3

�����
�̂0t
�0

q
ln��̂

0s
�0 ��

4��

�̂0t=�0

�

�
���9=2�cos

�
�
2
���3�

�
�2

cos��2 ���5��

ln��̂
0s
�0 �

�
:

(2.34)

Also for A� 1, but c � AB
 1, we can expand the
Bessel function for small argument and do the integration
to obtain

A QCD ’ �̂
0s2�ia2

3K
�
�ln��̂

0s
�0 ��

2

�� 2
�

2

��� 2�2
ln
�
�̂0s
�0

��
:

(2.35)

Note that for all three cases, when we have used the
small argument expansion of the Bessel function, we have
integrated �bmax�s�2 with the PS formula. Correspond-
ingly, in the last case we studied, we obtain ��
a2

3�ln�s��
2, as expected.

We should also note that within this section we have
used the simplest model of black disk for turning the
classical scattering into a quantum scattering amplitude,
but for the last behavior (the Froissart bound) there are
other choices. For instance, in [21], there are given a few
forms for the eikonal which when integrated give the
Froissart behavior for the cross section. One of them is
of possible relevance here. The eikonal

Im	�b; s� �
��
B�s�

s �� exp
�
�

b2

B�s�

�
(2.36)

contains a parameter analogous to the classical maximum
impact parameter bmax�s� we have used:

B�s� � 2a lns� c; (2.37)

where however a and d � ��� 1 are related to the
Pomeron trajectory �P�t� � d� a t. Integrating this eiko-
nal also gives the Froissart behavior for the total cross
section

�t�s� ’ 4�a ��ln2s� o�lns�: (2.38)

We will restrict ourselves to the simplest black disk eikonal
as we did in this section, as there is no physical argument
on why to choose a particular nontrivial eikonal [in the full
nonperturbative quantum gravity one should be able to
calculate the actual nontrivial eikonal, of course, but in
practice there seems to be no reason to prefer a nontrivial
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phenomenological eikonal like the one in (2.36) over
another].
III. BLACK HOLE CREATION IN HIGH-ENERGY
SCATTERING; GENERAL FORMALISM

As we saw in the previous section, at sufficiently high
energies in the gauge theory, in the gravity dual we will
have an inelastic scattering with black hole creation. So we
have to be able to analyze the black hole creation in a
general background.

In [10] we have extended the formalism in [11] for
calculating black hole creation cross sections via analyzing
the scattering of two Aichelburg-Sexl shockwaves inside a
curved background of AdS type. Here we review the
formalism in order to apply it in the next section.

The Aichelburg-Sexl shockwave [22]

ds2��dx�dx���dx��2	�x����xi��
Xd�2

i�1

�dxi�2 (3.1)

has as a source a massless particle of momentum p (‘‘pho-
ton’’), with

T�� � p	d�2�xi�	�x��: (3.2)

In flat space, the Einstein equation R�� � 8�GT�� im-
plies

@2
i��x

i� � �16�Gp	d�2�xi� (3.3)

(� is harmonic with source).
’t Hooft [23,24] has argued that one can describe the

scattering of two massless particles at energies close to (but
under) the Planck scale (m1;2 
 MP;Gs� 1, yet Gs < 1)
as follows. Particle two creates a massless shockwave of
momentum p�2�� and particle one follows a massless geo-
desic in that metric. He has shown that the S matrix
corresponds to a gravitational Rutherford scattering (single
graviton being exchanged).

At higher energies (Gs� 1), one has to consider that
both massless particles create AS shockwaves, and this
nonlinear process is hard to compute. At most one can
compute the metric perturbation away from the interaction
point as in [25]. But one can use a formalism to give a
lower bound on the size of the black hole being created,
and estimate the maximum impact parameter that forms a
black hole.

We will be interested in scattering that occurs in a
gravitational background of AdS type, maybe with a
string-corrected source. So we will use a general � and
general dimensionality, and a background of the type (the
notation is for the one-brane RS model, but it is easy to
generalize for the AdS and two-brane RS model cases)

ds2 � e�2jyj=l��dudv� dx2
i  � dy

2: (3.4)

Let us denote e�2jyj=l � A and let gij � A �gij for the metric
in both x and y coordinates (transverse).
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We will analyze the collision of two AS waves in this
background, one moving in the x� (u) and one moving in
the x� (v) direction. The metric in the collision region
cannot be calculated exactly even in flat space, but there is
an alternative for checking for the presence of a black hole
in the future of the collision.

Because of a suggestion made originally by Penrose, one
can find a trapped surface at the interaction point u � v �
0, that is, a closed D� 2 dimensional surface the outer
normals of which (in both future-oriented directions) have
zero convergence. By a general relativity theorem, we
know that there will be a horizon forming outside the
trapped surface, therefore of area at least as big as the
trapped surface area.

The metric with a single AS wave moving in the �v
direction (at u � 0) in the given background is (see [10]
for more details)

ds2 � e�2j �yj=l��d �ud �v� d~x2 ��� ~x; y�	� �u�d �u2� � d �y2:

(3.5)

It is useful to perform a transformation of coordinates to
eliminate the delta function singularity in the metric. One
finds the transformation

�u � u;

�v � v��
�u� �
u
�u�

4
�@i�@j� �gij � A�@y��

2�;

�xi � xi �
u
�u�

2
�gij@j�;

�y � y�
u
�u�

2
A@y�

(3.6)

giving

ds2 � A��dudv� dx2
i � u
�u�@i@j�dx

idxj

� dy2�1� u
�u�A@2
y� � dydx

iu
�u�A@i@y�

� dydAu
�u�@y�� o�u
2�; (3.7)

where

A � e�2j �yj=l � o�u�2 ) Aju�0 � e�2jyj=l;

dAju�0 � �
2

l
A
�
dy�

A
2
@y�du

�
:

(3.8)

When taking two AS waves, one in �u and one in �v, the
metric for �u � 0; �v � 0 (before the collision) contains the
linear superposition of the two waves, i.e. �1	� �u�d �u2 �
�2	� �v�d �v2, and a trapped surface will form at �u � �v � 0.
The trapped surface in the new coordinates (u; v) is com-
posed of two ‘‘disks’’ S1 and S2 glued on to their common
boundary C, namely,
‘
‘disk’’ 1: fv � ��1� ~x�; u � 0g, (�1 � 0 on C);

d
isk 2: fu � ��2� ~x�; v � 0g (�2 � 0 on C).
The null geodesics through the first disk, fv �

��� ~x�; u � 0g, are defined by the tangent vector
106003
� � _u
@
@u
� _v

@
@v
� _xi@i: (3.9)

One finds that (by calculating _u; _v; _x and then lowering
indices)

� � �
1

4
�gij@i�@j�du� dv� @i�dx

i; (3.10)

and therefore, the convergence of the null normals defined
by �, 
 � gijDi�j is (see [10] for more details)


 � �r2��1 ��1�; (3.11)

and similarly for the second surface, and

r2 �
1

A
r2
x � @2

y �
d
l
sgn�y�@y: (3.12)

Here �1, �2 are the profiles of the two waves, whose
centers are separated by the impact parameter ~b � ~x1 �
~x2.

At b � 0 and in flat d dimensions (l! 1) one can
choose �i � �i, and then as we can easily see, the trapped
surface S � S1US2 corresponds as advocated to the inter-
action point �u � �v � 0.

The common boundaryC is defined then by � � � � c
(constant) or rather, one redefines �! �� c to have
� � 0 on the boundary. We will keep the constant for
convenience, but remember that we should subtract it at
the end. The continuity condition for the normal geodesics
� along C gives then

�g ij@i�@j� � 4 ) �r��2 � A�@y��
2 � 4: (3.13)

At b � 0 and in flat d dimensions, the � � � � c and
the continuity condition are compatible with the boundary
C being a circle (r � const), and then the continuity con-
dition fixes the radius of the circle.

In a curved background we cannot choose � � � any-
more, and the shape of C is fixed by requiring that the two
equations are compatible.

Therefore, we write for the trapped surface (surface of
zero convergence, 
 � 0)

� � ��  ) r2 � 0: (3.14)

Now the trapped surface f�r; y� � 0 is defined by both
� � C (const) and by �gij@i�@j� � 4.

We will find the shape of the surface perturbatively in y,
away from the flat 4 dimensions at y � 0. We expand 
near y � 0 as

 � 0�r� � 1�r�y�
y2

2
2�r�: (3.15)

Then at y � 0 r2 � 0 implies

@2
x0�r� � 2�r� �

d
l
1�r� � 0; (3.16)

and we do not want to upset the flat space solution, so we
will take 0 � 0. Then

� � f� ay�
y2

2
g� . . . ; (3.17)
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where f � �jy�0, a � @y�jy�0 � 1, and g � @2
y�jy�0 �

d
l 1.

And one has to match the equations

� � C � f� ay�
y2

2
g� . . . ; (3.18)

and

4 �
�
f0 � ya0 �

y2

2
g0 � . . .

�
2

�

�
1�

2y
l
� 2

y2

l2
� . . .

�
�a� yg� . . .�2: (3.19)

At nonzero impact parameter b, there are two distinct
�1 and �2 (with different centers), and a single curve C, so
we cannot take �i � �i even in flat d dimensions. The
problem of finding C together with the functions �i is
complicated, but we have found instead an approximation
scheme. The continuity condition is now r�1 � r�2 � 4,
but we approximate the size of C by putting �i � �� ~x�
~xi�, with � being the b � 0 value. This gives the continuity
equation

4�
�

1�
b2

2�2
c

���
f0 �ya0 �

y2

2
g0� . . .

�
2

�

�
1�

2y
l
�2

y2

l2
� . . .

�
�a�yg� . . .�2

�
jr��c : (3.20)
106003
Now one can say that the area of the real trapped surface
satisfies

S � b

�����������������
�2
c �

b2

4

s
; (3.21)

and more importantly we can estimate a maximum b for
which a trapped surface forms.
IV. BLACK HOLE CREATION INSIDE ADS AND ON
THE RS IR BRANE

In this section we will apply the formalism of the pre-
vious section to the case of AS shockwaves inside AdS and
on the IR brane in the two-brane RS model. The details of
the calculation of the trapped surface are found in the
Appendix, so here we will only show the general features.

Note that the application of the general formalism for
scattering on the UV brane of the RS model (as well as for
large extra dimensions) and thus for possible applications
to accelerators was done in [10]. Here we concentrate on
the cases relevant for QCD, namely, (as we will discuss in
detail in the next section) scattering inside AdS space and
on the IR brane.

We have already derived the form of the AS wave inside
AdS space in [10]. The function � for an AS wave cen-
tered around r � 0; y � y0 is
��r; y� �
8Gd�1l

�2���d�4�=2
p
edy=2le��4�d�=2ly0

r�d�4�=2

Z 1
0
dqq�d�2�=2J�d�4�=2�qr�Kd=2�ey=llq�Id=2�ey0=llq�y > y0

�
8Gd�1l

�2���d�4�=2
p
edy=2le��4�d�=2y0

r�d�4�=2

Z 1
0
dqq�d�2�=2J�d�4�=2�qr�Id=2�ey=llq�Kd=2�ey0=llq�y < y0: (4.1)
Let us therefore first derive the AS wave solution inside
the two-brane RS metric (the one used by Giddings in his
calculation of the Froissart bound) with the AS situated on
the IR brane. It will be different from the Emparan [26]
solution for the AS wave on the brane in the one-brane RS.
We will use the same formalism used for the one-brane RS
case by Emparan and for AdS space by [10]. We would still
use the AdS metric

ds2 � e�2y=ld ~x2 � dy2; (4.2)

as in [6], but then y 2 ��1; 0� and the IR brane is located
at y � 0 and the UV brane at y � �jyUV j. The metric
would be valid only in ��jyUV j; 0�. For a general metric
satisfying the required boundary conditions we will take

ds2 � e2jyj=ld ~x2 � dy2: (4.3)

It matches with the above for its domain of validity (y
negative).

In complete analogy with the calculation in [10,26], we
obtain an equation for h�q; y� �

R
dd�2 ~xeiq�x��x; y�which

is
h�q; y�00 �
d
l
sgn�y�h�q; y�0 � q2e�2jyj=lh�q; y� � 0;

(4.4)

with solution

Ae��djyj�=2l�Id=2 or Kd=2��e�jyj=llq�; (4.5)

and imposing normalizable behavior at y � �1 (at the
UV brane, if that is moved to infinity) we restrict to Id=2.
Then imposing the jump condition at y � 0 (IR brane), that
is putting the source of the wave on the IR brane as in [6],
we finally get

��r; y� �
4Gd�1p

2�
e���djyj�=2l

Z dd�2 ~q

�2��d�2
ei ~q ~x

Id=2�e�jyj=llq�

qId=2�1�lq�

�
4Gd�1p

�2��
d�4

2

e���djyj�=2l

r�d�4�=2

Z 1
0
dqq�d�4�=2J�d�4�=2�qr�

�
Id=2�e�jyj=llq�

Id=2�1�lq�
(4.6)
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(in d � 4, 4Gd�1p � Rsl). By comparison, Giddings has a
h00 (Newton potential) obtained also from a wave equation
with sources on the IR brane [6], except his source was a
static mass (black hole), whereas for us it is a photon

h00 � edy=2l
Z dd�1 ~p

�2��d�1
ei ~p ~x

Jd=2�iple
y=l�

ipJd=2�1�ipl�
; (4.7)

and since J��ix� � I��x� and y is negative, we have almost
the same solution, except for us the integration is only over
d� 2 transverse coordinates (as for a massless particle),
whereas for Giddings the integration is over d� 1 trans-
verse coordinates, as appropriate for a massive particle.

Let us then analyze the AdS scattering. We are interested
in the large r behavior (ey=ll=r
 1 and y � y0) which is
relevant for the Froissart bound that we are after. In that
case,

� �
�Cl4

r6
e

2
l�2y�y0�: (4.8)

We find (see the Appendix for details; here � 	 y� y0)

f � �j��0 � �C
l4

r6
e6y0=l;

a �
4

l
f� 1;

g � @2
��j��0 �

4

l
1 �

16f

l2
�

4

l
1

) a � �
�
l
f � �

16

l
f:

(4.9)

As we have explained in the Appendix, we actually get two
solutions for the trapped surface. There is one solution for
which a is negligible, thus that solution corresponds to
what we would have if the scattering was four dimensional
(and just � was obtained from the 5D equations). But in
the r� l limit, the AdS warping is very large, and energy
scales become larger away from the 4D slice, thus we
expect the size of the black hole being created (and thus
of the trapped surface) is increased. And so we will take the
solution that takes into account the 5D scattering, solution
that implies a larger horizon.

The same situation will be encountered in the case of
scattering on the IR brane. The space will then be very non-
four dimensional in the r� l limit (in a sense, it will be
anti-four dimensional), thus we expect that the size of the
trapped surface will be increased also with respect to pure
4D scattering. This situation is to be contrasted with the
scattering on the UV brane we analyzed in [10], in which
case for r� l the space was approximately four dimen-
sional (the warping is going down away from the brane),
and correspondingly we found a solution which had just
small corrections to the four-dimensional scattering.

The continuity condition for the larger trapped surface is
thus
106003
j�jf
2l

e�y0=l � 1; (4.10)

so that

r � rmax � ley0=l
�

3Rs
ley0=l

�
1=6
; (4.11)

and since in four dimensions Rs � 2G4

���
s
p

, we have that
rmax � s1=12.

If we introduce a nonzero impact parameter the continu-
ity condition becomes�

3Rsl5e5y0=l

r6

�
2
�
1�

b2

2r2

�
� 1; (4.12)

and with r2 � x; �3Rsl5e5y0=l�2 � a we get the equation

x7 � ax� a
b2

2
� 0: (4.13)

The maximum b for which it has a solution is [using
f�x0� � 0 for f0�x0� � 0]

b2
max �

12

7

�
a
7

�
1=6
) bmax � 7�1=12

������
12

7

s
ley0=l

�
3Rs
ley0=l

�
1=6

�
1

71=12

������
12

7

s
rmax (4.14)

so that bmax � as1=12 as well.
We will now analyze the scattering occurring on the IR

brane, the details of which are in the Appendix. The wave
profile is

��r; y� � Rsle�2jyj=l
Z 1

0
dqJ0�qr�

I2�e
�jyj=llq�
I1�lq�

; (4.15)

and we find that we can use the contour integration over the
complex q plane to calculate

f � ��r; y � 0� ’ Rs

��������
2�l
r

s X
n

j�1=2
1;n J2�j1;n�

a1;n
e� �qnr

’ Rs

��������
2�l
r

s
C1e�

�q1r; (4.16)

where �qn � j1;n=l are poles of the integral in the complex
momentum plane given by the zeroes of the Bessel func-
tion J1, j1;n. In (3.18) from the general formalism, i.e.

� � f� ay� g
y2

2
� . . . � C; (4.17)

we have [notice the sign difference in g, due to the IR brane
metric (4.3) vs the UV brane metric (3.4) used in Sec. III]

a � 1; g � @2
y�jy�0 �

4

l
1 � �f �q2

1 �
4a
l
: (4.18)

Again, as in the AdS case, we find two solutions, one that
would be there if we had a 4D scattering, and a larger
-9
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trapped surface that appears only when we have 5D scat-
tering. In the Appendix we treat in detail the case of the 4D
scattering, for completeness. Taking instead the larger
trapped surface,

a � �3
fr2

l3
; (4.19)

we get the continuity condition at y � 0

�
jfj �q1

2

�
j�jr

�q1l
2 � 1)

Rs �q1

2

��������
2�l
r

s
j�jC1

�q1l
r
l
e� �q1r � 1:

(4.20)

It has a solution that is approximately

rH ’
1

2 �q1
ln
� �A
2 �q1

�
; �A �

�
Rs �q1

2

�
2 2�
l

�
3C1

�q1l

�
2
: (4.21)

We can see that there is a solution by considering the
function

~g�r� � r� �Ar2e�2 �q1r ) ~g0�r�

� 1�
�

�q1 �
1

r

�
2 �Ar2e�2 �q1r; (4.22)

and the solution for rH is given by ~g�r� � 0. Since ~g0�r�>
0 if r > 1= �q1 and

~g
�

1

�q1

�
�

1

�q1

�
1�

R2
s

l2
18�C2

1

4e2j1;1

�
< 0; (4.23)

for sufficiently large Rs, there will be a solution.
At nonzero impact parameter, we get the equation�

jfj �q1

2

�
2
�
j�jr

�q1l2

�
2
�
1�

b2

2r2

�
� 1: (4.24)

Its solution is the zero of the function

g�r� � r�
�
1�

b2

2r2

�
�Ar2e�2 �q1r: (4.25)

And now we have an analysis that is a bit more involved;

g0�r� � 1� 2 �q1

�
r2 �

b2

2

�
�Ae�2 �q1r � 2r �Ae�2 �q1r: (4.26)

We are, however, only interested in the maximum value
bmax for which g�r� � 0 has a solution.

If r2 < b2=2, then g�r�> 0, and g�0� � b2 �A=2,
g�b=

���
2
p
� � b=

���
2
p

. To have a solution of g�r� � 0, we
need a minimum, g0�r1� � 0, with g�r1�< 0, so neces-
sarily r2

1 > b2=2.
But if b2=2
 r2, the second term in g0�r� is larger than

the third (as �q1 � 1=l� r), so g0�r�> 0. Thus we need
instead

b2

2r2
1

� 1� � ’ 1; (4.27)
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so if g�r1�< 0 [but close to zero, so that the 1 is negligible
in g0�r� and we can use g0�r1� � 0], we get

g�r1� ’ r1

�
1�

�A
�q1
e�2 �q1r

�
: (4.28)

At b � bmax, g�r1� � 0, so

r1 ’
1

2 �q1
ln
� �A

�q1

�
; b2 ’ 2r2

1

) bmax�s� ’
���
2
p 1

2 �q1
ln
� �A

�q1

�
�

���
2
p

�q1
ln

"
Rs �q1

 
3
����
�
p���
2
p
j3=2

1;1

!#
;

(4.29)

where Rs �
���
s
p
G4, G4 � 1=�lM3

P;5�. Thus we get the same
formula for rH�m� as [6] (modulo different constants), and
thus the classical cross section in the gravity dual for
scattering on the IR brane is of the expected ln2s functional
form

� � �b2
max�s� ’ 2�

�
1

�q1
ln�K1

���
s
p

�q1G4�

�
2
: (4.30)

V. QCD SCATTERING REGIMES; THE FROISSART
BOUND

Finally, now that we have done all the calculations
needed for the scattering in the AdS dual, let us put every-
thing together. In the gravity dual, the scattering happens
inside AdS space or, in the Froissart regime, effectively on
the IR brane.

In [10], we have analyzed ’t Hooft scattering in AdS
space, and we have found that we can calculate analytically
the scattering amplitude in two limits:

A AdS ’
G4l
2�

s��
t
p e�3y�y0�=2le�

��
t
p
l�ey=l�ey0=l�;

y � y0 < l; r
 l; G4s
 1;

AAdS / G4l6st2 ln�t�; r� l;

(5.1)

to be compared with the result in flat d dimensions (which
can be used in the case y � y0, r
 l for instance)

A AdS �
G4s
t
: (5.2)

All cases still give A�G4s, only the t behavior is
modified, so

d�AdS

d2k
�

4

s
d�AdS

d�
� �G4s�2: (5.3)

Since we have a well-defined amplitude, we can use the
Polchinski-Strassler formula ([3]) to relate to a QCD am-
plitude. Of course we have to remember that the formula is
valid only for the large r region, away from the IR cutoff,
where we can approximate the metric with AdS space and
-10
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the wave function dependence of rwith the power law r��.
But unfortunately, in all the cases of interest, studied in
(2.11), the main contribution to the integral comes from the
region of large � (� ’ �max � �̂0t), corresponding to the
region of small r, r ’ rmin.

This is, however, not as bad as it seems, since this IR
modification will translate only in the modification of the
factorized t behavior (coming from the integration over �),
while the dependence of s comes from the s dependence of
the AdS amplitude. We can check this by looking at the
formula (2.10). As we will be interested only in the leading
s behavior and not the t dependence (be it multiplicative or
not), our results will still be valid [see also the discussion
further of the original Polchinski-Strassler paper [3] later
on, especially around (5.11)].

We also see that in all the cases of interest treated in
(2.11), the effect of the AdS integration is only to change
the overall normalization, as well as the subleading behav-
ior. The leading behavior is kept the same.

In conclusion, for the case at hand, of the ’t Hooft
scattering in AdS space, where AAdS �G4s, by using
the PS formula ([3]) we will still have the same s depen-
dence

A QCD � Ĝ4s)
d�QCD

d2k

�
4

s

d�QCD

d�
� jAQCDj

2 � �Ĝ4s�2: (5.4)

As we mentioned, the relation between AdS and QCD
energy scales is

�������
�0~s
p

jAdS �
�������
�̂0s
p

jQCD and
�������
�0~t
p

jAdS ��������
�̂0t
p

jQCD. Here

�̂ 0 �
1

�2 ���������
gsN
p ; (5.5)

where � is the mass gap (the lightest glueball state). And
the minimum r in the cutoff AdS is rmin � R2�, R 	 l in
our notation.

We can rescale the 4D coordinates x such as rmin � R)
�̂0 � �0. The Planck scales are

MP�AdS� �
g�1=4
s �����
�0
p $ M̂P �

g�1=4
s �����
�̂0
p � N1=4�

)

���
~s
p

MP
�

���
s
p

M̂P

Ĝ4 	 M̂�2
P �

1����
N
p

�2
: (5.6)

So from ’t Hooft scattering in AdS space we get a
Rutherford-type behavior in QCD as well, except with
the effective coupling Ĝ4s.

This behavior is universal, and if we interpret it as
single-particle exchange between the gauge invariant
Yang-Mills states (glueballs), we see that the particle being
exchanged must also be colorless.

So in the energy regime Ĝ4s < 1, but at energies larger
than the mass gap, i.e. for
106003
�<
���
s
p

<
1������
Ĝ4

q � �N1=4; (5.7)

colorless states should obey Rutherford scattering behav-
ior, with a universal colorless single-particle exchange,
with universal effective coupling Ĝ4s. In the case of real
QCD (N � 3), the energy regime is nonexistent, thus we
cannot draw any lessons from experiments, and the interest
in this regime is therefore just theoretical.

However, as the universal coupling was obtained from a
spin-2 exchange in AdS (graviton), it is natural to assume
that the same thing happens in the gauge theory, namely, a
universal spin-2 colorless particle is exchanged in this
regime that behaves as a graviton. There is a natural
candidate for such a composite ‘‘particle,’’ namely, the
gauge theory dual to the graviton, the energy-momentum
tensor. It is not obvious why in this energy regime the
energy-momentum tensor should have a gravitonlike uni-
versal coupling to all colorless states, nor why graviton
exchange in the bulk should be dual to energy-momentum
tensor exchange on the boundary, but this is the only
plausible candidate.

This is an elastic scattering in AdS space, and it is an
elastic cross section in QCD. It could then be possible to
detect this elastic � even at higher energies, when the
amplitude is mostly inelastic.

As we go even higher in energies (�0s� 1), we will
start observing the Regge behavior noted by Polchinski and
Strassler [3]. Then in AdS space we need to use the string
Virasoro-Shapiro amplitude for massless external states
(s� t� u �

P
m2
i � 0)

A �

� Y
x�s;t;u

����0~x=4�

��1� �0~x=4�

�
K�~p

�����
�0
p
�

�
���0s=4� �0t=4�

��1� �0s=4�

����0s=4�

��1� �0s=4� �0t=4�

�
����0t=4�

��1� �0t=4�
K�~p

�����
�0
p
�; (5.8)

becoming in the small angle (s� t) region of interest

A � ��0s=4��
0t=4�1���0s=4��

0t=4�1

�
����0t=4�

��1� �0t=4�
s4�pol. tensors�

� ��0s��
0t=2�2 ����0t=4�

��1� �0t=4�
: (5.9)

Regge behavior in QCD was found to correspond to
Regge behavior in AdS space (to the flat space Regge
behavior of this VS amplitude, to be exact). The approxi-
mation used though is the same approximation that we
needed to use for the ’t Hooft scattering. Namely, in
general the � integral is dominated by (using stationary
phase approximation)
-11
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�0 � �
�� 4

ln�s=jtj�
: (5.10)

But Regge behavior is obtained in the case that �0 >
�max � �̂0t, when the integration is dominated by the
upper limit of the integral, corresponding to r close to rmin.

But as in the case of ’t Hooft scattering, we only need to
assume that the maximum of the integral is still outside the
region of integration, so that we can approximate the
integral with its upper limit. Presumably the existence of
the mass gap is enough to satisfy this requirement. Then
the factorized t dependence will be modified, but the s
behavior still will be of Regge type:

A � ��̂0s�2��̂
0t=2: (5.11)

Finally, for the elastic amplitude, [3] finds yet another
regime. If �max > �0 (to be rigorous we would need
�max � �0, corresponding to rscatt � rmin), that is if

�̂ 0t >
��� 4�

ln�s=jtj�
; (5.12)

one obtains

A � s2jtj��=2�ln�s=jtj�1��=2: (5.13)

Let us now turn to energies higher than the Planck scale
in AdS space, ~s >M2

P ) s > M̂2
P, when we will produce

black holes in the scattering. There are three dimensionless
parameters characterizing the scattering in AdS space,
Rs=l;G4s and lMP;5, so let us first derive their relations
to QCD variables.

Since MP;5 � N1=4=l in our notation, then

Rs � G4

���
~s
p
�

���
~s
p

lM3
P;5

�

�
1

lM2
P;5

� ���
s
p

M̂P

jQCD; (5.14)

so that

Rs
l
�

1����
N
p

� ���
s
p

M̂P

�
jQCD: (5.15)

Also, since G4~s � R2
s=G4, we get

G4~s � N�1=4

� ���
s
p

M̂P

�
2
jQCD: (5.16)

Equivalently, in terms of �̂0, the two parameters satisfy

Rs
l
�
g1=4
s����
N
p

�������
�̂0s
p

jQCD; G4~s �
g1=2
s

N1=4
��̂0s�jQCD: (5.17)

Finally, lMP;5 � N1=4 � 1, so one first reaches the AdS
scale 1=l, then MP 	 MP;5, and then the scale ER �
MP�lMP�

d�3, when the black hole size is comparable
with the AdS size.

Note that the dimensionality of the gravity dual plays an
important role. Most of the calculations in this paper were
done assuming that there is only AdS5 and forgetting about
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the compact space. In the case of ’t Hooft scattering, we
argued that the relevant behavior was independent of the
dimensionality of the space. In the case of black hole
creation, the dependence is more important.

Before the size of AdS space becomes important, black
hole formation can be approximated as being in flat space.
In that case, we have calculated in [10] a lower limit on the
maximum impact parameter that creates a black hole in d
dimensions,

b2
max � 2

�
�

D� 2

�
1=�D�3�D� 3

D� 2

�
2��rH�

2

�D� 2�D�2�=�D�3�
�D� 3�;

rH �
�

16�G
���
s
p

�D� 2��D�2

�
1=�D�3�

;

� �
�
�D� 2��D�2

4�D�3

�
1=�D�3�

:

(5.18)

In any case, we see that bmax�s� ’ as1=�2�D�3� � as� (a �
constant). In Sec. II Awe used a simple black disk model to
create an imaginary elastic scattering amplitude that was
substituted in the Polchinski-Strassler formula (2.10). We
derived the forward (t � 0) imaginary part of the ampli-
tude, giving us the total QCD scattering cross section in
this regime

�QCD �
�a2K

2�� �=2� 1

�
�̂0s
�0

�
2�

�
�a2K

1=�D� 3� � �=2� 1

�
�̂0s
�0

�
1=�D�3�

: (5.19)

As we have explained in Sec. II A, this is of the type

�Ka2=�1�2��� � fct
�
a2=�1�2��

�0
; �̂0s; �̂0t;�

�
; (5.20)

and here a2=�1�2��=�0 is a number depending on the gravity
dual (dimension D, Newton constant G), whereas
Ka2=�1�2�� is a dimension �2 constant that also depends
strongly on the details of the IR cutoff (through K).

We see that the higher the dimensionality, the smaller
the dependence on s. For d � 5 we have�� s1=2, whereas
for d � 10 we have �� s1=7.

At even higher energies (
���
s
p

>ER), we will start feeling
the effects of the AdS space size. We have calculated in
Sec. IV that the maximum impact parameter for black hole
formation is at least equal to

bmax � 7�1=12

������
12

7

s
ley0=l

�
Rs
ley0=l

�
1=6
�

1

71=1222=3

������
12

7

s
rmax;

(5.21)

where Rs � 2G4

���
s
p

, so that bmax ’ a0s1=12.
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Then using the same black disk model to substitute in
the PS formula, we get

�QCD �
�a02K

2�� �=2� 1

�
�̂0s
�0

�
2�

�
�a02K

1=6� �=2� 1

�
�̂0s
�0

�
1=6
: (5.22)

But as in the previous cases, the PS formula shows that
the main integration region is near the cutoff rmin, which
corresponds to the IR brane in the two-brane RS model.
But in that case we cannot approximate the scattering as
being in AdS space, since the 4D size of the black hole
formed is comparable to the AdS scale. As �� l the
horizon will stretch over a size �y > l, and if y ’ yIR it
would look as if the black hole is approximately on the IR
brane. So the approximation of AS in AdS space will break
down and instead the good approximation would be the
two AS shockwaves on the IR brane.

So it is not even clear that there is an intermediate
regime of the type in (5.22), but it is clear that the cross
section will begin flattening out, finally to settle into the
final behavior, corresponding to scattering on the IR brane.

In the second part in Sec. IV, we calculated that for AS
scattering on the IR brane we get a maximum impact
parameter for black hole formation that is at least equal
to bmax �

���
2
p
r1, with

r1 �
1

2 �q1
ln
� �A

�q1

�
; �A �

�
Rs �q1

2

�
2 2�
l

�
3C1

�q1l

�
2
: (5.23)

In that calculation we used the metric

ds2 � e2jyj=ld ~x2 � dy2 �
r2

l2

�
l2

r2
min

d~x2

�
�
l2

r2 dr
2; (5.24)

so to go back to the real coordinates we substitute

~��real� �
l
rmin

��used� �
��used�

l�
: (5.25)

Thus

bmax�s� ’
1

l�

���
2
p 1

2 �q1
ln
� �A

�q1

�
�

���
2
p

�q1
ln
�
Rs �q1

�
3
����
�
p���
2
p
j3=2

1;1

��
;

(5.26)

and Rs �
���
s
p
G4, G4 � 1=�lM3

P;5�. As advocated, we get
the same formula for rH�m� as in [6], modulo different
constants.

The gravitational cross section is

� ’ �
� ���

2
p

l�
1

�q1
ln�K

���
s
p

�q1G4�

�
2
; (5.27)

and �QCD � �, as we argued.
Thus as expected, the final behavior of the QCD scat-

tering amplitude corresponds to the Froissart unitarity
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bound. We have obtained the same behavior that
Giddings [6] has proposed, but in a more rigorous setting.
Let us compare to the calculation in [6]. There, the
‘‘Newton potential’’ h00 was calculated in linearized grav-
ity, obtaining

h00 � e
dy=2l

Z dd�1 ~p

�2��d�1
ei ~p ~x

Jd=2�ipley=l�

pJd=2�1�ipl�
; (5.28)

which was then used for an estimate of the horizon size by
h00 � 1) r � rH, and a geometric cross section approxi-
mation � ’ �r2

H was used for the black hole.
In our case, we obtain the exact AS shockwave solution

on the IR brane, which is

��r; y� �
Rsl
2�

e���djyj�=2l
Z dd�2 ~q

�2��d�2
ei ~q ~x

Id=2�e�jyj=llq�

qId=2�1�lq�

�
Rsl

�2���d�4�=2

e���djyj�=2l

r�d�4�=2

�
Z 1

0
dqq�d�4�=2J�d�4�=2�qr�

Id=2�e�jyj=llq�

Id=2�1�lq�
;

(5.29)

and since J��ix� � I��x� and y is negative, it is very similar
to the Giddings case, except that for us the integration is
only over d� 2 transverse coordinates (as for a massless
particle), whereas for [6] the integration is over d� 1
transverse coordinates, as appropriate for a massive parti-
cle. The h00 in [6] was obtained also from a wave equation
with sources on the IR brane, except there the source was a
static mass (black hole), whereas for us it is a photon.

At y � 0, one obtains similar behaviors,

h00 ’
1

2�r

X
n

e� �qnr
J2�j1;n�

la1;n
’

1

2�r
e� �q1r

J2�j1;1�

la1;1
(5.30)

versus

��r; y � 0� ’ Rs

��������
2�l
r

s X
n

j�1=2
1;n J2�j1;n�

a1;n
e� �qnr

’ Rs

��������
2�l
r

s
C1e�

�q1r; (5.31)

and in both cases the fact that allows the logarithmic
behavior of rH is the exponential e� �q1r, itself coming
from the presence of the pole in the momentum space
integrand. In our case, we have the advantage of the
scattering picture, in which we can calculate directly the
cross section for black hole creation.

Finally, in [10] we have addressed the issue of string
corrections to the scattering. This is very relevant for the
case of QCD, since string �0 and gs corrections in AdS
space translate into 1=N and 1=�g2

YMN� corrections in the
gauge theory, bringing us closer to the case of QCD. So it is
important to realize their effects.
-13
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In [10], string corrections were analyzed using a formal-
ism of Amati and Klimcik [27] (as well as using the
formalism in [28], based on the action in [29], but we
will not describe it) in which one obtains a string-corrected
AS metric. These corrections depend the dimensionless
ratio (in d � 4; here Y � �0 log��0s�)

R2
s

Y
�

g2

log��0s�
g2�0s

�4��2
: (5.32)

When this parameter is large, the shockwave is approxi-
mately AS, with exponentially small corrections, namely,

��b� � �
g2 ���

s
p

4�
�0
�

2 log
b
Rs
� e��b2=4Y�

�
b2

4Y

�
�1
� . . .�

� �Rs

�
2 log

b
Rs
� e��b2=4Y�

�
b2

4Y

�
�1
� . . .

�
; (5.33)

and the maximum impact parameter for black hole creation
also increases, but with exponentially small corrections:

Bmax �
Rs���

2
p �1� e�R

2
s=�8Y��: (5.34)

When R2
s=Y 
 1, the shockwave is not of AS type

��b� � �2Rs

�
1

D� 4
�

b2

4Y�D� 2�
� . . .

�
; (5.35)

and we can show that Bmax �
����
Y
p
� Rs (but we cannot

compute the actual value), so one has a huge increase in the
cross section.

So string corrections can be quite important, but in the
case of s! 1 (the Froissart unitarity bound), R2

s=Y � 1,
and the corrections discussed here are exponentially small.
Thus the Froissart unitarity bound is unaffected—as
expected.

While this calculation was in flat d � 4, not in the
gravity dual, and string corrections were described using
a very simple model, the smallness of the corrections,
together with the fact that we do obtain what we expect,
namely, the Froissart bound, makes us believe that we are
correctly describing a QCD phenomenon.
VI. CONCLUSIONS

In this paper we have analyzed high-energy QCD scat-
tering in the small angle region s� t. We have applied the
high-energy gravitational scattering calculations in [10] to
the simple model of QCD gravity dual used in [3]. Namely,
for high-energy QCD many of the observed features can be
deduced from just an AdS dual cutoff in the IR (and maybe
in the UV), giving a two-brane RS model. The gravitational
scattering was analyzed using a shockwave analysis. At
energies smaller than the Planck scale, the scattering of
two massless particles is described by null geodesics prop-
agating in the shockwave background (’t Hooft scattering).
At energies higher than the Planck scale, we need to take
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two AS shockwaves, and black holes are being formed in
the future of the collision, for an impact parameter less
than a bmax�s�.

’t Hooft scattering corresponds in the gauge theory to a
very restrictive regime (�<

���
s
p

<�N1=4) that is too re-
strictive for real QCD (N � 3). For N large though, we
obtained a Rutherford-type scattering with effective cou-
pling Ĝ4s—implying a universal single-particle exchange.
We conjectured that this comes from an exchange of a
universal, gravitonlike spin-2 ‘‘particle’’ being exchanged,
most likely the energy-momentum tensor (the dual of the
graviton). As the cross section is elastic, one could, how-
ever, maybe detect this elastic � even at higher energies in
the gauge theory, when the amplitude is mostly inelastic,
thus being of possible relevance to real QCD.

At higher energies, Regge behavior sets in, as described
by [3]. Regge behavior of the flat space Virasoro-Shapiro
amplitude translates directly into Regge behavior in QCD.

At even higher energies, black hole production sets in
inside the gravity dual, and it can be described as if
happening in an approximately flat d-dimensional space,
giving the power law behavior in (5.19), namely, �QCD �

s1=�d�3�.
There is a possible transition region when the size of

AdS space becomes important, and the scattering in the
gravity dual creates black holes inside AdS space, giving
again a power law behavior (5.22), namely, �QCD � s1=6.

Finally, in the last energy regime most of the scattering
happens on the IR brane, and the size of the surrounding
AdS space is important. We obtain a shockwave solution
that has the same exponential behavior h� e� �q1r as the
linearized black hole solution used by Giddings [6]. The
scattering of two such shockwaves gives a scattering cross
section saturating the Froissart bound (5.27).

We have looked at string corrections to the scattering of
two modified shockwaves, and we have found that in the
simple Amati-Klimcik model used in [10], and in flat d �
4, we obtain exponentially small corrections in the
Froissart limit s! 1. This makes us believe that even in
the case of real QCD, whenN and g2

YMN are finite and thus
we have large string corrections in the gravity dual, our
calculation of the Froissart bound still applies.
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APPENDIX A. TRAPPED SURFACE
CALCULATIONS

Let us apply the general formalism to calculate the shape
of the trapped surface in AdS space.
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The continuity equation at b � 0 would be, for � � �,

�@i��2 � e�2y=l�@y��2 � 4; (A1)

which for ey=ll=r� 1 gives

e�3y�y0�=l
� �C
4l

�
2
�

1

�r2 � l2�ey=l � ey0=l�22

�
9

4l2e2y=l�r2 � l2�ey=l � ey0=l�2

�
� 1 (A2)

(where �C � 2Rsl
2), since

� ’
�Ce�3y�y0�=2l

2l
1�������������������������������������������

r2 � l2�ey=l � ey0=l�2
q : (A3)

At y � y0 we get�
ey0=l

Rsl

2r2

�
2
�

1�
9

4

r2

l2e2y0=l

�
� 1; (A4)

where as we can see the second term [coming from �@y��2]
is a small correction.

For l
 r we have

� �
�Cl4

r6
e�2=l��2y�y0�: (A5)

That implies�
6Rsl

6

r7 e�2=l��2y�y0�

�
2
�

1�
4

9

r2

l2e2y=l

�
� 1: (A6)

However, now the second term [coming again from
�@y��

2] is dominant.
But we still need to modify �: � � ��  , as in the RS

case. Using the formulas from the RS case described in
Sec. III, but remembering that now we expand in � � y�
y0, not in y, we get

� � C � f� a��
�2

2
g� . . . (A7)

where

f � �jy�y0
; a � 1 � @y�jy�y0

: (A8)

Using

� � K
ed�=2l

r�d�4�=2

Z 1
0
dqq�d�2�=2J�d�4�=2�qr�

� Kd=2�e
�y0���=llq�Id=2�e

y0=llq�; (A9)

and zK0��z� � �K��z� � �zK��1�z�, we get in d � 4

@�� � �
Ke2�=l

l

Z 1
0
dqqJ0�qr�

� �e�=ley0=llq�K1�e�=ley0=llq�I2�ey0=llq�: (A10)

Then using I2�z� � �2I1�z�=z� I0�z� and
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Z 1
0
xJ0�x�K1�ax�I1�ax� �

1� 2a2 �
�����������������
1� 4a2
p

2a2
�����������������
1� 4a2
p ;

Z 1
0
dxx2J0�x�K1�ax�I0�ax� � 2a�1� 4a2��3=2;

(A11)

we get

@��j��0�
Ke�2y0=l

l3

�
6e4y0=ll4=r4�6e2y0=ll2=r2�1

�1�4e2y0=ll2=r2�3=2
�1

�
:

(A12)

At ey0=ll=r
 1, using K � �Ce2y0=l � 2Rsl
2e2y0=l, we

have

@��j��0 ’ 4 �Ce6y0=l
l3

r6
� 4

�j��0

l
: (A13)

Then also

@2
��j��0 �

8

l2
�j��0 � Ke2y0=l

Z 1
0
dqq3J0�qr�

� K0�ey0=llq�I2�ey0=llq�: (A14)

Now, however, we can only do the remaining integral if the
argument is small. Namely, one could try using again
I2�z� � �2I1�z�=z� I0�z� and

Z 1
0
x3J0�x�K0�ax�I0�ax� � �4

1� 2a2 � 4a4

�1� 4a2�3=2
; (A15)

but the I1 integral cannot be done. Instead, we expand
K0�ax�I2�ax� and findZ 1

0
x3J0�x�K0�ax�I2�ax� ’ 8a2 � 96a4 � o�a6�; (A16)

and thus for ey0=ll=r
 1 we have

@2
��j��0 ’ 16 � 2Rs

l4

r6
e6y0=l: (A17)

Thus at ey0=ll=r
 1 and y � y0

f � �j��0 � �C
l4

r6
e6y0=l; a �

4

l
f� 1;

g � @2
��j��0 �

4

l
1 �

16f

l2
�

41

l
:

(A18)

If a is nonzero, we have to match

4 � f02 � a2e�2y0=l

� �
�
2a0f0 � 2

a2

l
e�2y0=l � 2age�2y0=l

�
� . . . (A19)

with

C � f� a�� . . . (A20)

If we put 1 � 0 we then get
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1 �
�
Rs
l6

r6
e6y0=l

�
2 16

l2
e�2y0=l

�
1�

9

4

l2

r2 e
2y0=l � 6

�
l
� . . .

�

�

�
f
2

�
2 16

l2
e�2y0=l

�
1�

9

4

l2

r2 e
2y0=l � 6

�
l
� . . .

�
; (A21)

where now the first term comes from �@y��
2, to be

matched with

C2 � f2

�
1�

8�
l
� . . .

�
; (A22)

which does not work. The next try is to put a nonzero 1

that still keeps a nonzero. If it keeps it of the same order as
the first term, we will have

a � �
�
l
f; (A23)

which implies we have to match

1 �
�
f
2

�
2 �2

l2
e�2y0=l

�
1� 6

�
l
� . . .

�
(A24)

with

C2 � f2

�
1�

2��
l
� . . .

�
: (A25)

This happens to have a solution,� � �3. But let us see if it
is unique. We could also have a � 0 to this order (� � 0).
Then let us assume that a is proportional to the next term in
the expansion, namely,

a � �
f
r
ey0=l (A26)

so that 1 � 4f=l� a and so g � 4a=l� . . . . Then one
finds

1 �
�
f
2r

�
2
�62 � �2�

�
1�

�
l

6�2

62 � �2

�
; (A27)

to be matched with

C2 � f2

�
1� 2�

�
r
ey0=l � . . .

�
; (A28)

and, as we see, the functional dependence is different. For a
higher power in the expansion if

a � �
f
r
ey0=l

�
l
r
ey0=l

�
n
; n � 1; (A29)

the first equation will be

1 �
�
6f
r

�
2
�
1�

�
6l

�
�2

�
l
r
ey0=l

�
2n

� 2��7� n�
�
l
r
ey0=l

�
n�1

��
; (A30)

whereas the second will be

C2 � f2

�
1� 2�

�
r
ey0=l

�
l
r
ey0=l

�
n
� . . .

�
: (A31)
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We see that for n > 1 we have a mismatch—we would
need 2�n� 7�=6 � 2, which is impossible—whereas for
n � 0 there is a different functional dependence (and for
n <�1 we can treat it separately and convince ourselves
that the functional dependence is also different). But for
n � 1 we have another solution; the matching condition is
���� 4� � 0, so

a � �4
fl

r2 (A32)

Finally, we cannot have a � 0 exactly, since then we
need to match

4 � f02 � y2�f0g0 � g2e�2y0=l� � . . . (A33)

to

C � f�
y2

2
g� . . . (A34)

and then we have g � 0.
So we have two solutions: a � 3f=l and a � �4fl=r2.

Which should we choose? A physical argument shows us
what happens. In the second solution, a is negligible at y �
y0, so we have the same continuity condition that we would
have if the shockwave scattering was four dimensional. But
now we are in AdS space and the warping is very large, so
we are at higher energy away from y � y0, therefore we
expect that the black hole formed is larger than what we
would have in the four-dimensional case. So whereas the
second solution describes a trapped surface that would be
there even if the space would be four dimensional, the
second trapped surface is larger and is due to the very large
warping outside the four-dimensional slice.

We might be worried that there is some theorem stating
there should only be a trapped surface, as the trapped
surface problem is similar to the Green problem with
Neumann boundary conditions in electrostatics. But this
is not quite so, since now we must also determine the
boundary C from the condition that �r��2 � 4 matches
� � (arbitrary) constant, together with the solution to the
Laplace equation ������ � 0, so it is not quite the
same Green problem.

Thus we take the larger of trapped surfaces, with a �
��f=l, in which case the continuity condition becomes

j�jf
2l

e�y0=l � 1; (A35)

so that

r � rmax � ley0=l
�

3Rs
ley0=l

�
1=6
; (A36)

and since Rs � 2G4

���
s
p

, we have that rmax � s1=12.
Now let us do the same for the case of the wave on the

RS IR brane.
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We haveZ
d�d�3e

iqr cos
 � �2���d�2�=2
J�d�4�=2�qr�

�qr��d�4�=2
; (A37)

which we can apply forZ
dd�2 ~qei ~q ~xf�q� �

Z 1
0
qd�3dq

Z
d�d�3eiqr cos
f�q�:

(A38)

However, in the case of [6], for the calculation of h00, the
integral that one has corresponds formally to d � 5 in the
above, but it is more useful to do the integral in a different
way, namely, to writeZ 1

0
q2dq

Z
d�2e

iqr cos
f�q�

�
�2�i
r

Z 1
0
qdq�eiqr � e�iqr�f�q�; (A39)

and if f is even, i.e. f�q� � f��q�, we can rewrite it as

�2�i
r

Z �1
�1

qdqf�q�eiqr: (A40)

For [6], on the IR brane, that is at y � 0, the function f is

f�q� �
J2�iql�
iqJ1�iql�

�
I2�ql�
qI1�ql�

(A41)

[I��iz� � i��J���z�]. More precisely,

h00�y � 0� �
1

�2��3
Z
d3 ~pei ~p ~x

J2�iql�
iqJ1�iql�

�
1

�2��3

�
�2�i
r

�Z �1
�1

dqqeiqr
I2�ql�
qI1�ql�

: (A42)

But there is a theorem: For a complex function �f�z� such
that limz!1

�f�z� � 0�Im�z�> 0�, and a real �> 0, we
haveZ �1
�1

�f�x�ei�xdx � 2�i
X

Im�a�>0

Rez�F; a;

F�z� � �f�z�ei�z:
(A43)

In Giddings’s case [6], �f�q� � I2�ql�=I1�ql�.
We get

h00 ’
1

2�r

X
n

e� �qnr
J2� �qnl�
a1;n

; (A44)

where we have defined q � i �q and the behavior of the
Bessel function near a pole is

J1�z� � a1;n�z� zn�; z! zn: (A45)

The zeroes of J1 are called j1;n, so �qn � j1;n=l. Then

h00 ’
1

2�r

X
n

e� �qnr
J2�j1;n�

la1;n
’

1

2�r
e� �q1r

J2�j1;1�

la1;1
: (A46)
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Let us come back to our case of computing ��r; y�. We
will first try to do the integral exactly, and see that un-
fortunately we get nonsensical results, and then make an
approximation that allows us to do the integral.

The integral we have is

I �
Z 1

0
qdq

Z 2�

0
d
eiqr cos
f�q�

�
Z 1

0
qdqf�q�

Z ��=2

��=2
d
�eiqr cos
 � e�iqr cos
�

�
Z ��=2

��=2
d


Z �1
�1

qdqf�q�eiqr cos
; (A47)

and we see that in the 
 integration regime 1 � cos
 � 0,
and

f�q� �
I2�ql�
qI1�ql�

(A48)

as before, so that

I �
Z ��=2

��=2
d
2�i

X
n

e� �qnr cos
 J2�j1;n�

la1;n
; (A49)

and correspondingly

��r; y � 0� �
2�i

�2��2
Rs
X
n

J2�j1;n�

a1;n

Z ��=2

��=2
d
e� �qnr cos


�
2�i

�2��2
Rs
X
n

J2�j1;n�

a1;n
��I0� �qnr� � L0� �qnr��:

(A50)

We are interested in the limit �qnr� 1, and

L0�z� � I0�z� �
1���������
2�z
p ez (A51)

at large z, so that is not very useful. We can instead expand
the integral already and getZ ��=2

��=2
d
e� �qnr cos
 � 2

Z ��=2

0
d
e� �qnr cos


’ 2
Z �

0
d �
e� �qnr �
 ’

2

�qnr
; (A52)

so it would seem that there is no exponential behavior.
However, the approximations used were contradictory,
since we have expanded the previous integral about the
point where cos
 � 0, which is exactly the point where the
contour integration theorem does not work.

So we must find an approximation regime when we can
do the integral.

This time we do the angular integral and obtain

I � 2�
Z 1

0
dqJ0�qr�

I2�ql�
I1�ql�

: (A53)
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Since we want to have r� l, we can use the large argu-
ment expansion of J0,

J0�z� �

������
2

�z

s
cos�z� �=4� �

1������
�z
p �cosz� sinz�; (A54)

thus

I ’

������
2

�r

s Z 1
0
dqq�1=2 e

iqr�i�=4 � e�iqr�i�=4

2

I2�ql�
I1�ql�

� e�i�=4

���������
1

2�r

s Z �1
�1

dqq�1=2eiqr
I2�ql�
I1�ql�

� e�i�=4

���������
1

2�r

s
2�

X
Im�q�>0

Re
�
eiqrq�1=2 I2�ql�

I1�ql�
; q
�
;

(A55)

so that

��r; y � 0� ’ Rsl

��������
2�l
r

s X
n

j�1=2
1;n J2�j1;n�

la1;n
e� �qnr

’ Rs

��������
2�l
r

s
C1e�

�q1r: (A56)

Let us now calculate the trapped surface shape in the RS
background with

��r; y� � Rsle
�2jyj=l

Z 1
0
dqJ0�qr�

I2�e�jyj=llq�
I1�lq�

: (A57)

The continuity condition is

�r��2 � e2jyj=l�@y��2 � 0 (A58)

(note the different sign in the exponent, due to the two-
brane RS background). We have

@y� � �Rsle�3jyj=l
Z 1

0
dqqJ0�qr�

I1�e
�jyj=llq�
I1�lq�

(A59)

[where we have used zI0��z� � zI��1�z� � �I��z�] which
means that @y�jy�0 � 0. And then

@2
y�jy�0 �

Rs
l

Z 1
0
dq�lq�2J0�qr�

I0�lq�
I1�lq�

� Rsl
Z 1

0
dqq2J0�qr�

I2�ql�
I1�ql�

(A60)

[where we have used zI0��z� � zI��1�z� � �I��z� as well as
I0�x� � 2I1�x�=x� I2�x�].

Again, as before, the integral is zero in perturbation
theory, so we must use the contour integral as before, and
obtain
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@2
y�jy�0 ’

Rsl���������
2�r
p

2�i��
i
p

X
Im�q�>0

Rez
�
eiqrq�1=2 q

2I2�lq�
I1�lq�

; q
�
:

(A61)

We get

@2
y�jy�0 ’ �

Rsl���������
2�r
p

2�
��
l
p

l2
X
n

j�1=2
1;n

j2
1;nJ2�j1;n�

la1;n
e� �qnr

’ �
Rs
l2

��������
2�l
r

s
~C1e

� �q1r � ��jy�0 �q2
1 (A62)

[since ~C1 � C1�j1;1�
2].

We are now ready to apply the formalism for the trapped
surface in curved background. In

� � f� ay� g
y2

2
� . . . � C; (A63)

we have

a � 1; g � @2
y�jy�0 �

4

l
1; f � �jy�0:

(A64)

We first try a � 1 � 0 (so that � � �). Then we need to
match

C � f� g
y2

2
� . . . ; 4 � f02 � y2�f0g0 � g2� � . . . ;

(A65)

where g � �f �q2
1 and f0 � �f �q1. We obtain

C2 � f2�a� y2 �q2
1� � . . . ; 4 � f2 �q2

1�1� 0� � . . . ;

(A66)

which we see do not match. So we need to put a nonzero
a � 1.

Then we would need to match

C � f� ay� . . . ;

4 � f02 � a2 � y
�
2a0f0 � 2

a2

l
� 2ag

�
� . . . ;

(A67)

where f0 � � �q1f and g � � �q2
1f� 4a=l.

We will try first a � �f=l, which gives a term in the
continuity equation comparable with the leading term. We
get

C2 � f2

�
1� 2

�
l
y
�
� . . .

4

�q2
1 � �

2=l2

� f2

�
1�

y

�q2
1 � �

2=l2

�
�

6�2

l3

��
� . . . ; (A68)

and by matching the two equations we get
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� �
�3�

��������������������
9� 4l2 �q2

1

q
2

: (A69)

However, since j1;1 � �q1l ’ 3:83, there is no real solution.
Next, we try an order of l=r down from the previous try,

namely, a � �f=r. We get

C2 � f2

�
1� 2

�
r
y
�
� . . . ;

4 � f2 �q2
1

�
1� o

�
yl

r2

��
� . . . ;

(A70)

so now even the r dependence does not match. We can see
that by adding powers of ln=rn we generate again a mis-
match of r dependence.

Conversely, we can try to have an a � 1 which is more
important than the leading term, namely, a � �fr=l2.
Then we get

C2 � f2

�
1� 2�

yr

l2

�
� . . . ;

4 � f2 �
2r2

l4

�
1�

6y
l

�
� . . . ;

(A71)

so again we have a mismatch of r dependence.
For higher powers of rn=ln

a � �
fr

l2

�
r
l

�
n
; (A72)

we need to match

C2 � f2

�
1� 2�

yl

r2

�
r
l

�
n
�
;

4 �
f2�2r2

l4

�
1�

6y
l

�
r
l

�
2n
�
;

(A73)

and we see that we get a solution for n � 1, � � �3, thus

a � �3
fr2

l3
: (A74)

It would seem that we have exhausted all the possibil-
ities, but this is actually not so. We can still try

a � 1 � �
e�r

r
f; (A75)

which gives

C2 � f2

�
1� 2�

ye�r

r

�
� . . . ;

4 � f2 �q2
1

�
1� 2�

ye�r

r �q2
1

�
� �q1 � 3�

e�r

lr

��
� . . .

(A76)

We can easily see that � � � �q1 makes the two equations
equal, so

a � 1 � �
e� �q1r

r
f; (A77)
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and strangely � is arbitrary (but probably it will be fixed in
a higher order in y).

In any case, we see that this solution for a does not
change the leading order equation at y � 0, which is

jfj �q1

2
� 1 )

Rs �q1

2

��������
2�l
r

s
C1e�

�q1r � 1; (A78)

which has a solution that is approximately

rH ’
1

2 �q1
ln�2 �q1A�; A �

�
Rs �q1

2

�
2
2�lC2

1: (A79)

The fact that there is a solution can be easily seen by
considering the function

~g�r� � r� Ae�2 �q1r ) ~g0�r� � 1� 2 �q1Ae�2 �q1r > 0;

(A80)

and the solution we are looking for is given by ~g�r� � 0.
Since ~g�0� � �A and the function is monotonically in-
creasing, it will have a solution.

At nonzero impact parameter, we get the equation

�
f �q1

2

�
2
�
1�

b2

2r2

�
� 1: (A81)

Its solution is thus the zero of the function

g�r� � r�
�

1�
b2

2r2

�
Ae�2 �q1r; (A82)

but now the analysis of the solution is a bit more involved.
Indeed, now

g0�r� � 1� 2 �q1A
�
1�

b2

2r2

�
e�2 �q1r �

b2

r3 Ae
�2 �q1r: (A83)

Luckily, we are only interested in the maximum value bmax

for which g�r� � 0 has a solution.
If r2 < b2=2, then g�r�> 0. In particular, g�0� � �1,

g�b=
���
2
p
� � b=

���
2
p

. To have a solution of g�r� � 0, we need
a minimum, g0�r1� � 0, with g�r1�< 0, so necessarily
r2

1 > b2=2.
But if 1� b2=�2r2� � 1 (b2=2 is significantly lower than

r2), the second term in (A83) is larger than the third, so
g0�r�> 0 (as �q1 � 1=l� 1=r). Thus we need instead

b2

2r2
1

� 1� � ’ 1; (A84)

so if g�r1�< 0 we get

g�r1� ’ r1 �
A

�q1r1
e�2 �q1r1 : (A85)
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At b � bmax, g�r1� � 0, so

r1 �
A

�q1r1
e�2 �q1r1 ; b2 ’ 2r2

1

) bmax�
���
s
p
� ’

���
2
p 1

2 �q1
ln�4 �q1A�

�

���
2
p

�q1
ln

"
Rs �q1

 �������
j1;1

p
C1

����
�
2

r ! ���
2
p
#
; (A86)

where Rs �
���
s
p
G4, G4 � 1=�lM3

P;5�.
However, the same physical argument we have used in

the AdS case applies. The two solutions we have obtained
correspond to the trapped surface that would be there if we
had a four dimensional scattering, and only the function �
would be different (for a � �e� �q1rf=r), and the one due to
the very large warping outside the 4D IR brane. As the
large warping will increase the size of the black hole being
formed, we have to take the larger trapped surface, de-
scribed by

a � �3
fr2

l3
; (A87)

which gives the continuity condition at y � 0
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�
jfj �q1

2

�
j�jr

�q1l2
� 1)

Rs �q1

2

��������
2�l
r

s
j�jC1

�q1l
r
l
e� �q1r � 1;

(A88)

which has a solution that is approximately

rH ’
1

2 �q1
ln
� �A
2 �q1

�
; �A �

�
Rs �q1

2

�
2 2�
l

�
3C1

�q1l

�
2
: (A89)

We can again see that there is a solution by considering
the function

~g�r� � r� �Ar2e�2 �q1r ) ~g0�r�

� 1�
�

�q1 �
1

r

�
2 �Ar2e�2 �q1r; (A90)

and the solution for rH is given by ~g�r� � 0. We can see
that ~g0�r�> 0 if r > 1= �q1 and

~g
�

1

�q1

�
�

1

�q1

�
1�

R2
s

l2
18�C2

1

4e2j1;1

�
< 0 (A91)

for sufficiently large Rs, so there will be a solution.
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