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Regular and chaotic interactions of two BPS dyons at low energy
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Instituto de Fı́sica Teórica, Universidade Estadual Paulista, Rua Pamplona, 145, 01405-900 São Paulo, SP, Brazil

(Received 30 August 2005; published 28 November 2005)
1The chaoti
by positive
Lyapunov sp
[7]. In combi
bolicity of cla
dimensions).
cading of the
towards the u
impede the
theories [8],
spacings of
according to
another perspe
[10].

1550-7998=20
We identify and analyze quasiperiodic and chaotic motion patterns in the time evolution of a classical,
non-Abelian Bogomol’nyi-Prasad-Sommerfield (BPS) dyon pair at low energies. This system is amenable
to the geodesic approximation which restricts the underlying SU(2) Yang-Mills-Higgs dynamics to an
eight-dimensional phase space. We numerically calculate a representative set of long-time solutions to the
corresponding Hamilton equations and analyze quasiperiodic and chaotic phase space regions by means of
Poincaré surfaces of section, high-resolution power spectra and Lyapunov exponents. Our results provide
clear evidence for both quasiperiodic and chaotic behavior and characterize it quantitatively. Indications
for intermittency are also discussed.
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I. INTRODUCTION

The classical dynamics of non-Abelian gauge theories is
known to be chaotic in a large part of its phase space [1].
By itself this is not unexpected since chaos is far more the
rule than the exception in nonlinear dynamical systems.
Perhaps more surprising, however, is the mounting evi-
dence for this chaotic behavior, which is strictly speaking a
classical phenomenon, to be of relevance for physical
quantum gauge theories as well.

Part of the existing indications for the chaoticity of
non-Abelian gauge theories stem from ‘‘homogeneous
approximations’’ which neglect all spatial variations
of the fields. Although these drastic reductions of the
dynamics access only a tiny and not generally physical
fraction of the full phase space, the few remaining degrees
of freedom proved sufficient to establish chaotic regimes
first in SU(2) Yang-Mills theory [2] and later in Yang-
Mills-Higgs theory [3] and Chern-Simons gauge theory
[4]. Extensive lattice calculations of the time evolution
under the full hyperbolic Yang-Mills equations subse-
quently showed that spatially inhomogeneous gauge fields
not only evolve chaotically, too, but reveal even more
complex and qualitatively new phenomena1 which are of
city of gauge field trajectories was characterized
maximal Lyapunov exponents [5], the whole
ectrum [6], and the Kolmogorov-Sinai entropy
nation, these properties indicate the global hyper-
ssical non-Abelian lattice gauge theory (in 3� 1
Other important findings were a continuous cas-
dynamical degrees of freedom (and their energy)
ltraviolet during time evolution [5], which might
continuum limit of non-Abelian lattice gauge
and the distribution of nearest-neighbor level
Yang-Mills and QCD lattice Dirac spectra

Gaussian matrix ensembles [9], indicating from
ctive that the underlying classical theory is chaotic
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direct physical relevance, for example, in nonequilibrium
processes.2

Between the above two computational extremes, i.e.
either ad hoc truncations to only constant fields or the
full solution of the classical field equations on the lattice,
there exist physically interesting subsystems of the gauge
dynamics whose spatially varying fields—typically soliton
configurations—and time evolution can be studied without
invoking uncontrolled approximations or requiring the
solution of partial differential equations. In the following,
we will focus on a prototypical such system, consisting of
two electrically charged magnetic Bogomol’nyi-Prasad-
Sommerfield (BPS) monopoles [12–14], i.e. dyons, whose
nontrivial spatial extension gives rise to crucial properties
including the magnetic charge. Nevertheless, the low-
energy time evolution of the dyon pair is accurately de-
scribed by the geodesic approximation which involves just
a few collective degrees of freedom, governed by ordinary
differential equations. This geodesic dynamics is one of the
best understood examples for classical (and quantum) in-
teractions between extended solutions of physically inter-
esting 3� 1 dimensional field theories and can be
formulated at a rare level of explicitness [15,16]. Beyond
being fascinating in its own right (exhibiting e.g. the
celebrated scattering angle �=2 for head-on collisions), it
therefore serves as a paradigm for the interactions among
many other physically important solitons.3 The purpose of
2At high temperatures, long-wavelength fields behave increas-
ingly classical. Chaos investigations can therefore provide useful
input to the study of otherwise hardly accessible nonequilibrium
processes in hot gauge theories. Timely applications include
calculations of the fast thermalization rates observed in heavy-
ion collisions [11] and (especially topological) structure forma-
tion, e.g., in baryon number violating processes during semi-
classical evolution phases in the standard model.

3Prominent examples include the interactions of Skyrmions,
vortices, instantons and D-branes.

-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.105015
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the present paper is to examine regular and chaotic motion
patterns of this system in a representative set of phase
space regions.

Besides appearing in the electroweak sector of standard
model extensions, monopoles and their potentially chaotic
interactions may have a crucial function in the context of
quark confinement by the strong interactions. This be-
comes most explicit in the central role which BPS mono-
poles play in the confinement mechanism of N � 2
supersymmetric Yang-Mills theory in 3� 1 dimensions
[17]. By condensing in the vacuum, they realize the classic
’t Hooft-Mandelstam dual superconductivity scenario [18]
in which color magnetic charges get screened while color
electric charges are confined by the dual Meißner effect.
Similar scenarios, in which the condensation of monopole-
like objects plays a key role, are expected to unfold in more
physical gauge theories as well.4 In 3� 1 dimensional
Yang-Mills theories, for example, there is lattice evidence
for the condensation of Abelian-projected monopoles to
generate the bulk of the string tension [20]. (According to
an interesting recent suggestion, the ‘‘active’’ monopoles
might actually be BPS dyon constituents of caloron solu-
tions with nontrivial holonomy [21].) Hence monopoles
may be instrumental in resolving the most profound re-
maining mystery of QCD, i.e. the quark confinement
mechanism [22].

From a seemingly different but actually related perspec-
tive, quark confinement is expected to be linked to the
chaotic behavior of classical chromodynamics as well. In
fact, it has long been conjectured that the vacuum of non-
Abelian gauge theories, when undergoing a transition from
weakly to strongly coupled fields, also undergoes an order-
disorder transition and that the strongly coupled QCD
vacuum is populated by highly irregular color field con-
figurations [1]. In the limit of a large number of colors, in
particular, a vacuum made of random Yang-Mills fields has
been shown to be a necessary and sufficient condition for
quark confinement [23]. From the outset, one of the moti-
vations for investigating chaos in non-Abelian gauge theo-
ries was therefore to shed light on its potential role in the
confinement mechanism [2]. Moreover, the instability of
constant color magnetic vacuum fields [24] made it natural
to conjecture that both gauge invariance and stability of the
physical vacuum may be restored by disordering the color-
magnetic background fields. Under the gluonic structures
envisioned to carry the bulk of this disorder are random
domains as well as populations of randomly distributed
center vortices or monopoles.
4As a case in point, in the 2� 1 dimensional Yang-Mill-Higgs
model ’t Hooft-Polyakov monopoles (a generalization of BPS
monopoles which play the role of instantons in this case) gen-
erate ‘‘weak confinement’’ by forming a monopole-
antimonopole plasma, as shown long ago by Polyakov [19],
and the ‘‘strong confinement’’ of 2� 1 dimensional Yang-
Mills theory is expected to be due to a similar mechanism.
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The last of these scenarios may be related to the subject
of our investigation. Indeed, it is tempting to speculate that
a disordered ensemble of monopoles (and antimonopoles)
in a semiclassical vacuum may be generated by chaotic
low-energy interactions among the monopoles. In the fol-
lowing we are going to investigate precisely this type of
interaction in the simplest possible setting, i.e. between just
two BPS monopoles. One may then hope that the quanti-
tative understanding of its chaotic regime will lead to new
insights into the disorder of interacting monopole ensem-
bles as well. For sufficiently dilute systems, expansions in
the monopole density and more sophisticated many-body
techniques might even provide a starting point for the
quantitative treatment of chaotic multimonopole ensem-
bles. Alternatively, one could contemplate the technically
challenging extension of the geodesic approximation to
approximate BPS multimonopole-multiantimonopole so-
lutions which incorporate multimonopole interactions.5

Based on the above motivations, our main objective in
the following will be to deepen the qualitative and quanti-
tative understanding of quasiperiodicity and chaos in the
geodesic motion of two BPS dyons. The pioneering nu-
merical studies of this motion in Refs. [26–28] already
provided several indications for its nonintegrability.
(Evidence for chaotic fluctuations around single mono-
poles in SU(2) Yang-Mills–Higgs theory exists as well
[29], although not too large, minimally spherically sym-
metric excitations remain regular [30].) After a brief rec-
ollection of the classical two-dyon dynamics at low
energies, we will first extend previous studies by examin-
ing Poincaré sections for a set of numerically generated
long-time trajectories of the dyon pair. In the subsequent
sections we break new ground by invoking high-resolution
power spectra and maximal Lyapunov exponents to ana-
lyze the dyon orbits further. This analysis will go beyond
the mere identification of standard motion patterns and
provide the first quantitative characterizations of quasiperi-
odic and chaotic two-dyon trajectories.
II. CLASSICAL LOW-ENERGY DYNAMICS OF
THE TWO-DYON SYSTEM

In order to set the stage for our investigation, we first
recapitulate some pertinent aspects of the dynamics of a
classical BPS dyon pair at low energies and discuss its
known constants of the motion. Readers interested in more
detail are referred to the lucid discussion by Gibbons and
Manton [15].

We consider Yang-Mills-Higgs (YMH) theory in 3� 1
dimensions with gauge group SU(2) and the Higgs field in
the adjoint representation, i.e. the Georgi-Glashow model.
5Such solutions may be similar or related to the BPS dyon
constituents of the recently discovered SU(N) Yang-Mills calo-
ron solutions with nontrivial holonomy [25]. (In the case of
SU(2), they contain a BPS monopole-antimonopole pair.)
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6At fixed time, the polar angles # and ’ specify the direction
of the axis connecting the two monopoles, and  corresponds to
rotations around this axis. The angle  becomes relevant since
the BPS monopole pair is in general not axially symmetric.
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The classical field equations admit topological soliton
solutions which are magnetic monopoles with integer mag-
netic charge k [31]. In the following we will be interested
in these monopole solutions in the BPS limit of vanishing
Higgs potential [12–14], which solve the more restrictive
Bogomol’nyi equation [13]

Bai �
1

2
"ijkFajk � ���

ac@i � g"abcAbi ��
c (1)

(where Fa�� is the field strength tensor of the gauge field Aa�
and �a is the (adjoint) Higgs field). The solutions of
Eq. (1) are the absolute minima of the YMH energy in
their topological charge sector and form a submanifold Mk
in the space of gauge-inequivalent finite-energy fields.
Static multimonopole solutions (with jkj> 1) of Eq. (1)
are possible because the repulsive magnetic forces between
the individual monopoles are counterbalanced by the at-
tractive forces which the massless Higgs field mediates
[32].

Although the underlying YMH dynamics is not directly
embedded in the standard model, it appears naturally in
grand-unified theories. Monopole solutions similar to the
BPS prototype might therefore be physical. Their mass
would probably be large enough to explain why they
have so far escaped discovery in earthbound laboratories.

The monopole solutions come in families whose mem-
bers are characterized by continuous collective coordinates
or ‘‘moduli’’ x�. (For the one-monopole solution, for ex-
ample, these are the three position coordinates of the center
and an overall phase angle.) Hence the moduli space
spanned by the collective coordinates is just the (generally
curved) manifold Mk. Its metric g���x� is induced by the
metric on the more comprehensive space of all finite-
energy field configurations which the kinetic terms in the
YMH Lagrangian define.

The time evolution of a nonstatic and therefore in gen-
eral electrically charged BPS monopole system is gov-
erned by the hyperbolic partial differential YMH
equations whose quantitative analysis and solution poses
rather formidable problems. Reassuringly, however, the
low-energy dynamics of BPS dyons reduces to a much
more tractable problem as long as Manton’s geodesic
approximation [33] can be invoked. The latter rests on
the observation that energy conservation forces the low-
energy motion of the k-dyon system (with sufficiently
small initial velocities of the collective coordinates, tan-
gent to Mk) to remain close to one of the static BPS
solutions on Mk at all times. This is simply because Mk
contains all absolute YMH energy minima with magnetic
charge k, so that moving out of it would cost both kinetic
and potential energy. Hence the low-energy motion of a
k-dyon system approximately corresponds to low-energy
motion of an associated point on the moduli space Mk.
Since the energy of all static k-monopole solutions is
degenerate, i.e. at the same (minimal) potential, further-
105015
more, the low-energy motion is approximately determined
by the kinetic energy alone. Hence it corresponds to geo-
desic motion on the moduli space Mk, which is governed
by the purely kinetic Lagrangian

Lgeod �
m
2
g���x� _x� _x�; (2)

where m is the reduced mass of the dyons. Physically, this
just means that at small velocities (compared to the veloc-
ity of light) internal excitations (vibrations) and de-
excitations (radiation) can be neglected, i.e. the dyons
adapt adiabatically to their interactions by deforming re-
versibly and scattering elastically. (Corrections to the geo-
desic approximation were analyzed in an effective field
theory framework in Ref. [34].)

In the following, we will focus on the two-dyon system.
Because of the product structure of the moduli space, its
center of mass momentum and an overall phase (whose
time dependence is associated with the total electric
charge) are individually conserved, and their metric is
flat. Hence those degrees of freedom decouple from the
internal motion and can be separated out. The remaining
dynamics simplifies to the geodesic motion in the four-
dimensional internal part M�0�2 of the moduli space and can
be studied independently. A physically intuitive coordinate
system on M�0�2 consists of the Euler angles #, ’ and  ,
which determine the orientation of the two-dyon system,6

and the distance variable % which measures the separation
between the two dyon centers (at large %).

Although the metric on M�0�2 is induced by the SU(2)
YMH dynamics, its direct derivation from the kinetic terms
of the YMH Lagrangian seems out of reach. Instead, it has
been constructed on the basis of ingenious symmetry argu-
ments by Atiyah and Hitchin (AH) [35], as summarized in
Appendix A. Specialization of Eq. (2) to the AH metric
then determines the geodesic dynamics of the dyon pair
explicitly. The resulting Lagrangian

LAH �
1

2
�f2�%� _%2 � a2�%�!2

x � b
2�%�!2

y � c
2�%�!2

z�

(3)

turns out to be nonlinear since the AH metric is curved. The
functions a, b, c and f of the separation % are given in
Appendix A and the !i�#;’; � are angular velocities of
the monopole (or dyon) pair around the axes of the body-
fixed frame,

!x � � _# sin � _’ sin# cos ; (4)

!y � _# cos � _’ sin# sin ; (5)
-3



8Recall that this motion is not ergodic since the remaining
three constants of motion prevent it from filling the seven-
dimensional constant-energy surface densely and uniformly.

9The existence of bounded quasiperiodic geodesics in the
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!z � _ � _’ cos#: (6)

The form of the Lagrangian (3) is analogous to that of a
nonrigid body with distance-dependent ‘‘moments of iner-
tia’’ a2; b2 and c2 around the body-fixed axes. Following
Gibbons and Manton, we define the radial coordinate % by
choosing f � �b=% which leads to convenient expres-
sions for a; b and c [15]. In Appendix B, the four Euler-
Lagrange equations of the geodesic motion are derived by
variation of Eq. (3).

For the question of integrability versus chaos, the num-
ber of integrals of the motion plays a decisive role. In fact,
a motion is (Liouville) integrable only if the number of
independent conserved quantities (whose mutual Poisson
brackets vanish) at least matches the number of degrees of
freedom. For the geodesic dynamics (3), three constants of
the motion are known explicitly (cf. Appendix B 2),
namely, the total angular momentum

M 2 � p2
# � 2p’p cot# csc# � �p2

’ � p2
 �csc2#; (7)

(where the p� are generalized momenta canonically con-
jugate to the coordinates �, as defined in Eq. (B3) of
Appendix B), the energy (B17) which, for geodesic mo-
tion, equals the Lagrangian since the potential on M�0�2
vanishes,

EAH �
1

2

�p2
%

f2 � a
2!2

x � b
2!2

y � c
2!2

z

�
; (8)

and, finally, the generalized momentum p’ conjugate to
the coordinate ’ which is cyclic, i.e. does not appear
explicitly in Eq. (3).

At least one additional, independent constant of the
motion is therefore required for the two-dyon motion to
become integrable. Such a fourth conserved quantity in-
deed exists (to arbitrarily good approximation) in at least
one region of phase space, namely, where the two dyons
remain infinitely separated. Since they cannot exchange
electric charge then,7 the time evolution of each of their
phases or, equivalently, their individual electric charge is
conserved. Hence the motion of two far separated dyons
must be integrable, as intuitively expected, and cannot
exhibit chaos. (At asymptotic distances the AH metric
reduces to the Euclidean Taub-NUT metric whose geode-
sic motion is indeed known to be integrable [15,36].)

This situation changes, however, if the two dyons begin
to approach each other. Only their total charge, but not
their charge ratio, remains conserved since the dyons are
then able to exchange charge through the Higgs field.
(Even when starting asymptotically with two uncharged
monopoles, one will therefore generally end up with two
dyons of opposite but nonvanishing charge.) If the integral
of the motion associated with the relative phase ceases to
7despite the long-range forces generated by the massless Higgs
fields
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exist, chaotic motion becomes possible.8 It is this region of
the phase space in which we will be particularly interested
below.

The above observations raise the question for which
orbits the violation of individual charge conservation can
typically be considered as a small perturbation away from
the integrable Taub-NUT limit. In our context, this ques-
tion is of relevance because for such orbits the transition
from integrable to chaotic motion will be delayed and
potentially obscured by the implications of KAM theory.
Indeed, the KAM theorem [37] states that almost all in-
variant tori of the unperturbed Taub-NUT motion will
remain intact during sufficiently small deviations from
the %! 1 limit.9 Under weakly nonintegrable perturba-
tions the motion should therefore stay quasiperiodic for
almost all initial conditions. Chaotic motion will then be
restricted to the small set of trajectories which lie on the
descendants of invariant tori with commensurate
frequencies.

Although we have argued above that it is unlikely for the
geodesic AH motion to be integrable outside of the asymp-
totic region, the existence of additional but so far undis-
covered constants of the motion cannot be excluded a
priori since no general method for finding all conserved
quantities of a nonlinear dynamical system is available.
Hence it was an important step by Temple-Raston and
Alexander to gather the first numerical evidence for the
existence of chaotic regions in the two-dyon phase space
[26–28]. In the next section, we will elaborate on part of
these results by extending the Poincaré section analysis of
Ref. [27] and by looking for orbits which bear the insignia
of chaos.

III. POINCARÉ SECTIONS

We begin our search for chaotic regions in the phase
space of the dyon pair by analyzing the Poincaré sections
of several typical trajectories. A Poincaré section draws a
selective portrait of a given phase space orbit (over a finite
time interval) which achieves an enormous data reduction
by mapping the whole trajectory into a discrete set of
points. This set transparently exhibits characteristic global
aspects of the orbit and allows, in particular, a direct visual
distinction between orbits which arise from integrable (or
weakly nonintegrable, in the KAM sense) and fully non-
integrable dynamics.

Poincaré section analyses are most powerful for con-
servative systems with 2 degrees of freedom where a
almost asymptotic AH metric, i.e. the existence of quasiperiodic
solutions to the dynamics (3) in its sufficiently weakly non-
integrable realms, has been established in Ref. [38] and shown to
form a set with positive Lebesgue measure.

-4
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transparent graphical interpretation becomes possible. At
first glance one might therefore doubt their utility in the
eight-dimensional phase space of the two-dyon problem.
However, in Ref. [27] it was recognized that a particular
canonical transformation turns a second constant of the
dyon pair motion (besides the generalized momentum p’),
namely, the total angular momentum squared M2, into a
canonical momentum. As a consequence, the transformed
Hamiltonian becomes independent of the associated ca-
nonical variables while p’ and M2 act as fixed ‘‘external’’
parameters. This Hamiltonian actually defines a reduced,
four-dimensional (and still symplectic) phase space in
which p’ and M2 are automatically conserved at every
point. Energy conservation further constrains all orbits to a
three-dimensional hypersurface inside this reduced phase
space and thus makes a graphical Poincaré section analysis
feasible.

The Poincaré section of any given orbit is the set of its
intersection points, in a fixed direction, with a suitable two-
dimensional plane in phase space. In our case, a useful
choice [27] is the �%; p%� plane located at the position
M1 � 0 which we will adopt throughout. Hence we define
the elements of an orbit’s Poincaré section as those points
in which it pierces through this plane while M1 changes
from positive to negative sign.

One can easily convince oneself that integrable and
chaotic motions generate qualitatively different Poincaré
sections. Indeed, the existence of an additional, fourth
constant of the motion C4 (as provided e.g. by p for far
separated dyons, cf. Appendix B 2) would restrict all orbits
to a generally two-dimensional submanifold in phase
space, namely, the intersection of the two three-
dimensional hypersurfaces on which either the energy or
C4 have fixed values. The dyon-pair motion then becomes
(Liouville) integrable, the submanifold becomes an invari-
ant torus and the orbit’s intersection points with the �%; p%�
plane sweep out a (maximally) one-dimensional curve. If
the system is nonintegrable, on the other hand, no fourth
constant of the motion exists and the orbit is only bound to
the three-dimensional constant-energy surface (for strong
enough nonintegrability in the KAM sense). Its intersec-
tion points with the �%; p%� plane can therefore be more
broadly distributed and eventually fill a two-dimensional
area, which provides a clear signature for a chaotic dy-
namical regime.10

In order to prepare for the Poincaré section analysis, we
have generated 12 representative orbits by numerically
10More specifically, a simple periodic motion leads to a single
fixed point in the Poincaré section while a periodic orbit with
two commensurable frequencies (whose quotient is a rational
number) gives rise to a finite number of points being indefinitely
repeated in the same order. A two-frequency quasiperiodic orbit
draws a closed curve that never exactly retraces its steps, and
chaotic motion appear as a scatter of points which eventually fill
a two-dimensional surface.
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integrating the equations of motion (B12)–(B15) under
suitable initial conditions.11 The latter are provided by
specifying initial values for the four coordinates and their
time derivatives. In order to facilitate the comparison with
the results of Ref. [27], we adopt the following five initial
conditions, and the form of a sixth, at the initial time t0:

# �
�
2
; ’ �  � 0;

_% � _# � 0 and _’ �
h2

a2 :
(9)

As a consequence of Eqs. (B3), the corresponding initial
values of the conjugate momenta are

p% � 0; p# �M2 � 0;

p’ �M1 � h2 and p �M3 � c2 _ ;
(10)

which implies

M2 	M2
1 �M2

2 �M2
3 � p2

’ � p2
# � p

2
 

� h2
2 � p

2
 � h2

2 � c
4 _ 2: (11)

Here h2 is the parameter in the reduced Hamiltonian which
fixes the value of the conserved momentum p’. Hence only
the initial values for _ and % remain to be determined. If h2

is given, Eq. (11) implies that the initial condition for _ can
be specified by fixing the value of another conserved
quantity, namely, the total angular momentum squared
M2. Finally, instead of prescribing the initial condition
for % directly, it is more convenient to use the reparamet-
rization

% � 2K
�
sin
�
2

�
(12)

(K is an elliptic integral, cf. Eq. (A16)), which maps
infinite dyon separation (%! 1) into � � �, and to spec-
ify the initial value of �. Under the above conditions (9),
each orbit is therefore uniquely characterized by the values
of � and two integrals of the motion, h2 and M2. For the
interpretation of the results below it will be helpful to keep
in mind that (at fixed h2) the initial relative electric charge
p �t0� of the two dyons, and therefore their initial
Coulomb interaction, grows with M2 (cf. Equation (11)).

A fourth-order Runge-Kutta algorithm [39] was used for
the numerical integration of the equations of motion. The
Eqs. (A14) are solved along the way to obtain the values of
the AH functions a, b and c at each %. The length of an
integration step was typically 10�4 and the longest runs
contained 227 steps. The accuracy of the generated orbits
11In the large-% region, the dyon-pair orbits can be obtained
analytically by perturbation of the asymptotic Taub-NUT metric
and turn out to be conic sections [15]. It would therefore be
possible to obtain analytical expressions for the Poincaré sec-
tions in this region, too. Since we expect the chaotic regime to
develop at smaller % values, i.e. outside the range of validity of
the (first-order) analytical results, however, we will resort to a
numerical treatment of all orbits.
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FIG. 1. Poincaré sections, in the �%; p%� plane located at the
position M1 � 0, of four orbits from the Hamiltonian flow of
Eq. (B17) with M2 � 1906:71.
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was monitored after each time step by calculating the three
conserved quantities (i.e. E, M2 and p’). The maximal
deviations from their fixed values were of the order 10�12.
The Poincaré section of a given orbit is then constructed
from those of its points at which M1 vanishes and

_M1 < 0.12 Since the numerical integration routine gener-
ates the orbits only at discrete time steps, the exact inter-
section points were determined by polynomial (Lagrange)
interpolation between the two adjacent points on the orbit
with opposite signs of M1.

We will now discuss the Poincaré sections for 12 orbits
which all share the same h2 value, h2 � 37:596. We ar-
range them into three plots, each containing the sections of
four orbits with a common value of M2 and initial values
� � �3:11; 3:12; 3:13; 3:14� of the radial coordinate. The
corresponding initial values for �%; p%� are indicated by a
small circle although M1 � h2 � 0 implies that they do
not lie in the M1 � 0 plane. Each of the 12 selected orbits
describes charged monopole, i.e. dyon interactions since
M2 > h2

2 � 1413:5 and Eq. (11) imply that the initial
value of their momenta p � c2 _ , associated with the
relative electric charge, is nonzero. The above initial con-
ditions were chosen to yield a rather representative set of
Poincaré sections similar to those considered in Ref. [27],
in order to both qualitatively confirm the results obtained
there and to extend them into neighboring phase space
regions.

The first plot, Fig. 1, contains the four Poincaré sections
with the smallest value M2 � 1906:71, i.e. with the weak-
est initial Coulomb attraction between the dyons. This
explains why each of the orbits covers a rather large range
of % values while the variation of the radial velocities, i.e.
the p% range, is relatively moderate. In three of the sec-
tions, furthermore, the two dyons never come closer than
their initial distance, and in all four their separation % * 11
seems to stay well inside the asymptotic region where the
relative charge of the dyons becomes (almost) time-
independent and the motion (approximately or KAM-)
integrable. This is confirmed by the Poincaré sections
whose points indeed trace a one-dimensional closed curve
which, within plot resolution, appears mostly continuous.
Poincaré sections of this type are generated by superposi-
tions of periodic motions with incommensurate frequen-
cies, i.e. by quasiperiodic orbits. As discussed above,
quasiperiodic behavior indicates that the dynamics is either
integrable or at most weakly nonintegrable in the KAM
sense.

In the next plot, Fig. 2, we display the analogous
Poincaré sections with a larger value of M2 � 2152:95
and therefore with a stronger initial Coulomb attraction.
12Note that the times between consecutive piercings of the
M1 � 0 plane by an orbit typically vary. This is in contrast to
stroboscopic studies where one determines the system’s output at
equal time intervals.

105015
Comparison with the sections of Fig. 1 shows that the
variations in dyon distance are now smaller (tighter orbits)
while their relative momenta vary more strongly over each
of the orbits. The increased attraction also brings the dyons
closer together, their maximal separation now being the
initial one for all four orbits. Nevertheless, their minimal
0 11 22

-2

FIG. 2. Same as Fig. 1 with M2 � 2152:95.
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separation %min 
 8 seems to stay large enough for the
motions to remain approximately integrable since all four
Poincaré sections still form one-dimensional, closed
curves.

We therefore increase M2 further, to M2 � 2237:70,
and plot the corresponding Poincaré sections in Fig. 3.
Clearly, the character of the outermost section differs
qualitatively from all those encountered previously.
Instead of remaining constrained to a curve, it visibly
spreads out into a two-dimensional area of the �%; p%�
plane. Hence it corresponds to an aperiodic orbit and
strongly suggests that the dynamics has become chaotic.
This interpretation is consistent with the fact that the two
dyons approach each other the most in this orbit. Their
minimal distance %min 
 2�, which is about twice the
distance of the bolt singularity at % � �, apparently suffi-
ces for electric charge exchange by the Higgs field to
become efficient and hence for p to cease being even an
approximate integral of the motion.13 This confirms earlier
indications for the chaoticity of the geodesic two-dyon
dynamics [26] which were supported by the analysis of
similar Poincaré sections [27], Julia sets [40] and escape
plots of two-monopole scattering trajectories [28]. An
additional chaotic orbit, with a still larger value of M2,
will be generated and analyzed in the following sections.
13Numerically, this can be checked by calculating the time
dependence of p along the trajectory. For the chaotic orbit it is
indeed much stronger then for all previous ones.
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IV. POWER SPECTRA

Numerical studies of a single chaos indicator are gen-
erally not sufficient to establish chaotic behavior with cer-
tainty. Inevitable numerical roundoff errors as well as
specific features of a system under consideration (e.g. par-
ticular regions of instability) make it often desirable to
probe the character of the motion by several complemen-
tary techniques. Typical pitfalls, like the premature misin-
terpretation of a seemingly irregular but perfectly integra-
ble quasiperiodic motion pattern as chaos, can thereby be
avoided.

Power spectral analysis has proven particularly useful
for the distinction between (quasi-) periodic and chaotic
time evolution [41]. This is because the power spectra of
ordered motion (either periodic or quasiperiodic) consist of
sharp resonance lines which appear at simple harmonics of
the base frequency in the periodic case and at any linear
combination of all integer multiples of the base frequencies
in the quasiperiodic case. Aperiodic systems, in contrast,
are generally chaotic and have continuous and noisy power
spectra.

In order to sharpen and extend the interpretation of the
Poincaré section analysis of Sec. III, we have submitted the
underlying orbital data to a spectral analysis. These data
are four-dimensional, discrete time series of specific orbit
solutions on M�0�2 whose coordinates fx��tk�g�f#;’; ;%g
are recorded numerically at equally spaced times tk: �
k�t. Based on these solutions, one can calculate the
time evolution of any dynamical variable f�fx��tk�g� of
interest as well as its discrete Fourier transform. We found
it useful to choose the generalized momentum p%�tk� �
f2�%�tk�� _%�tk� conjugate to % as the dynamical variable. It
has the power spectrum

Pp%��� �
�������� 1����

N
p

XN�1

k�0

p%�k�t�e�2�ik�=N

��������
2
; (13)

which is a function of the mode frequencies �. (The
Wiener-Khinchin theorem asserts that the alternative defi-
nition of P��� as the Fourier transform of the time series’
autocorrelation function is equivalent if the correlations
decay sufficiently fast.) In order to assess a potential bias
due to the choice of p% as the dynamical variable, we have
also calculated the power spectra associated with the time
evolution of % and obtained essentially analogous results.

We numerically compute the power spectra by means of
the Fast Fourier Transform algorithm. Appropriate win-
dowing is used to suppress artificial oscillations due to the
discrete data set and the finite time interval (see Ref. [42]
and references therein). Since the impact of these artifacts
decreases with the length of the time interval over which
data for p%�tk� are available, we sample the orbits after
each of 225 time steps of length �t � 10�4 which ensures
sufficient accuracy for our purposes. We have calculated
power spectra for the three orbits associated with the out-
ermost Poincaré sections in each of the Figs. 1–3, specified
-7



2600 2700 2800 2900 3000
t

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−1

0

1

p

a

b

c

d

0 0.08 0.16 0.24 0.32
ν

−2

0

2

4

6

−2

0

2

4

6

0

2

4

6

0

2

4

6

lo
g 1

0
PS

D

ν2, −1 ν−1, 2 ν−2,3ν1 ν2

ν2, −1 ν−1,2 ν−2,3 ν−3, 4 ν−4,5 ν−5,6 ν−6, 7ν1 ν2

e

f

g

h

FIG. 4. Panel a (b,c) shows the time dependence of p% and panel e (f,g) the logarithim of the corresponding power spectrum for the
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by the initial conditions given in Sec. III, and for an addi-
tional orbit to be discussed below.

The p%�tk� time series based on the orbit associated with
the outermost Poincaré section of Fig. 1 is depicted in
Fig. 4(a) over 4� 106 time steps. The corresponding
power spectrum (obtained from all data on p%, i.e. from
the full orbit with 225 time steps over a total time of 3:35�
103) is shown in a relatively small but representative
frequency interval in Fig. 4(e). On the basis of its
Poincaré section, the underlying orbit was interpreted as
quasiperiodic in Sec. III. The power spectrum confirms this
interpretation but contains much more quantitative infor-
mation. Indeed, while the underlying time series in
Fig. 4(a) is in many ways indistinguishable from a periodic
one, its power spectrum exhibits sharp peaks 14 of varying
strength which are located at odd integer linear combina-
tions of two rationally independent (or incommensurate)15

base frequencies �1 ’ 0:0653 and �2 ’ 0:0978. Hence this
orbit is two-mode quasiperiodic.16
14Note that we plot the logarithm of the power spectra in order
to emphasize the structure of the background.

15Rational independence of �1;2 implies that the only solution
of m1�1 �m2�2 � 0 is m1 � m2 � 0.

16The choice of the base frequencies is to a certain extent a
matter of convention [43].
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We now turn to the orbit whose Poincaré section is the
outermost in Fig. 2. Again, its time series (cf. Figure 4(b))
is visually difficult to distinguish from periodic motion
while its power spectrum in Fig. 4(f) reveals a quasiperi-
odic motion with the two incommensurate base frequen-
cies �1 ’ 0:1234 and �2 ’ 0:1848. In contrast to the
previous power spectrum, however, the peaks at frequen-
cies corresponding to more complex linear combinations
of �1 and �2 are practically undetectable here. This seems
to be a consequence of the larger initial coupling between
the two dyons and is a rather frequent occurrence among
sufficiently strongly interacting quasiperiodic systems.
Although experimentally confirmed in many situations, a
rigorous theoretical explanation for this type of behavior
appears still to be missing [43].

As foreshadowed by the results of the Poincaré section
analysis, a strikingly different power spectrum is obtained
from the orbit associated with the outermost section of
Fig. 3. Indeed, this is the orbit whose Poincaré section
indicated the chaoticity of the geodesic dynamics.
Although the time dependence of its p% in Fig. 4(c) re-
mains, apart from small and irregular modulations, similar
to the previous cases, the corresponding power spectrum in
Fig. 4(g) has a qualitatively different character. Instead of
sharp and isolated peaks, it now contains equally spaced,
broadened peaks on top of a smooth and (within our
-8
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frequency resolution) continuous background power dis-
tribution,17 covering all recorded frequencies and signal-
ling the onset of aperiodicity.18

The obvious departure from quasiperiodic behavior
strengthens the evidence for the chaoticity of this orbit.
Our discussion in Sec. II indicates, furthermore, that even
the quasiperiodic behavior of the previous spectra, espe-
cially that of Fig. 4(f), may have been generated by orbits
which lie outside of the strictly integrable phase space
region corresponding to asymptotically far separated
dyons. Indeed, a discrete power spectrum still results if
the nonintegrability is caused by weak perturbations and if
the orbit remains on a KAM torus, i.e. continues to behave
quasiperiodically.19 Our results imply that such a ‘‘de-
layed’’ onset of chaos might persist down to minimal
distances %min * 8 between the two dyons.

In any case, the above findings suggest that the faster and
closer the two dyons approach, the more unpredictable, i.e.
chaotic their motion becomes. In order to test and extend
this conclusion, we have calculated a further orbit with a
still larger total angular momentum squared (and conse-
quently stronger initial Coulomb interaction), M2 �
2359:46, and a somewhat smaller initial distance � �
3:13 between the dyons than in the previous chaotic orbit.
Its power spectrum, displayed in Fig. 4(h), has a dense
background and confirms the expectation that the new orbit
is aperiodic as well. Comparison with the power spectrum
of the first chaotic orbit shows, furthermore, that the back-
ground in Fig. 4(h) is less noisy and that more sharp
frequencies remain clearly discernible than in Fig. 4(g).
The faster time dependence of the associated p%�t� in
Fig. 4(d), on the other hand, exhibits more pronounced
amplitude modulations. In the following section we will
continue the analysis of the two chaotic orbits by calculat-
ing their maximal Lyapunov exponents.

One might perhaps wonder why we have encountered no
quasiperiodic behavior with more than two fundamental
modes. This is not particularly surprising, however, since
two-mode quasiperiodicity is the rule rather than the ex-
ception among sufficiently strongly coupled, nonlinear
dynamical systems. Indeed, the nonlinear couplings be-
17We recall the well-known effect that in a continuous power
spectrum based on a finite time interval the contributions from
the lowest frequencies are artificially enhanced. This is due to
the fact that aperiodic points in a finite data set appear as points
with very long periods, comparable to the length of time over
which the series is recorded.

18In fact, it appears that the quasiregular orbits unfold the
skeleton of the aperiodic signals. A further analysis of such
orbits could be persued by the method of Ref. [44] which allows
to separate the power spectra of conservative systems into sharp
and broadband features by utilizing the distribution of local
Lyapunov exponents [45].

19It would be interesting to study the onset of chaos further, e.g.
by numerically identifying orbits on commensurate-frequency
KAM tori which nonintegrable perturbations destroy first.
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tween an increasing number of modes tend to replace
quasiperiodicity by chaos [46]. It is quite plausible that
this happens in the two-dyon system as well and explains
the predominance of quasiperiodic orbits with the minimal
number of two base frequencies.

In summary, our spectral analysis has uncovered that
those parts of the two-dyon phase space which remain
close enough to the asymptotic %! 1 region are charac-
terized by two-frequency quasiperiodic motion. In addi-
tion, we have determined the base frequencies of two
typical quasiperiodic orbits quantitatively. Perhaps most
importantly, the power spectra have also accomplished
their main task to separate quasiperiodic from irregular
behavior. In particular, they strongly support the identifi-
cation of two orbits, the last one from Sec. III and an
additional one with a still larger initial Coulomb force
between the dyons, as chaotic. Our findings therefore sub-
stantially increase previous evidence that, apart from the
asymptotic %! 1 region, the relative low-energy motion
of two BPS dyons admits only three independent con-
served quantities and turns out to be genuinely
nonintegrable.

While the distinction between (quasi-) periodic and
chaotic motion is a particular strength of the spectral
analysis, it does relatively little to further characterize
chaotic behavior.20 Hence we consider it useful to subject
our orbits to yet another classic analysis tool from the
arsenal of chaos indicators, by calculating their character-
istic or Lyapunov exponents. These exponents complement
our previous analyses particularly well since they are
specifically designed to quantify the chaoticity of irregular
motion patterns.
V. LYAPUNOV EXPONENTS

While the high-resolution spectral analysis of the last
section has very clearly distinguished quasiperiodic from
irregular orbits and determined the type of quasiperiodic
behavior and its base frequencies quantitatively, it is much
less specific about the properties of the aperiodic motion. It
cannot, for example, unambiguously distinguish chaotic
from (quasi-) random behavior (due to potential roundoff
errors).

Although previous work and our results of the last two
sections have produced strong evidence for the chaoticity
of two-dyon orbits in specific regions of the (finite %) phase
space, it therefore remains desirable to carry the investiga-
tion a step further and to obtain a quantitative character-
ization of the chaotic behavior. The most fundamental such
characterization is provided by the values of positive
Lyapunov exponents [47]. After a brief and informal in-
troduction to the underlying concepts, we will therefore
20This holds even more strongly for dissipative systems with
strange attractors because power spectra discard the phase in-
formation of the Fourier spectrum (cf. Equation (13)).
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evaluate the largest of these characteristic exponents for
selected dyon pair orbits.

The primary function of Lyapunov exponents is to quan-
tify the logarithmic rate of convergence or divergence
between two orbits which started at an initial time t0 at
neighboring positions x0 and x0 � �x0 (with k�x0k � 1
where k 
 k denotes the norm with respect to a Riemannian
metric). Their relevance is obvious: exponentially diver-
gent orbits, corresponding to positive Lyapunov exponents
and signalling an exponential sensitivity of the time evo-
lution to the initial conditions, are the prototypical signa-
ture of chaos. More specifically, under dynamical evolution
for a sufficiently long time t the deviation between the
position of both orbits becomes �xt and the maximal
Lyapunov exponent Lmax is defined by relating the devia-
tion norms as k�xtk � exp�Lmaxt�k�x0k, i.e.

L max � lim
t!1

lim
k�x0k!0

1

t
ln
k�xtk
k�x0k

: (14)

For a detailed and rigorous treatment of Lyapunov expo-
nents we refer to original work by Oseledec [48] and
Ruelle [49], as well as to the review [43].

Although the definition (14) of Lmax is conceptually
transparent, it does not lend itself to direct numerical
implementation since in chaotic systems any initial devia-
tion k�x0k, no matter how small, will eventually evolve
into a number k�xtk which far exceeds the (floating point)
representation capabilities of computers. Hence more in-
direct numerical approaches are called for, and several
different ones have been developed over the last decades
[50]. In the following, we will adopt the Jacobian method
which integrates the equation for the time evolution of the
deviation between two initially neighboring orbits, linear-
izing it anew at each time along the orbits and therefore
having to manipulate only the relatively small deviations
produced by one time step. A generalization of this method
to the calculation of the whole non-negative Lyapunov
spectrum was developed in Refs. [51,52]. Our discussion
and implementation follows Ref. [53].

The Jacobian method is most transparently formulated
by rewriting our system (B12)–(B15) of four second-order
differential equations into a system of eight autonomous
first-order equations

_x�t� � F�x�t��; (15)

where x comprises the four coordinates and their time
derivatives, i.e. x and F are eight-dimensional column
vectors. Under the initial conditions x�t0 � 0� � x0, the
unique solution of Eq. (15) is the orbit x�t� � ��t;x0�with
x0 � ��0;x0�. We now linearize the above system in the
small deviation �x�t� at any point x�t� of the trajectory by
substituting x�t� � x�t� � �x�t� into Eq. (15) and neglect-
ing terms of second-order in �x�t�. The result is a linear
system of first-order equations
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� _x�t� � J�x�t�� 
 �x�t� (16)

for the deviation �x which contains the Jacobi matrix
J�x�t�� � �@F�x�=@x�jx�x�t�. In terms of the tangent vector
��t� � limk�x�0�k!0�x�t�=k�x�0�k on the orbit at x�t�,
Eq. (16) turns into the so-called variational system for
��t� under the initial data x0,

_��t� � J���t;x0�� 
 ��t�: (17)

It propagates small variations tangent to the orbit at time t0
to small variations tangent to the orbit at time t. In terms of
the �, Eq. (14) for Lmax becomes

L max�x0; �0� � lim
t!1

��t� where ��t� :�
lnk��t�k

t
:

(18)

Hence, one can calculate Lmax by numerically integrating
the variational Eqs. (17) up to sufficiently large times. In
order to supply the necessary input, i.e. the Jacobian
J���t;x0�� at each time step, one has to solve the equations
of motion (15) for the orbit x�t� � ��t;x0� in parallel. A
biased choice for the initial tangent vector �0 is avoided by
selecting its orientation randomly. The long-term time
evolution of the orbits and ��t� will then be dominated by
the largest Lyapunov exponent.21

The numerical evaluation of Eq. (18) requires some
additional precaution, however, since for chaotic orbits
the norm k��t�kwill grow large enough to generate floating
point overflows on computers. To circumvent these, we
directly calculate the value of the required logarithmic
norm after n time steps (tn � n�t) as the sum

lnk��tn�k �
Xn
i�1

ln
k��ti�k
k��ti�1�k

; (19)

(with k��t0�k � k�0k � 1) of logarithmic length incre-
ments after each time step [54]. The incremental norm
changes k��ti�k=k��ti�1�k remain small enough to be rep-
resentable by floating point numbers and are obtained by
renormalizing � to unit length after each evaluation. (Of
course, the renormalized � remain solutions of the linear
variational system (17).)

We now calculate, by means of the Jacobian technique,
the maximal Lyapunov exponents of the four dyon-pair
orbits whose power spectra were obtained in the last sec-
tion and plotted in Figs. 4(e)– 4(h). The Poincaré sections
of the first three of these orbits are the outermost in Figs. 1–
3. The integration range consists of n � 2� 108 time steps
which corresponds to approximately 650 periods for the
outermost quasiperiodic orbit of Fig. 1. In order to monitor
the time evolution of � during its approach to the limiting
-10
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value Lmax according to Eq. (18), we plot ��t� for each of
the four orbits in Fig. 5. Obviously, there is a striking
qualitative difference between the plots for the two orbits
which we had identified as (two-frequency) quasiperiodic
in Sec. IV (with power spectra in Figs. 4(e) and 4(f)) and
the irregular ones whose power spectra are shown in
Figs. 4(g) and 4(h). For the quasiperiodic orbits one infers
within numerical uncertainties that Lmax � limt!1��t� �
0 while ��t� approaches the finite and positive values

L max;1 
 0:02; Lmax;2 
 0:008 (20)

for the two aperiodic orbits. Around these orbits the motion
is therefore exponentially sensitive to small variations of
the initial conditions in at least one phase space direction.
This is the prototypical hallmark of chaos. We have thus
achieved two of our main objectives, namely, the un-
equivocal confirmation of the chaoticity of the two-dyon
system and a (semi-) quantitative determination of its
primary characteristic scales.

The maximal Lyapunov exponent Lmax;1 of the first
chaotic orbit (with the power spectrum in Fig. 4(g)) is
more than twice as large as that of the second chaotic orbit
(with the power spectrum in Fig. 4(h)), Lmax;2, although the
differences in the initial conditions (M2 � 2237:70 and
� � 3:14 for the first and M2 � 2359:46 and � � 3:13
for the second orbit) seem comparatively small. Closer
inspection of these two orbits reveals that the minimal
and maximal dyon distances in the first one are %min;1 �
6:99 and %max;1 � 17:98 while the corresponding momenta
p% vary inbetween p%;1 min=max � �2:09. For the second
chaotic orbit one has a smaller variation between minimal
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and maximal % values, %min;2 � 6:73 and %max;2 � 14:23,
and a somewhat smaller range of momenta, bounded by
p%;2 min=max � �1:94. Although the initial Coulomb attrac-
tion between the dyons is stronger in the second orbit
(since its total angular momentum squared M2 is 5%
larger) and the dyons therefore come closer to each other
and depart farther from the integrable asymptotic domain,
its chaoticity—as measured by the maximal Lyapunov
exponent—is still considerably smaller. This might be a
consequence of the generally smaller momenta of the
second orbit.

The behavior of � also reveals a conspicuous qualitative
difference between the two chaotic orbits. While the ��t�
of the first one (dot-dashed curve with filled triangles in
Fig. 5) clearly stays above those of the quasiperiodic orbits
for all t, the ��t� of the second one (dashed curve with filled
squares in Fig. 5) follows its quasiperiodic counterparts for
a long time rather closely and then suddenly rises in a
‘‘burstlike’’ onset of chaos. This intriguing behavior may
be a first vestige of intermittency in the geodesic dyon-pair
motion. It also seems to explain the more regular and
approximately quasiperiodic power spectrum of the second
orbit [Fig. 4(h)]. Stronger evidence for the potentially
intermittent behavior could be established by identifying
complete intermittency intervals of ��t� but would require
much longer orbits. The power spectra of Sec. IV provide
further testing grounds for intermittency which could be
exploited, e.g., by subjecting them to a moment analysis or
by searching for a power-law behavior in their low-
frequency tails (i.e. 1=f noise) [55].

Although the large-time limit of ��t� (i.e. the maximal
Lyapunov exponent) vanishes for quasiperiodic orbits, its
characteristic time dependence may contain useful infor-
mation as well. In order to examine the behavior of ��t� for
quasiperiodic motion more closely, we select a new sample
of three quasiperiodic orbits, namely, those whose Poincaré
sections are the innermost in each of the Figs. 1–3, and
display the corresponding ��t� in Fig. 6. (The full (dotted,
dash-dotted) line corresponds to the orbit with the inner-
most Poincaré section in Fig. 1 (2, 3).) At sufficiently large
t all curves seem to approach straight lines, which indicates
a power-law behavior

��t� 
 at�b �a; b > 0�: (21)

This type of scaling behavior is frequently encountered in
quasiperiodic systems and supports the visual impression
that all curves have indeed the expected Lmax �
limt!1��t� � 0.

We close this section by recalling that (positive) maxi-
mal Lyapunov exponents contain crucial information about
the physical behavior even of quantum systems. A notable
example is their partial characterization of nonequilibrium
processes in semiclassical systems (e.g. at high tempera-
ture) where they typically set the scale of relaxation times
and thermalization rates [11]. One might expect that our
-11



10 2 10 3 10 4 2x10 4

t

10 −1

10 −2

10 −3

χ

1

2
3

= π /2, ϕ = ψ = 0, ⋅ ⋅ ⋅= = 0, ϕ = 37.596 a−2

Initial Conditions

M2 = 1906.71 β = 3.13

M2 = 2152.95 β = 3.11

M2 = 2237.70 β = 3.113.

2.

1.

FIG. 6. The function ��t� for three quasiperiodic dyon-pair
orbits. The full (dotted, dash-dotted) curve corresponds to the
orbit with the innermost Poincaré section in Fig. 1 (2,3).
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Lyapunov exponents play a similar role in determining,
e.g., the equilibration rate of a nonequilibrium dyon
system.

VI. SUMMARY AND CONCLUSIONS

We have analyzed several representative motion patterns
of two interacting BPS dyons in the geodesic approxima-
tion. The main emphasis was put on discerning regular and
chaotic orbits and on characterizing them both qualita-
tively and quantitatively by means of suitable chaos
indicators.

Our study is based on a sample of 13 long-time phase
space trajectories for which four-dimensional time series
were generated by numerically integrating the equations of
motion with high accuracy over typically 225 time steps.
The initial data sets were chosen to cover a representative
range of motion patterns and to explore the low-energy
dyon interactions at different strengths. Hence the orbit set
includes sequences of trajectories whose decreasing mini-
mal dyon separations interpolate between asymptotic dyon
distances, where charge exchange becomes ineffective and
the geodesic dynamics integrable, and relatively small
minimal separations for which the interactions are ex-
pected to become nonintegrable.

A second motive for our initial data selection was to
include orbits in the vicinity of those for which Poincaré
sections were already available. This allows for a direct
comparison with previous results and served as a useful
benchmark and starting point for our work. We constructed
Poincaré sections in the radial coordinate-momentum
plane for 12 orbits. They qualitatively confirm the earlier
105015
results and extend them to trajectories in neighboring
phase space regions. Moreover, they contain useful graph-
ical information on the shape of the constant-energy sur-
faces and on the qualitative behavior of the two-dyon
system as a function of the initial conditions. The dimen-
sionality of the Poincaré sections, in particular, provides
clear indications for the underlying trajectories to be either
quasiperiodic or chaotic.

In order to complement the results of the Poincaré
section analysis, we have additionally calculated high-
resolution power spectra of selected orbits. The spectral
analysis of the momentum conjugate to the dyon separa-
tion has provided particularly clean distinctions between
quasiperiodic and aperiodic orbits which strengthen and
extend the interpretation of the Poincaré sections. In addi-
tion, the power spectra produced the first quantitative
characterization of quasiperiodic dyon-pair orbits by es-
tablishing the number of their fundamental modes (two),
determining their frequencies and yielding the strength
distribution over the various harmonics. The emergence
of just the minimal, i.e. two-mode quasiperiodicity is rather
widespread among sufficiently strongly coupled, nonlinear
dynamical systems. The common expectation that non-
linear couplings between more than two fundamental
modes increasingly turn quasiperiodicity into chaos might
therefore apply to the two-dyon system as well and explain
why we have only found two-mode-quasiperiodic and
chaotic trajectories.

In contrast to their almost complete characterization of
quasiperiodic motion patterns, power spectra do extract
relatively little pertinent and quantitative information
from irregular orbits. Hence we have additionally calcu-
lated the primary characteristic scales of chaotic motion,
i.e. the maximal Lyapunov exponents, for a suitable subset
of orbits. As expected, the Lyapunov exponents of orbits
previously identified as quasiperiodic were found to van-
ish. The two orbits with an irregular broadband power
spectrum, on the other hand, have finite and positive maxi-
mal Lyapunov exponents whose values were approxi-
mately determined as Lmax;1 
 0:02 and Lmax;2 
 0:008.
Those provide our most unequivocal and quantitative evi-
dence for the chaoticity of the dyon-dyon interactions. The
orbit with the smaller Lyapunov exponent shows in addi-
tion signs of intermittent behavior.

Reassuringly, the results of all three employed analysis
methods, i.e. Poincaré sections, power spectra and maxi-
mal Lyapunov exponents, are fully consistent with each
other. Taken together, they provide convincing evidence
for and a quantitative description of both quasiperiodic and
chaotic regions in the low-energy phase space of two BPS
dyons. Moreover, the integrability of noninteracting dyon
systems allows to trace the origin of the chaotic behavior to
the interactions between the dyons. These interactions may
therefore help to disorder monopole ensembles similar to
those which are expected to populate the vacuum of the
-12



REGULAR AND CHAOTIC INTERACTIONS OF TWO BPS . . . PHYSICAL REVIEW D 72, 105015 (2005)
strong interactions. In any case, our results imply that no
more than the three explicitly known integrals of the
motion are conserved by the geodesic forces between the
dyons.
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APPENDIX A: ATIYAH-HITCHIN METRIC

In this appendix we establish our notation and briefly
summarize pertinent features of the Atiyah-Hitchin (AH)
metric and its Christoffel connection on the internal moduli
space M�0�2 of the Bogomol’nyi-Prasad-Sommerfield (BPS)
monopole pair. Full details can be found in the book [16].

BPS magnetic monopoles are regular classical soliton
solutions of the SU(2) Yang-Mills-Higgs equations in the
limit of vanishing Higgs self-coupling [12,13]. The static
two-monopole solutions define, as explained in Sec. II, the
coollective-coordinate or moduli manifold M�0�2 . Its metric
was first written down explicitly by Atiyah and Hitchin
[35] and determines the geodesic dynamics of two inter-
acting BPS dyons at small velocities. The AH construction
exploits the facts that the two-monopole moduli space is a
hyper-Kähler (or Hamiltonian) manifold [16,56], that it
admits SO(3) as a group of isometries and that the orbits
under the action of SO(3) are with one exception three-
dimensional. One can then show that the metric on M�0�2
must be of the form

ds2 � f2d%2 � �a2l�l� � b2m�m� � c2n�n��dx�dx�;

(A1)

where a, b, c and f are functions of the ‘‘radial’’ variable %
only and l�dx�, m�dx

� and n�dx� are differential forms
on the three-sphere S3 which can be taken as

�1 :� l�dx
� � � sin d# � sin# cos d’;

�2 :� m�dx� � cos d# � sin# sin d’;

�3 :� n�dx
� � d � cos#d’;

(A2)

in terms of three Euler angles #;’ and  in the intervals
0 � # � �; 0 � ’ � 2�; 0 �  � 2�. Accordingly, the
two-monopole moduli space is parameterized by a coor-
dinate %which describes the separation between the mono-
poles, two angular coordinates # and ’ which determine
the orientation of the axis that joins the monopoles, and the
angle  which fixes the position of the (generally axially
asymmetric) two-monopole system with respect to rota-
tions around this axis.

By casting the line element (A1) into the Riemannian
form g��dx

�dx�, one can straightforwardly verify that the
fundamental metric tensor g�� is symmetric, i.e., g�� �
g��, and that the contravariant tensor g�� is its inverse,
105015
g��g
�	 � �	�, as it should be. Explicitly, the diagonal

elements of g�� read

g00 � f2; g33 � c2; g11 � a2sin2 � b2cos2 ;

g22 � a2sin2#cos2 � b2sin2#sin2 � c2cos2#; (A3)

while the nondiagonal ones are

g01 � g02 � g03 � g13 � 0;

g12 � �b
2 � a2� sin# sin cos ; g23 � c2 cos#:

(A4)

Similarly, for the elements of the contravariant tensor g��

one has

g00�
1

f2 ; g33�
1

c2�

�
cos2 

a2 �
sin2 

b2

�
cot2#;

g11�
cos2 

b2 �
sin2 

a2 ; g22�

�
cos2 

a2 �
sin2 

b2

�
csc2#;

(A5)

and

g01 � g02 � g03 � 0;

g12 �
�a2 � b2� csc# sin cos 

a2b2 ;

g13 �
�b2 � a2� cot# sin cos 

a2b2 ;

g23 � �

�
cos2 

a2 �
sin2 

b2

�
csc# cot#:

(A6)

With these expressions at hand, one can obtain explicit
relations for the functions a; b; c and f by means of the
equation

R
� �
@��
�
@x�

�
@��
�
@x�

� ������
� � ������
� � 0 (A7)

for the symmetric second-rank tensor R
� which repre-
sents the fact that M�0�2 is hyper-Kähler. The ��
� are the
components of the Christoffel connection, i.e. the
Christoffel symbols of the second kind, which are related
to the metric tensor by

��
� �
1

2
g��

�@g��
@x


�
@g
�
@x�

�
@g
�
@x�

�
: (A8)

(Obviously, they are symmetric under exchange of the
lower indices.) After inserting the expressions (A3)–(A6)
for the elements of the metric into Eq. (A7), one obtains the
components of R
� as functions of a; b; c and f:

R00 �

�
a0

a
�
b0

b
�
c0

c

�
f0

f
�
a00

a
�
b00

b
�
c00

c
; (A9)

(the prime denotes differentiation with respect to the co-
ordinate %) and
-13
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R11 � �1sin2 ��2cos2 ;

R12 � ��2 ��1� sin# sin cos ;

R22 � ��1cos2 ��2sin2 �sin2# ��3cos2#;

R23 � �3 cos#; R33 � �3;

(A10)

where

�1 �
a4 � �b2 � c2�2

2b2c2 �

��
f0

f
�
b0

b
�
c0

c

�
a0 � a00

�
a

f2 ;

�2 �
b4 � �a2 � c2�2

2a2c2 �

��
f0

f
�
a0

a
�
c0

c

�
b0 � b00

�
b

f2 ;

�3 �
c4 � �a2 � b2�2

2a2b2 �

��
f0

f
�
a0

a
�
b0

b

�
c0 � c00

�
c

f2 :

(A11)

All other components of R (with the exception of those
which differ from the above by exchanging the indices)
vanish. The Eqs. (A7) therefore reduce to

�1 � 0; �2 � 0; �3 � 0; (A12)

together with

a0

a
b0

b
�
b0

b
c0

c
�
c0

c
a0

a
�

1

2

�
1

a2�
1

b2�
1

c2�
a4�b4�c4

2a2b2c2

�
f2:

(A13)

The last equation, however, is just a first integral of
Eqs. (A12) and may be regarded as a constraint imposed
on the initial values of a, b, c and its derivatives. The
second-order equations, which of course conserve this
constraint, can be obtained from each other by cyclic
permutation of �a; b; c�. All four Eqs. (A12) and (A13)
together constitute the vacuum Einstein equations of the
AH metric.

A particular set of first integrals of the second-order
Eqs. (A12) are the first-order equation

2bc
f

da
d%
� �b� c�2 � a2; (A14)

and the two others which are obtained from it by cyclical
permutation of �a; b; c�. These differential equations for
the functions a, b, c and f were first derived in Ref. [57].
They have been linearized and solved in terms of
Legendre’s complete elliptic integrals of the first and sec-
ond kind in Ref. [35] for f � abc and in Ref. [15] for f �
�b=%. Below we will adopt the second choice, f � �b=%,
since it leads to expressions which are more convenient for
our purposes. The explicit solution to Eq. (A14) and its
permutations is then [15]

a2 � 4K�K � E��E� �q2K�=E;

b2 � 4KE�K � E�=�E� �q2K�;

c2 � 4KE�E� �q2K�=�K � E�;

(A15)
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where

K�q� �
Z �=2

0
d��1� q2sin2���1=2;

E�q� �
Z �=2

0
d��1� q2sin2��1=2

(A16)

are the complete elliptic integrals of the first and second
kind, q is related to % by % � 2K�q� for � � % <1 and

�q �
��������������
1� q2

p
is the conjugate modulus. At the value % �

� (which implies q � 0) the metric has a coordinate
singularity, the so-called ‘‘bolt’’, since a��� � 0 implies
that the line element (A1) becomes independent of �1.

APPENDIX B: EQUATIONS AND INTEGRALS OF
MOTION

1. Lagrange equations of motion

The geodesic low-energy dynamics of the two-dyon
system is governed by the Lagrangian

L �
m
2
g�� _x� _x� �

1

2
�f2 _%2 � a2!2

x � b2!2
y � c2!2

z�;

(B2)

where the reduced mass m of the dyon pair has been set to
m � 1 (instead of m � 2� in Ref. [15]). The first equation
in (B2) describes generic geodesic motion while the sec-
ond one is specialized to the Atiyah-Hitchin metric on the
internal collective coordinate manifold M�0�2 in terms of the
functions a, b, c and f. The components !x, !y and !z of
the instantaneous (or ‘‘body-fixed’’) angular velocity ~!
along the axes x, y and z may be expressed in terms of
the rates of change of the Euler angles as

!x 	 �1=dt; !y 	 �2=dt; !z 	 �3=dt (B2)

(cf. Eq. (A2)). The canonically conjugate momenta asso-
ciated with the four relative coordinates %, #, ’ and  are

p% � f2 _%; p � c2!z;

p# � b2!y cos � a2!x sin ;

p’ � a2!x sin# cos � b2!y sin# sin � c2!z cos#:

(B3)

The Euler-Lagrange equations for the time evolution of
the collective coordinates are obtained by varying the
action based on the Lagrangian (B2). Variation with re-
spect to the radial coordinate %�t� leads to

f2 �%� ff0 _%2 � aa0!2
x � bb

0!2
y � cc

0!2
z � 0; (B4)

while the equation of motion for the coordinate  �t� be-
comes

2cc0!z _%� c2 _!z � �a
�2 � b�2�a2b2!x!y: (B5)

The remaining two equations of motion for ’�t� and #�t�
are
-14
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2bb0!y _% cos � 2aa0!x _% sin � c2!z _’ sin#

� � _!x sin �!x!z cos �a2 � � _!y cos 

�!y!z sin �b2 (B6)

and

2aa0!x _%sin# cos �2bb0!y _%sin# sin �2cc0!z _%cos#

��� _ sin# sin � _# cos# cos �!x� _!x sin# cos �a2

��� _ sin# cos � _# cos# sin �!y� _!y sin# sin �b2

��!z
_# sin#� _!zcos#�c2: (B7)

A pair of equations which are algebraic consequences of
Eqs. (B6) and (B7),

2bb0!y _%� b2 _!y � �c�2 � a�2�a2c2!x!z; (B8)

2aa0!x _%� a2 _!x � �b�2 � c�2�b2c2!y!z; (B9)

will be helpful in arriving at a more efficient formulation.
Indeed, with _% � p%=f

2 one also has

�% �
_p%f� 2p% _%f0

f3 �
_p%
f2 �

2p2
%f
0

f5
(B10)

and, introducing the (%-dependently) rescaled angular ve-
locities (in the body-fixed frame)

M 1 � a2!x; M2 � b2!y; M3 � c2!z;

(B11)

one can rewrite the four equations of (relative) motion
concisely as

_M 1 �

�
1

b2 �
1

c2

�
M2M3; (B12)

_M 2 �

�
1

c2 �
1

a2

�
M3M1; (B13)

_M 3 �

�
1

a2 �
1

b2

�
M1M2; (B14)

_p % �
p2
%f0

f3 �M2
1

a0

a3 �M2
2

b0

b3 �M2
3

c0

c3 : (B15)

In this form, the equations of motion were first obtained in
Refs. [15,58].

2. Integrals of the motion

Three independent22 constants of the geodesic Atiyah-
Hitchin motion are known explicitly. The first one can be
immediately identified by noting that ’ is a cyclic coor-
dinate, i.e. that it does not appear explicitly in the
22Two integrals of the motion are independent if their mutual
Poisson bracket vanishes.
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Lagrangian (B2). The corresponding generalized momen-
tum p’ is therefore an integral of the motion, i.e. _p’ � 0.

The Hamiltonian H is obtained by the standard
Legendre transformation

H � p% _%� p# _# � p’ _’� p _ � L (B16)

of the Lagrangian (B2). Using Eqs. (B3) to express veloc-
ities in terms of coordinates and their conjugate general-
ized momenta, the Hamiltonian becomes

H�
1

2

�p2
%

f2�
p2
 

c2 �

�
cos2 

a2 �
sin2 

b2

�
�p’csc#�p cot#�2

�

�
p#
2

��
sin2 

a2 �
cos2 

b2

�
p#

�
a2�b2

a2b2 �p’csc#�p cot#�sin�2 �
�
; (B17)

which assumes the same values as the Lagrangian since
both are of purely kinetic origin. Neither in L nor, as a
consequence, in H does the time coordinate t appear ex-
plicitly. The corresponding Hamilton equation, _H �
fH;Hg � 0, therefore trivially implies that the total rela-
tive energy H of the two-dyon system is conserved and
furnishes a second integral of the motion.

The third constant of the motion is the square of the
(both frame- and body-fixed) total angular momentum,
M2, which can be expressed as the sum of the squares
of the rescaled body-fixed angular velocities, i.e. M2 �
M2

1 �M2
2 �M2

3. One may check that M2 is conserved
by adding up the equations obtained from multiplying
Eq. (B12) by 2M1, Eq. (B13) by 2M2 and Eq. (B14) by
2M3. The result is

2M1
_M1 � 2M2

_M2 � 2M3
_M3 � 0 (B18)

and therefore

d
dt

M2 � 0: (B19)

By using the explicit expressions

M 1 �
p’ cos � p cos# cos � p# sin# sin 

sin#
;

(B20)

M 2 �
p’ sin � p cos# sin � p# sin# cos 

sin#
;

(B21)

and

M 3 � p ; (B22)

for the rescaled angular velocities, one can re-express the
total angular momentum squared in terms of the Euler
-15



23In fact, there are even more constants of the motion [15].
Those are associated with the SO�4� (SO�3; 1�) symmetry of
bounded (unbounded) geodesic motion in Euclidean Taub-NUT
[59], which can be traced to the existence of a Killing-Yano
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angles and their canonically conjugate momenta as

M 2 �
X3

j�1

M2
j

� p2
# � 2p’p cot# csc# � �p2

’ � p2
 �csc2#:

(B23)

For the investigation of chaos in the two-dyon system it
is important to note that a fourth integral of the motion
appears in the %! 1 limit, i.e. if the dyons are far
separated. Indeed, in this case the Atiyah-Hitchin metric
simplifies to the Euclidean Taub-NUT metric [15] and the
electric charge density, associated with the canonical mo-
mentum p � c2!z, becomes a fourth constant of the
motion, i.e. _p � 0.

The simple physical explanation of this result is that
infinitely separated dyons cannot exchange electric charge,
105015
so that in addition to their overall charge also their indi-
vidual charges become time-independent. In this case there
exist at least four independently conserved quantities23 in
the eight-dimensional phase space, enough to render the
geodesic dynamics in Euclidean Taub-NUT space
(Liouville-) integrable [15]. As a consequence, the asymp-
totic motion of two BPS dyons cannot be chaotic.
Moreover, the potential transition from regular motion at
%! 1 to chaotic motion for finite, decreasing % may be
delayed according to KAM theory [37] by a stepwise
dissolution of the invariant tori.
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