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Bound states and decay times of fermions in a Schwarzschild black hole background
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We compute the spectrum of normalizable fermion bound states in a Schwarzschild black hole
background. The eigenstates have complex energies. The real parts of the energies, for small couplings,
closely follow a hydrogenlike spectrum. The imaginary parts give decay times for the various states, due
to the absorption properties of the hole, with states closer to the hole having shorter half-lives. As the
coupling increases, the spectrum departs from that of the hydrogen atom, as states close to the horizon
become unfavorable. Beyond a certain coupling the 1S1=2 state is no longer the ground state, which shifts
to the 2P3=2 state, and then to states of successively greater angular momentum. For each positive energy
state a negative energy counterpart exists, with opposite sign of its real energy, and the same decay factor.
It follows that the Dirac sea of negative energy states is decaying, which may provide a physical
contribution to Hawking radiation.
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I. INTRODUCTION

Quantum theory in a black hole background has been
extensively studied by many authors. Detailed discussions
of this problem are contained in the books by Birrell and
Davies [1] and Chandrasekhar [2], and the review paper by
Brout et al. [3]. Much of the attention in this work is
focused on the wave equation and its scattering properties.
Detailed studies of the Dirac equation in a black hole
background are less common. Indeed, the lowest order
scattering cross section for a fermion in a black hole
background has only recently been computed [4–6]. In
this paper we investigate another previously neglected
aspect of quantum mechanics in a black hole background.
This is the existence of the bound state spectrum for
particles orbiting a spherically symmetric point source.
That is, we study the gravitational analog of the hydrogen
atom orbitals.

There has been strangely little effort devoted to the study
of the bound state spectrum, despite the fundamental im-
portance of the electromagnetic analog. But it is clear that
these states must exist—how else can one provide a quan-
tum description of a particle in orbit around a black hole?
These states must also be essential in the quantum descrip-
tion of the capture process. The problem was discussed in
1974 by Deruelle and Ruffini [7], who described the ex-
istence of resonance states in the Klein-Gordon equation.
Further significant contributions were made in a series of
papers by Gaina and coauthors [8–10]. These papers give
various analytic expressions for the real and imaginary
parts of the energy in a series of limiting cases.

Much of the study of quantum mechanics in a black hole
background has focused on the related, though distinct,
problem of finding the quasinormal mode spectrum.
Quasinormal modes are purely ingoing at the horizon,
ress: a.n.lasenby@mrao.cam.ac.uk
ress: C.Doran@mrao.cam.ac.uk

05=72(10)=105014(14)$23.00 105014
and outgoing at infinity[2]. These boundary conditions
produce a spectrum of eigenstates with complex-valued
energies. The significance of these quasinormal modes
comes from their use in describing black hole oscillations.
But the boundary condition at infinity implies that these
modes are not normalizable, so they cannot represent
bound states. The problem of interest here is to find nor-
malizable bound states, so we seek solutions that are purely
ingoing at the horizon and fall off exponentially at infinity.

For a particle of mass m in the field of a black hole of
mass M the dimensionless coupling strength is defined by

� �
mM

m2
p

(1)

where mp is the Planck mass. In this paper we compute the
fermion bound state spectra for� in the range 0 � � � 6. If the
bound particle is assumed to be an electron, this range
corresponds to black holes of masses up to 1� 1015 kg,
which is the scale appropriate for primordial black holes
formed in the early universe. Computing the energy spec-
trum is more complicated than the hydrogen atom case for
two main reasons. The first is that the radially separated
Dirac equation contains three singular points, only two of
which are regular. There is no special function theory
appropriate for the study of such equations, so we have
to resort to a range of numerical techniques to find the
spectrum. The second problem is that the singularity at the
center of a Schwarzschild black hole acts as a current sink.
All normalizable states must therefore decay in time, and
we must search for eigenstates over the two-dimensional
space of complex energies. The states we construct there-
fore all have a finite half-life, so they can be viewed as
resonance states. The interpretation of these states is dis-
cussed in Sec. VIII.

Despite these difficulties, the problem can be tackled
numerically, and we present a range of results for the real
and imaginary parts of the energy. These are sufficient to
-1 © 2005 The American Physical Society
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predict how the spectrum will behave for larger values of
the coupling constant. The first result, which is entirely to
be expected, is that the orbitals become increasingly tightly
bound as the coupling increases. It follows that, for a given
state, the energy will initially decrease with �, but will
eventually turn around and start increasing as the particle
spends too much time inside the classical radius of mini-
mum energy. States with higher angular momentum then
become energetically favorable as � increases. For ex-
ample, we show that beyond � � 0:6 the 1S1=2 state is
no longer the ground state. While the real part of the energy
behaves in quite a complicated fashion, the imaginary part,
which controls the decay rate, simply increases in magni-
tude. This is also as one would expect. The closer the
orbital density is to the singularity, the greater the proba-
bility of capture.

We start by discussing the Dirac equation in a
Schwarzschild background in an arbitrary gauge. This is
helpful in establishing a range of gauge-invariant results. In
particular, the energy conjugate to time translation sym-
metry is confirmed to be a gauge-invariant quantity. This is
important in order to guarantee that the quantity is a
physical observable. We next establish the behavior of
the wave function around the horizon, which is sufficient
to establish that the states must decay exponentially with
time. We then turn to a specific choice of gauge that is well
suited to a numerical solution. We solve the equations by
simultaneously integrating out from the horizon and in
from infinity. We then vary the energy to ensure that the
solutions match at some finite radius. This process guar-
antees that we find a global, normalizable bound state. A
set of spectra is obtained, and the density is plotted for a
range of states. Decay rates and expectation values for the
distance are also presented. We end with a discussion of
the significance of these bound states, and the possible
physical processes that they may generate. Except where
stated otherwise, natural units with G � @ � c � 1 are
assumed throughout. We employ a spacetime metric with
signature �2.
II. COORDINATES AND TETRADS FOR THE
SCHWARZSCHILD SOLUTION

We start by defining a general parametrization of the
Schwarzschild solution. This general form will help to
guarantee that various expressions are coordinate and
gauge invariant. It is essential to our approach that we
treat the horizon correctly. In particular, we are only inter-
ested in coordinate systems that are not singular there,
so we cannot work with standard Schwarzschild coordi-
nates. Two suitable systems are provided by advanced
Eddington-Finkelstein coordinates,

ds2 � �1� 2M=r�dt2 � �4M=r�dtdr� �1� 2M=r�dr2

� r2�d�2 � sin2�d�2�; (2)
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and Painlevé-Gullstrand coordinates [4,6],

ds2 � �1� 2M=r�dt2 �
������������
8M=r

p
dtdr� dr2

� r2�d�2 � sin2�d�2�: (3)

In both of these line elements the r, �, and � coordinates
are the same, taking the usual range for spherical polar
coordinates, 0 	 r <1, 0 	 � 	 �, and 0 	 �< 2�.
The time coordinate t is different in the two systems, but
in both cases takes the range �1< t <1. Both coordi-
nate systems deal smoothly with the horizon, and cover
regions I and III of the Penrose diagram of the fully
extended Kruskal manifold [1]. These two regions are the
ones of physical relevance for this paper.

In order to formulate the Dirac equation in a gravita-
tional background it is necessary to first introduce a tetrad.
With Greek letters referring to the coordinate basis, and
Latin letters referring to the orthonormal basis, a suitable
tetrad for both of the preceding coordinate systems can be
written in the form

e�
a �

a1 a2 0 0
b2 b1 0 0
0 0 1=r 0
0 0 0 1=r sin�

0BBB@
1CCCA: (4)

Here a1, a2, b1, b2 are scalar functions of r satisfying

a1b1 � a2b2 � 1; �b1�
2 � �b2�

2 � 1� 2M=r: (5)

As a consequence of these relations we find that we can
also write

e�a �

b1 �b2 0 0
�a2 a1 0 0

0 0 r 0
0 0 0 r sin�

0BBB@
1CCCA: (6)

Explicitly, for advanced Eddington-Finkelstein coordi-
nates we can set

a1 � 1�M=r; a2 � M=r;

b1 � 1�M=r; b2 � �M=r;
(7)

and for Painlevé-Gullstrand coordinates we can work with
the ‘‘Newtonian’’ choice [4,11] which sets

a1 � 1; a2 � 0; b1 � 1; b2 � ��2M=r�
1=2:

(8)

The general line element generated by the tetrad of
Eq. (4), subject to conditions (5) is

g��dx�dx� � �1� 2M=r�dt2 � 2�a1b2 � a2b1�dtdr

� ��a1�
2 � �a2�

2�dr2

� r2�d�2 � sin2�d�2�: (9)

Any four functions a1, a2, b1, b2 satisfying Eqs. (5) gen-
erate a line element that represents the Schwarzschild
-2
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solution. It may appear that the line element (9) contains
two coefficients that we can choose arbitrarily, but in fact
the terms are related by

�1� 2M=r���a1�
2 � �a2�

2� � �a1b2 � a2b1�
2 � 1: (10)

One way in which we can alter the coefficients in the line
element (9) is by transforming the time coordinate through
the addition of an arbitrary radially dependent term. That
is, we can set

�t � t� ��r�; (11)

and the new line element will be independent of the new
time coordinate �t. Rather than think in terms of changing
the time coordinate, however, it is simpler for our purposes
to always label the time coordinate as t and instead redefine
a1 and a2. These then transform as

a1 � �a1 � a1 � b2�
0; a2 � �a2 � a2 � b1�

0; (12)

with b1 and b2 unchanged. Throughout primes denote
derivatives with respect to r. It is straightforward to con-
firm that the new set � �a1; �a2; b1; b2� still satisfy the con-
straints of Eq. (5). In order for the new a1 and a2 functions
to be well defined, it is necessary that � be continuous.

The four variables a1, a2, b1 and b2 are subject to two
constraint equations, so they must contain two arbitrary
degrees of freedom. The first arises from the freedom in the
time coordinate as described in Eq. (12). The second lies in
the freedom to perform a radially dependent boost of the
tetrad frame, which transforms the variables according to

a1 b1

a2 b2

� �
�

cosh� sinh�
sinh� cosh�

� �
a1 b1

a2 b2

� �
(13)

where � is an arbitrary, nonsingular function of r. This
boost does not alter the line element of Eq. (9).

Outside the horizon we have jb1j> jb2j, and in the
asymptotically flat region b1 can be brought to �1 by a
suitable boost. It follows that we must have

b1 > 0 8 r 
 2M: (14)

At the horizon we therefore have b1 positive, and b2 �
�b1. For black holes the negative sign is the correct one, as
this choice guarantees that all particles fall in across the
horizon in a finite proper time. This sign is also uniquely
picked out by models in which the black hole is formed by
a collapse process. (The opposite, positive, sign corre-
sponds to a white hole, covering regions I and IV of the
Kruskal manifold.) At the horizon we therefore have

b2 � �b1 at r � 2M; (15)

and combining this with the identity a1b1 � a2b2 � 1 we
find that

a1b2 � a2b1 � �1 at r � 2M: (16)

The diagonal form of the Schwarzschild metric sets
a1b2 � a2b1 � 0, so does not satisfy Eq. (16) and is not
105014
globally admissible. This reflects the fact that the time
coordinate is only defined outside the horizon, and the
horizon itself is not dealt with correctly.

III. THE DIRAC EQUATION

We now have a general parametrization of the
Schwarzschild solution in an arbitrary gauge. The next
step is to write down the Dirac equation in this background.
This is

ig�r� � m ; (17)

where g� � e�a�a and

r� �
�
@� �

i
2

���� ���

�
 ; ��� �

i
4
���; ��:

(18)

The components of the spin connection ���� are found in
the standard way (see Nakahara [12], for example). Rather
than setting the �a equal to the standard Dirac-Pauli ma-
trices, it is more convenient to reflect the nature of the
spherical polar coordinate system and define

�t � �0;

�r � sin��cos��1 � sin��2� � cos��3;

�� � cos��cos��1 � sin��2� � sin��3;

�� � � sin��1 � cos��2;

(19)

where �0; . . . ; �3 are the standard (constant) Dirac-Pauli
matrices. The reciprocal set has �t � �t, �r � ��r, �� �
���, and �� � ��

�. We will see shortly that working
with these polar matrices dramatically simplifies the final
form of the Dirac equation. Applying the tetrad of Eq. (4)
we now have

gt � a1�0 � a2�r; gr � b1�r � b2�0;

g� �
1

r
��; g� �

1

r sin�
��

(20)

with a reciprocal set of matrices given by

gt � b1�0 � b2�r; gr � a1�r � a2�0;

g� � r��; g� � r sin���:
(21)

These matrices satisfy

fg�; g�g � 2g��I; fg�; g�g � 2g��I;

fg�; g�g � 2	�� I
(22)

where �, � run over the set �t; r; �; ��, I is the identity
matrix, and g�� is the spacetime metric of Eq. (9). With
these choices the spin connection turns out to give

g�i���� ��� �

�
b02 �

2b2

r

�
�0 �

�
b01 �

2�b1 � 1�

r

�
�r:

(23)
-3
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Clearly, in order for this expression to be well defined and
finite, both b1 and b2 must be continuous.

For the Dirac spinor we use a radial separation of the
form

 �
e�iEt

r
u1�r�


�
� ��;��

u2�r��r

�
� ��;��

� �
(24)

where E is the (complex) energy and

�r � sin��cos��1 � sin��2� � cos��3: (25)

The angular eigenmodes are labeled by �, which is a
positive or negative nonzero integer, and �, which is the
total angular momentum in the � � 0 direction. Our con-
vention for these eigenmodes is that

�� �L� @�
�� � �@
�� ; � � . . . ;�2;�1; 1; 2; . . . :

(26)

The positive and negative � modes are related by

�r

�
� � 
���: (27)

The trial function (24) results in the pair of coupled first-
order equations

b1 b2

b2 b1

� �
u01
u02

� �
� B

u1

u2

� �
(28)

where

B �
�=r� b01=2� ia2E i�m� a1E� � b02=2
�i�m� a1E� � b

0
2=2 ��=r� b01=2� ia2E

� �
:

(29)

These are the equations we wish to solve for complex
energy E. It is first worthwhile confirming that the equa-
tions are gauge invariant. A redefinition of the time coor-
dinate is equivalent to the transformations described in
Eq. (12). These are combined with the transformation

u1 � u1e�iE�; u2 � u2e�iE� (30)

which together ensure that Eq. (28) is still satisfied. The
radial boost of the tetrad frame defined by Eq. (13) is
combined with the transformation

u1

u2

� �
�

cosh��=2� � sinh��=2�
� sinh��=2� cosh��=2�

� �
u1

u2

� �
(31)

to again ensure that the equation is still satisfied. In either
case we see that the eigenvalue E is unchanged, so it is a
true gauge-invariant quantity.

The angular separation of Eq. (24) is clearly justified
from the form of the Dirac equation. The separation into
energy eigenstates is gauge invariant, but it is helpful to see
the separation in a gauge where the Dirac equation takes on
a Hamiltonian form. This is provided by the Newtonian
gauge of Eq. (8). In this gauge the Dirac equation takes on
the simple form [4,11]
105014
i@6  � i�0

�
2M
r

�
1=2
�
@
@r
�

3

4r

�
 � m ; (32)

where @6 is the Dirac operator in flat Minkowski spacetime.
To see this one can introduce standard Cartesian coordi-
nates

x � r sin� cos�; y � r sin� sin�; z � r cos�:

(33)

We then find that

�0@t � �
r@r �

1

r
��@� �

1

r sin�
��@�

� �0@t � �1@x � �2@y � �3@z � @6 ; (34)

which is the reason behind our choice of matrices in
Eq. (19). Equation (32) is manifestly separable in time,
so it has solutions that go as exp��iEt�. Since the separa-
tion works in this gauge, it must work in all others. We will
return to this gauge choice when we turn to finding the
energy spectrum.

The nature of Eq. (28) can be understood more clearly
by writing it in the form

�1� 2M=r�
u01
u02

� �
�

b1 �b2

�b2 b1

� �
B

u1

u2

� �
: (35)

This exposes the fact that the horizon is a regular singular
point of the radial equations. The same is true of the origin.
But infinity turns out to be an irregular singular point.
Taken together, these imply that the radial equations can-
not be manipulated into a second-order hypergeometric
form, as one is able to do for the hydrogen atom. The
closest the equations come to a recognizable form is that of
Heun’s equation, which generalizes the hypergeometric
equation to the case of four regular singular points on the
complex plane [13]. But Heun’s equation can usually only
be analyzed using numerical techniques, and these are the
tools we will apply to Eq. (28).

The presence of singular points means that we must
check carefully that our solutions behave appropriately at
these points. The point at infinity is not an issue, as we seek
solutions that decay exponentially. Similarly, the origin is
not a problem. We expect that the function will be weakly
singular there as the origin acts as a current sink, and this is
indeed the case. The horizon, however, is more compli-
cated. The wave function must be well behaved at the
horizon if it is to represent a physical solution. To test
this we introduce the series expansion

u1 � s
X1
k�0

�k
k; u2 � s

X1
k�0

�k
k; (36)

where  � r� 2M. On substituting this series into
Eq. (35), and setting � 0, we obtain the indicial equation

det
�

b1 �b2

�b2 b1

� �
B�

s
r
I
�
r�2M

� 0; (37)
-4
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where I is the identity matrix. Employing the result that

b1b01 � b2b02 � M=r2 (38)

we find that the two solutions of the indicial equation are

s � 0;�1
2� 4iME�b1a2 � b2a1�r�2M: (39)

Equation (16) then tells us that the two indices are

s � 0;�1
2� 4iME: (40)

These indices are therefore gauge invariant. The regular
root s � 0 ensures that we can always construct a solution
that is finite and continuous at the horizon. The singular
branch gives rise to discontinuous solutions with an out-
going current at the horizon. These can be used to provide a
heuristic explanation of the Hawking radiation [11]. It is
clear that the nonzero indicial root gives rise to a wave
function that is ill defined at the horizon, and so cannot
represent a physical state. We must therefore confine our
search for bound states to solutions that are regular at the
horizon.

The regular and singular solutions are related by a
generalized form of time-reversal symmetry. For this we
define

� �t; x� �
1

�1� 2M=r�1=2
�b1�0 � b2�r� ���t� f�r�; x�;

(41)

which effectively reverses the time direction using the
normalized timelike Killing vector. In terms of the u1

and u2 functions, the new solution is characterized by

�u1

�u2

� �
�

exp��iE�f�r��

�1� 2M=r�1=2

b1 b2

�b2 �b1

� �
u�1
u�2

� �
; (42)

where f�r� is determined by

�1� 2M=r�@rf�r� � 2�a1b2 � a2b1�: (43)

The time-reversed solution has energy E� and so is expo-
nentially growing in time. It is singular at the horizon, and
is not normalizable.

Eigenmodes with different values of � and � are or-
thogonal. For states with the same values of � and � the
quantum inner product can be taken as

h j �i �
Z 1

0
dr�a1�u�1v1 � u�2v2� � a2�u�2v1 � u�1v2��;

(44)

where the ui and vi denote the radial functions in  and �
respectively. Current conservation for the Dirac equation is
summarized in the relation
105014
@
@t
�a1�u1u�1 � u2u�2� � a2�u1u�2 � u2u�1�e

�i�E�E��t�

� �
@
@r
�b1�u1u�2 � u2u�1� � b2�u1u�1 � u2u�2�e

�i�E�E��t�:

(45)

Again it is straightforward to confirm that this equation is
gauge invariant. The right-hand side of this equation de-
fines r2 times the radial flux. We denote this by F,

F�r� � b1�u1u�2 � u2u�1� � b2�u1u�1 � u2u�2�: (46)

For spatially normalizable states we must have F � 0 as
r � 1. But at the horizon we also have

F � �b1ju1 � u2j
2; (47)

which defines an inward-pointing current. At the horizon,
the regular solution has

ju1 � u2j
2 � j�0 � �0j

2; (48)

using the power series expansion of Eq. (36). The coeffi-
cients are related by�

iE�
1

8M
� b1

�
�

2M
� im

��
�0

�

�
�iE�

1

8M
� b1

�
�

2M
� im

��
�0: (49)

It is therefore impossible to satisfy �0 � �0 for finite
energy, so there must be a nonvanishing inward current
present at the horizon [14]. This in turn tells us that the
state must decay. This decay takes place at the origin,
where unitary evolution breaks down [11,15]. For bound
states the energy E must contain real and imaginary terms,
so we set

E � !� i�: (50)

Current conservation now takes the form

dF
dr
� 2��a1�u1u�1 � u2u�2� � a2�u1u�2 � u2u�1��: (51)

Given a set �u1; u2; E; �� that solves the radial equa-
tion (28) a new solution set is generated by the trans-
formation

�u1; u2; E; ��� �u�2; u
�
1;�E

�;���: (52)

It follows that the real part of the energy spectrum is
symmetric about the zero point. That is, for a state with
real energy ! a corresponding antiparticle state exists with
real energy�!. The decay rate is the same for both states,
however. If we assume that the vacuum is constructed from
the Dirac sea of negative energy states, then this vacuum
will decay in time. A loss of negative energy states can be
equally interpreted as the generation of positive energy
states, which provides a suggestive physical model for
Hawking radiation.
-5



LASENBY et al. PHYSICAL REVIEW D 72, 105014 (2005)
IV. THE ENERGY SPECTRUM

To solve for the energy spectrum we work mainly in the
Newtonian gauge of Eq. (8). In this gauge the interaction
with the black hole is defined solely by an interaction
Hamiltonian HI given by

HI � i@
�
2GM
r

�
1=2 1

r3=4

@
@r
�r3=4 �: (53)

Dimensional constants are included in a number of equa-
tions in this section to illustrate certain features of the
problem. The line element for the Newtonian gauge has
flat spatial sections for constant t, so the quantum inner
product between states has the simple flat-space form

h j �i �
Z
dxdydz y� (54)

where x, y, z are the Cartesian coordinates of Eq. (33)
and all integrals run from �1� � �1. The interaction
Hamiltonian is not Hermitian, as we have

HI �H
y
I � �i@�2GMr

3�1=2	�x�	�y�	�z�: (55)

It is straightforward to check that all wave functions ap-
proach the origin as r�3=4, so the non-Hermitian part of HI

has finite expectation. This confirms that Hermiticity only
breaks down at the origin, as stated earlier. In this respect
it may be more natural to refer to HI as a ‘‘pseudo-
Hamiltonian,’’ in the sense of an operator acting on an
open quantum system [16]. There is no doubt that the
system described here is open, as the singularity is not
treated as part of the quantum system. But the system is
only open in an extremely simple fashion. There is no
ambiguity in either the time evolution of the state, or the
correct definition of the observable energy. Time evolution
is defined by the Dirac equation, in whichever gauge one
chooses to adopt, and the energy is defined by the energy-
momentum tensor. The fact that we have a Hamiltonian
description at all is a result of a series of gauge choices, so
one must be careful not to place too strong an interpretation
on the gauge-dependent quantity HI.

The bound state energy eigenspectrum is determined
entirely by the properties of the wave function at the
horizon and at infinity. The demands that the wave function
is finite at the horizon and falls off exponentially at infinity
are sufficient to produce the spectrum. But it is only by
considering the global properties of the wave function that
the imaginary contribution to the energy is fully under-
stood. Decay only takes place at the singularity, and the
decay rate for a given eigenstate is naturally related to
the behavior of the wave function near the singularity. If
the spatial degrees of freedom in an energy eigenstate are
normalized such thatZ 1

0
dr�u1u�1 � u2u�2� � 1 (56)

then the imaginary component of the energy, �i�, is
105014
determined by

� � lim
r� 0

@�2GM�1=2

2

1

r3=2
�u1u

�
1 � u2u

�
2�: (57)

This identity only holds if the state is globally normalized.
It provides a further independent check that the solutions
we obtain numerically are globally normalizable bound
states. The decay rate increases for states with a larger
probability density near the singularity, as one would ex-
pect. The fact that the states approach the origin as r�3=4

ensures that the radial probability density tends smoothly
to zero at the singularity. The presence of the singularity
does not prevent the formation of normalizable states, and
the singular nature of the wave function is no worse than
that of the ground state of the hydrogen atom.

The interaction Hamiltonian is independent of the speed
of light, so the nonrelativistic approximation to the Dirac
equation results in the Schrödinger equation

�
@

2r2

2m
 NR � i@

�
2GM
r

�
1=2 1

r3=4

@
@r
�r3=4 NR� � ENR NR;

(58)

where the subscript NR denotes nonrelativistic. If we now
introduce the phase-transformed variable

� �  NR exp��i�8r=a0�
1=2� (59)

where

a0 �
@

2

GMm2 (60)

we see that � satisfies

�
@

2r2

2m
��

GMm
r

� � ENR�: (61)

In the nonrelativistic limit the energy spectrum is therefore
given by the gravitational analog of the hydrogen atom
spectrum [9],

ENR � �
G2M2m3

2@2

1

n2 ; n � 1; 2; . . . : (62)

In terms of the Planck mass mp we can also write

ENR � �

�
Mm

m2
p

�
2 mc2

2n2 : (63)

The fact that we have a reasonable starting point for the
spectrum in the weak-coupling limit is valuable, as our
method involves searching for eigenvalues over the com-
plex energy plane. By analogy with the hydrogen atom
case, we expect that the nonrelativistic spectrum will be a
reasonable approximation provided

Mm

m2
p
� 1: (64)
-6
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Returning to the full, relativistic equation (28), we con-
vert this to dimensionless form by introducing the dimen-
sionless distance variable

x �
rc2

GM
; (65)

which ensures that the horizon lies at x � 2. We also
introduce the dimensionless coupling coefficient
105014
� �
Mm

m2
p

(66)

and energy

" �
EM

c2m2
p
: (67)

In terms of these our eigenvalue problem becomes
�x� 2�
u01
u02

� �
�

1 �2=x�1=2

�2=x�1=2 1

 !
� ix��� "� � �8x��1=2

�ix��� "� � �8x��1=2 ��

 !
u1

u2

� �
(68)
where the primes now denote derivatives with respect to x.
We seek eigenvalues " for fixed coupling �.

Two complementary methods are employed to solve the
eigenvalue problem. We start with a series expansion
around the horizon of the regular branch of the solution.
The restriction to this branch removes 2 degrees of freedom
at the horizon, so the function is uniquely specified up to an
overall magnitude and phase. These are chosen conven-
iently by setting u1 � 1 at the horizon. The power series
expansion extends the solution a short distance away from
the horizon, from where the values of �u1; u2� can be used
to initiate numerical integration of the differential equa-
tion (68). For most values of " the numerical integrator will
start to increase exponentially after a finite distance. The
aim initially is to vary " so as to push this distance out as
far as possible. This requires a reasonable initial guess for
the eigenvalues, which is where the nonrelativistic approxi-
mation is helpful to get things started.

Once we have achieved a reasonably accurate value for
", we turn to a more sophisticated method to improve
accuracy. We seek normalizable states for which  is finite
over all space. To be confident we have found such a state
we need to numerically integrate inwards from infinity, as
well as outwards from the horizon. If the solutions for u1

and u2 can be arranged to match at some suitable radius
then we have found a global solution to the first-order
equation (68). To expand about infinity we need to take
care of the essential singularity present there. A suitable
series expansion is provided by

u1

u2

 !
� exp

�
�px� 2i"�2x�1=2 �

�2 � 2p2

p
lnx

�

�
X
n�0

�n=2x
�n=2

�n=2x�n=2

 !
(69)

where

p2 � �2 � "2 �
M2

m4
pc4 �m

2c4 � E2�: (70)

The definition of p involves a complex square root, and the
branch is chosen so that p has a positive real value, ensur-
ing the wave function falls off exponentially.

The fact that only one root of the indicial equation is
used implies that, for a given ",  is specified at infinity up
to an arbitrary magnitude and phase. The first few terms in
the series expansion (69) are used to compute  at a finite
radius and these values are then numerically integrated
inwards. A certain amount of fine-tuning is then required
to pick the radius at which to attempt matching. Once a
radius is chosen the matching condition is that the inward
and outward values of the two complex functions u1 and u2

agree. This condition is converted into a set of four scalar
equations which state that the real and imaginary differ-
ences vanish. In addition we have four arbitrary parameters
to vary—the real and imaginary terms in the energy, and
the magnitude and phase of the function integrated inwards
from infinity. This system of four equations and four un-
knowns is then solved by a Newton-Raphson method. This
converges very quickly and affords good control over
accuracy.

A number of independent checks were performed on the
energy spectrum achieved by this method. The first was
that the calculations were repeated using the same scheme
in a different gauge. The gauge chosen for comparison was
that defined by advanced Eddington-Finkelstein coordi-
nates, using the form of Eq. (7). The second test involved
using a minimax routine to find the energy spectrum. This
method is less accurate, but gave good agreement for the
states of lowest energy [17]. A further check was to con-
firm that in the limit as M � 0 the spectrum and states
approach that of the Dirac hydrogen atom, as expected
from the nonrelativistic limit. The final check was to con-
firm that, after normalization, the states satisfy the identity
of Eq. (57). This check was again satisfied to high
precision.

V. RESULTS

The real parts of the energy for the three lowest-energy
states are plotted in Fig. 1. The vertical axis plots the real
part of the energy in units of the rest energy of the particle,
which is given by
-7
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FIG. 1. The real part of the bound state energy, in units ofmc2.
The horizontal axis labels the dimensionless coupling coefficient
�, and the lines represent the value of the energy for the coupling
at the left of the line, with � ranging from 0.1 to 0.6 in steps of
0.05. The S1=2, P1=2 and P3=2 orbits are shown.
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E

mc2
�
"
�
: (71)

The fact that we obtain this dimensionless ratio reflects the
equivalence principle. The mass m does not effect the
spectrum on its own—the spectrum only depends on the
product mM. States are labeled using the standard spectro-
scopic scheme. In this scheme � � 1 corresponds to S1=2,
� � 2 to P3=2 and � � �1 to P1=2. For each eigenvalue � a
ladder of levels is obtained.

The energy spectrum illustrates a number of remarkable
features. For small � the spectrum resembles that of a
hydrogen atom. But as the coupling increases the energy
of the 1S1=2 state reaches a minimum and then starts to
increase. The gravitational case avoids the Z � 137 catas-
trophe of the relativistic Coulomb problem. This is to be
expected—coupling strengths with �> 1 are routinely
achieved astrophysically and such objects appear to be
stable. We also see that as � increases beyond 0.6 the
P3=2 state appears to take over as the ground state. This
is confirmed in Fig. 2, which shows the spectra of the S1=2,
P3=2 and D5=2 states out to � � 1:4. We see clearly that
around � � 0:6 the 2P3=2 state takes over from 1S1=2 as the
ground state, only to be replaced in turn by the 3D5=2 state
at � � 1:2. An explanation of this phenomena can be
found in the classical expression for the binding energy
in a Schwarzschild potential.

For a particle of mass m in a Schwarzschild background
the dynamics reduces to motion in the effective radial
105014
potential

Veff � �
GMm
r
�

J2

2mr2

�
1�

2GM

c2r

�
; (72)

where J is the angular momentum of the particle. This is
illustrated in Fig. 3. For J >

������
12
p

GMm=c, classical bound
states can exist as the effective potential has a minimum,
but if the particle’s angular momentum is smaller than������

12
p

GMm=c it becomes insufficient to support a classical
orbit. For a circular orbit at radius r the conserved relativ-
istic energy, conjugate to time translation, is

E � mc2 r� 2GM=c2

r1=2�r� 3GM=c2�1=2
: (73)

The radius r and angular momentum J are related by

J2

m2
�

GMr2

r� 3GM=c2 : (74)

Now suppose we attempt a form of naive Bohr quanti-
zation by setting

J � n@: (75)

Converting to dimensionless quantities the effective poten-
tial becomes

Veff

mc2
� �

1

x
�

n2

2�2x2

�
1�

2

x

�
; (76)

and the orbital energy is

"
�
�

x� 2

�x�x� 3��1=2
(77)

where

x �
n2

2�2

�
1�

�
1�

12�2

n2

�
1=2
�
: (78)
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In the small � regime this reproduces the spectrum of
Eq. (63). But as � increases the energy falls to a minimum
at �2 � n2=12, beyond which the orbit no longer exists for
a given n (see Fig. 3). The minimum energy achieved is
0:94mc2, corresponding to x � 6. Inside this radius no
stable classical circular orbits exist. In the quantum de-
scription we find that as � increases the orbits get more
tightly bound around the horizon. As the coupling in-
creases the orbits are dominated by terms inside x � 6
and so become energetically less favorable. The ground
state is then one of higher angular momentum, for which
the orbit is less tightly bound. Figure 2 also shows that as �
increases the 1S1=2 state becomes unbound. This effect is
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FIG. 4. Energy levels of states with higher angular momenta.
This plot shows the energy levels of the lowest-energy states
with a range of angular momenta � � 1 � � � 10. It illustrates how
each state takes a turn as the ground state, as the coupling is
increased. The positions of the energy minima are linearly
spaced in � and have increasingly large binding energies.

105014
also seen classically, as circular orbits with r < 4M are
known to be unbound, as well as unstable.

The form of the effective potential illustrates a further
feature of the quantum states, which is that the quantum
decay can be interpreted as a tunneling phenomena. This is
certainly a valid picture for states with n >

������
12
p

�. For a
fixed n, as � increases, the potential barrier decreases and
we expect that the tunneling rate onto the singularity will
increase. This is indeed the case, as we discuss further in
Sec. VII.

Figure 4 shows how states of successively higher angu-
lar momentum take over as the ground state as the coupling
is increased. In the small �=� limit, the energy levels
resemble those of the classical orbits. At larger couplings,
the energy of a given state falls to a minimum, and then
begins to increase again, apparently without limit. The �
value at which the minimum occurs is roughly proportional
to the angular momentum of the state, with � � 0:58��
0:10 providing a good fit. The maximum binding energy
available increases with angular momentum, to beyond
E � 0:88mc2. This means that quantum mechanics pre-
dicts around twice the classical value for the radiation
efficiency of accretion processes. To confirm this effect
we need to find the limiting value of the binding energy for
astrophysical values of �. For an electron around a solar-
mass black hole, for example, we have � � 4� 1015, so a
large � limit of our equations should be very accurate.

VI. WAVE FUNCTION PROPERTIES

With our current choice of gauge the radial form of the
wave function is best visualized by plotting r2 times the
timelike component of the current. We denote this �, so

� � ju1j
2 � ju2j

2: (79)

The gauge-invariant definition of � is that it is r2 times the
density as measured by observers in radial free fall from
-9
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rest at infinity. The first four S1=2 states for a small coupling
are shown in Fig. 5. The plots are very similar to those for
the nonrelativistic hydrogen atom. In all cases the peak of
the wave function is a long way outside the horizon, with
only a small fraction of the probability density lying inside
the horizon.

As we increase the coupling to � � 0:35 we obtain the
series of plots in Fig. 6. Predictably, the wave functions
start to bunch in closer to the horizon. Slightly more
surprisingly, the nodal structure disappears for larger cou-
plings. The density no longer drops down to near zero at a
number of nodes, but instead a number of dips are present.
If we increase the coupling further still, to � � 0:5, the
dips themselves are largely washed out and we obtain the
somewhat structureless plots shown in Fig. 7.

Some additional insight into the nature of the orbitals is
obtained by calculating the expectation value of r. With our
current gauge choices this is defined in the obvious manner
as

hri �

R
1
0 drr�ju1j

2 � ju2j
2�R

1
0 dr�ju1j

2 � ju2j
2�
: (80)

These are calculated via a straightforward Simpson’s rule,
and the results for the S, P and D orbitals are shown in
Fig. 8. We see that hri decreases as the coupling increases.
In the low-alpha regime, the expectation value follows the
radius of the classical circular orbit, so hri / ��2. As the
coupling increases, and stable orbits become classically
105014
impossible, we find that hri approaches, and moves within,
the horizon. For higher � the bulk of the probability
density lies inside the horizon, representing a short-lived
state of a tightly bound particle.
-10
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While the low angular momentum orbitals are concen-
trated near the horizon, the orbitals with larger angular
momentum still lie an appreciable distance out. As such,
they adopt a form closer to the familiar hydrogen atom
orbitals. A series of such orbitals is shown in Fig. 9, which
shows the first-excited mode for � values of 1, 2, 3 and 4.
The coupling is again set to 0.5. As expected, the proba-
bility density is concentrated successively further from the
hole. By the time we reach � � 3 (a classical radius of x �
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FIG. 9. The radial probability density for a range of angular
momentum values with a coupling of � � 0:5. The first-excited
states are shown for � � 1; 2; 3; 4. As � increases the orbitals are
concentrated further from the source, and begin to resemble
hydrogen atom wave functions.
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33) the wave function returns to the familiar hydrogenlike
form.
VII. DECAY RATES

So far we have concentrated on the real part of the
energy, and the associated orbitals. But the fact that the
black hole effective Hamiltonian is not Hermitian implies
that the energy is not real and the states have a finite half-
life. As such the solutions could be viewed as representing
resonance states as opposed to bound states. But for suit-
ably large angular momenta the half-lives can be pushed up
as high as desired and the states will be extremely long
lived. Such states are appropriate for a quantum description
of a particle in a classically stable orbit some distance from
the horizon.

As argued above, the imaginary part of the energy will
be negative, corresponding to a decay. The behavior of this
decay can be visualized in a number of ways. With E �
!� i�, the relevant quantity to study is

a �
�

mc2 : (81)

In Fig. 10 we plot a as a function of coupling for the 1S1=2

state. For comparison the real part of the energy is also
plotted. The real energy falls to a minimum and starts
increasing again as the orbits become unfavorably close,
whereas the imaginary term simply increases monotoni-
cally. This is as one would expect, as Fig. 8 showed that the
orbits become increasingly tightly bound as � increases.
As the coupling strength reaches 1, the imaginary compo-
nent of the energy is of the order of 0.3 times the rest
energy of the particle. This implies that the orbit should
decay on the time scale defined by the Compton frequency.
These states are therefore extremely short lived, with a
resonance width comparable to the orbital energy.

In Fig. 11 a is plotted for states with a range of angular
momenta, � � 1 � � � 5. The set of lowest-energy states
(1S1=2, 2P3=2, . . .) is compared to the set of first-excited
states (2S1=2, 3P3=2, . . .). Both plots show the expected
monotonic increase in a with coupling strength as the
orbits become more tightly bound and a greater percentage
of the wave function lies inside the horizon. The first-
excited states are less tightly bound than the ground states,
so have smaller decay rates. Below a threshold value of �,
the imaginary energy is negligible. This threshold depends
roughly linearly on �, and is the same for the lowest and
first-excited states. Using the effective-potential model, we
would expect decay to become dominant beyond the last
value of � that allows stable circular orbits, � � �=

������
12
p

�
0:29�. The plot suggests that this model is reasonably
valid. States with higher angular momentum can therefore
be extremely stable, as the increase in � keeps the bulk of
density away from the singularity.

A classical argument can also be used to relate the
high-� behavior of the imaginary energy to the expectation
-11
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value of wave function radius, by considering the proper
time for radial infall. A massive particle starting at radius ri
from rest would take proper time
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FIG. 11. The imaginary energies of states with a range of
angular momenta � � 1 � � � 5. The top plot shows the decay
rates of the ground states, and the bottom plot shows the decay
rates of the first-excited states, as functions of the coupling
strength �. The positions of the minima in the real energy are
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8GM
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� (82)

to reach the singularity. Conversely, the typical decay time
for the wave function is

�decay �
@

amc2 : (83)

If the decay time is similar to the infall time from the wave
function expectation position hxi, we would expect

a� / hxi�3=2: (84)

This model works well for the 1S1=2 state, and we find
a� / hxi�1:6 in the high-� regime. The model requires
some modifications for states with orbital angular momen-
tum, as the infall time takes a more complicated form.

With the decay rates now obtained, we can return to
Eq. (57) to check the consistency of our method. For a
number of states we computed the normalization integral
and also extracted the behavior of the state near the singu-
larity. For all of these the imaginary component of the
energy was consistent with Eq. (57). This confirms that
the states are normalizable and represent genuine bound
states.

VIII. DISCUSSION

We have demonstrated the existence of a complicated
spectrum of bound states for a quantum fermion in a black
hole background. Each state represents a spatially normal-
izable solution to the Dirac equation in a Schwarzschild
background. The fact that time-separable solutions exist is
simply established in one particular gauge, which casts the
equation in a Hamiltonian-like form. A study of the be-
havior of the wave function under gauge transformations
shows that time separability is a gauge-invariant feature.
The spectrum itself is determined by boundary conditions
applied at the horizon and at infinity. These alone are
sufficient to imply the existence of an imaginary (decay)
-12
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contribution to the energy. The physical explanation for
this is provided by the singularity, which acts as a current
sink.

The qualitative features of the spectrum can be under-
stood in terms of simple semiclassical models, but a full
quantitative understanding only seems possible through a
mixture of computational methods. The work in this paper
can clearly be extended in a number of ways. We have only
plotted the spectrum at low coupling strengths of �� 1,
but astrophysical values can be far larger than this, with
�� 1015 for solar-mass black holes. For larger �, the
ground state will be one of high angular momentum. In
this regime the spectrum will be quite different to that of
the hydrogen atom. One important question is precisely
how great a binding energy can be achieved. In Fig. 4 we
see that at around � � 5 we are achieving total energies of
0:88mc2, which is significantly lower than the classical
value of 0:94mc2. This suggests that more energy may
be available in accretion processes than is traditionally
thought.

As well as increasing �, it would be of considerable
interest to repeat this work for the case of a Kerr black hole.
In this respect a useful start has been made in [18], where
the Kerr solution is written in a form that generalizes the
Newtonian gauge employed in this paper. The calculations
for the Kerr case are more complicated, however, because
the angular separation constants are energy dependent
[2,9]. There are also signs that the horizon structure of
the Kerr solution will complicate the fairly straightforward
picture presented here. The problem can be seen by ana-
lyzing the behavior in a Reissner-Nordstrom background
using the setup of this paper. For this case we find that the
regular solutions at the outer horizon do not match regular
solutions at the inner horizon. So quantum mechanics
predicts that the probability density will pile up around
the inner horizon in a similar manner to the classical
picture. Behavior of this type is inevitable, as the
Reissner-Nordstrom singularity does not act as a sink,
and the Hamiltonian is Hermitian. Since the current must
still be inward pointing at the outer horizon, the probability
density has to pile up somewhere. It seems likely that a
similar picture holds for the Kerr solution, but detailed
calculations are required to confirm this.

The energy spectra presented in this paper raise a num-
ber of fundamental issues, which demonstrate the limita-
tions in our current understanding of the interaction
between gravity and quantum theory. It is unusual to obtain
a decay law from quantum mechanics without some form
of approximation. That we do so in the present case is a
consequence of the fact that the system is open. States are
allowed to decay onto the singularity, but no accompanying
emission is considered. A complete treatment of the prob-
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lem as a closed system would require a quantum theory of
the singularity, and such a theory does not yet exist.

The decay rates represent one feature of the quantum-
mechanical description of the capture process. But, as well
as decay, the quantum description of a particle falling onto
the singularity of a black hole can involve a series of
quantum jumps to lower energy orbits. This quantum
description alters the physics of the process quite dramati-
cally from the classical picture. As the particle undergoes a
series of transitions we expect that it should radiate, which
does not happen classically. What form this radiation
should take (electromagnetic, gravity waves) is unclear.
Also, as a transition takes place we should keep careful
track of the evolution of the matter stress-energy tensor to
tell us where the radiated energy is concentrated. A related
problem this exposes is that we have not considered back-
reaction on the gravitational field, which could alter this
picture.

The quantum treatment of a particle in a gravitational
field exhibits a curious antiparallelism with the electro-
magnetic case. In classical electrodynamics a charged
particle in orbit around a point source should radiate,
making atoms unstable. This problem is resolved by quan-
tum mechanics, which predicts the existence of stable,
nonradiating bound states. The reverse is true of gravita-
tion. Classically, a particle can orbit a black hole in a
geodesic outside the horizon, and such an orbit is stable.
But quantum theory changes this, and states that no totally
stable orbits exist, due to the finite probability of the
particle finding itself inside the horizon and ending on
the singularity. While the time scales involved in these
decays may be of limited interest astrophysically, such
processes are clearly of fundamental importance in under-
standing the interplay between quantum theory and
gravitation.

A final point to raise here is that the spectrum of real
energies derived here has a mirror image of negative
energy bound states. Each of these negative energy states
also has a finite lifetime. If we model the vacuum in terms
of a Dirac sea of filled negative energy states, we must
include the bound states as well as the free continuum. It
then follows that the vacuum itself is decaying—the black
hole is sucking in the vacuum. Such a loss of negative
energy states is seen as a creation of positive energy modes,
which could contribute to Hawking radiation. This contri-
bution appears to have been neglected in previous calcu-
lations, which concentrate only on the scattered states [1].
It is well known in calculations of the Lamb shift, for
example, that ignoring the bound states in the calculation
gives the wrong answer [19]. It would be of great interest to
assess the contribution played by bound states to the gravi-
tational analog of this process.
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