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Nonlinear realization of pure N � 4; D � 5 supergravity
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We perform the nonlinear realization or the coset formulation of the pure N � 4, D � 5 supergravity.
We derive the Lie superalgebra which parameterizes a coset map whose induced Cartan-Maurer form
produces the bosonic field equations of the pure N � 4,D � 5 supergravity by canonically satisfying the
Cartan-Maurer equation. We also obtain the first-order field equations of the theory as a twisted self-
duality condition for the Cartan-Maurer form within the geometrical framework of the coset construction.
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I. INTRODUCTION

The method of dualization has been used in [1] to
formulate the bosonic sectors of the D � 11 supergravity
[2] and the maximal supergravities which are obtained
from the D � 11 supergravity by torodial compactifica-
tions as coset models. The first-order formulations of these
theories are also embedded in the nonlinear coset formu-
lations as twisted self-duality constraints [3]. The main
motivation to study the nonlinear realizations of the D �
11 supergravity and its Kaluza-Klein descendant theories
is to understand the global symmetries of the D � 11
supergravity thus the symmetries of the M-theory.

In general the supergravity theories are the massless
sectors or the low energy effective limits of the relative
string theories. Thus the symmetries of the supergravity
theories have been studied to improve the knowledge of the
symmetries and the duality relations of the string theories.
In this respect the global symmetries of the supergravity
theories gain importance since a restriction of the global
symmetry group G of the supergravity theory to the inte-
gers is conjectured to be the U-duality symmetry of the
relative string theory [4,5]. The nonlinear sigma model or
the coset formulation of the supergravities provides an
effective tool to study the global symmetries of these
theories and thus the symmetries of the relative string
theories as mentioned above.

The scalar coset manifolds of the maximal supergrav-
ities are based on split real form global symmetry groups
[6–10]. In [10] the method of dualization is extended to the
nonsplit real form scalar cosets. This enlarged formulation
has enabled the coset construction of the matter coupled
supergravities which have nonsplit scalar cosets [11–13]. A
general dualization and nonlinear realization is also per-
formed for a generic scalar coset which is coupled to
matter in [14].

In this work we present the nonlinear realization or the
coset construction of the bosonic sector of the pure N �
4, D � 5 supergravity [15–18]. Our formulation will be in
parallel with the ones in [1,11–13]. We will propose a coset
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map and we will derive the Lie superalgebra which param-
eterizes the coset representatives so that the Cartan-Maurer
form of the coset map will lead us to the bosonic field
equations of the theory by satisfying the Cartan-Maurer
equation. Therefore the definition of the coset map and the
construction of the algebra which parameterizes this map
enables us to formulate the pure N � 4, D � 5 super-
gravity as a nonlinear coset sigma model. The first-order
formulation of the theory will also be derived and we will
mention its role as a constraint condition in the coset
construction.

In section two we will derive the field equations of the
pure N � 4, D � 5 supergravity. We will also give the
locally integrated first-order field equations. In section
three after introducing the algebra generators and the coset
map we will construct the Lie superalgebra structure of the
field generators. We will also show that the first-order field
equations can be obtained as a twisted self-duality condi-
tion within the coset construction.
II. THE PURE N � 4, D � 5 SUPERGRAVITY

The field content of the pure N � 4, D � 5 supergrav-
ity [15–18] is

�er�;  
i
�; �

j; v�; V
k
�;��; (2.1)

where er� is the fünfbein, v� is a one-form field in the 1
representation of USp(4), Vk� are five one-form fields for
k � 1; . . . ; 5 in the 5 representation of USp(4),� is a scalar
field which is singlet under the action of USp(4), also  i�
for i � 1; . . . ; 4 are four gravitini in the 4 representation of
USp(4) and for j � 1; . . . ; 4 �j are four spin-1=2 fields
again in the 4 representation of USp(4). The local symme-
tries of the pure N � 4, D � 5 supergravity are the
general coordinate transformations, N � 4 supersymme-
try and the U�1�6 gauge invariance whose Abelian gauge
fields are the six one-forms. The global symmetry of the
theory or the U-duality group is USp�4� � SO�1; 1� which
is an electric subgroup of the D � 4 Sp�14;R� duality
group. The R-symmetry group USp(4) is the automor-
phism group of the N � 4,D � 5 supersymmetry algebra
and USp(4) is isomorphic to Spin(5) which is the covering
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group of SO(5). For the following formulation in accor-
dance with [18] the signature of the space-time metric will
be chosen as

�AB � diag��;�;�;�;��: (2.2)

Apart from the gravity sector the bosonic Lagrangian of the
pure N � 4, D � 5 supergravity can be given as [15–18]

L � �
1

2
� d� ^ d��

1

2
e��2=

��
6
p
��	 � dVi ^ dVi

�
1

2
e���4=

��
6
p
��	 � dv ^ dv�

1

2
dVi ^ dVi ^ v; (2.3)

where i � 1; . . . ; 5 and we should remark that we raise or
lower the indices by using the Euclidean metric. If we vary
the Lagrangian (2.3) with respect to the fields �, v, Vi we
can find the second-order field equations, respectively, as

d��d���
1���
6
p e��2=

��
6
p
��	 �dVi^dVi

�
2���
6
p e���4=

��
6
p
��	 �dv^dv;

d�e���4=
��
6
p
��	 �dv���

1

2
dVi^dVi;

d�e��2=
��
6
p
��	 �dVj�dVj^v��0:

(2.4)

We will locally integrate the bosonic field Eqs. (2.4) by
introducing dual fields and by using the fact that locally a
closed form is an exact one. Integration will give us the
first-order field equations of the theory. Here by integration
we mean to cancel an exterior derivative on both sides of
the equations. Thus if we introduce the three-form dual

field e� for the original field �, the five two-form fields eVi
for Vi and the two-form field ev for v we can express the
first-order field equations obtained from the second-order
field Eqs. (2.4) as explained above as

�d���
1���
6
p Vi^d eVi
�

2���
6
p v^dev�d e�;

e��2=
��
6
p
��	 �dVi�Vi^dv��d eVi;

e���4=
��
6
p
��	 �dv��dev�1

2
Vi^dVi:

(2.5)

When one applies the exterior derivative on both sides of
the equations above one obtains the second-order field
equations given in (2.4) which do not contain the dual

fields e�, ev, eVi. In the next section when we give the
nonlinear coset formulation of the bosonic sector of the
pure N � 4, D � 5 supergravity we will show that the
first-order field equations in (2.5) can be obtained from a
twisted self-duality condition [1] which the Cartan-Maurer
form of the coset map satisfies.
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III. THE COSET FORMULATION

In this section we will present the coset construction or
the nonlinear realization of the bosonic sector of the pure
N � 4, D � 5 supergravity. We will introduce the coset
map whose Cartan form realizes the second-order bosonic
field Eqs. (2.4) by satisfying the Cartan-Maurer equation.
Our main objective will be to derive the Lie superalgebra
which parameterizes the coset elements and which leads to
the nonlinear coset formulation of the theory. We will
follow the method of dualization or the doubled formalism
of [1] to define the coset map and to obtain the necessary
commutation and the anticommutation relations of the
generators of the Lie superalgebra which parameterizes
the coset representatives.

Likewise in [1,11–13] as a first task we introduce a dual
field for each original bosonic field given in (2.1) namely
for the fields �v; Vk; ��. The corresponding dual fields are

�ev; eVk; e��; (3.1)

where e� is a three-form, for k � 1; . . . ; 5 eVk are two-forms
also ev is a two-form field. It will be clear later when we
obtain the first-order equations from the explicit calcula-
tion of the Cartan-Maurer form of the constructed coset
map that these fields coincide with the fields which we
have already introduced in the integrated field equations in
(2.5). As a matter of fact these fields are the necessary
Langrange multipliers to construct the Bianchi
Lagrangians from the Bianchi identities of the correspond-
ing original fields [19]. Next we assign a generator for each
bosonic field and its dual field. The original generators are

�Y; Zk; K�; (3.2)

which in the coset map will be coupled to the fields
�v; Vk; �� respectively. Besides, the dual generators which

will be coupled to the dual fields ev; eVi; e� in the coset map
will be defined as

�eY; eZi; eK�; (3.3)

respectively. The Lie superalgebra generated by the gen-
erators in (3.2) and (3.3) will have the Z2 grading. The
generators will be defined to be odd if the corresponding
coupling field is an odd degree differential form and other-
wise even [1]. Therefore the generators fZi; Y; eKg are the
odd generators and fK; eZi; eYg are the even ones. The coset
map which we have mentioned above will be parameter-
ized by a differential graded algebra [1]. This algebra
contains the local module of the differential forms and
the Lie superalgebra of the original and the dual generators
we have introduced above. The differential graded algebra
structure has the property that the odd (even) generators
behave like odd (even) degree differential forms when they
commute with the exterior product. The algebra products
of the odd generators obey the anticommutation relations
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whereas the algebra products of the even ones and the
mixed ones obey the commutation relations within the
Lie superalgebra structure.

Equipped with the necessary algebraic tools, to start the
construction of the coset realization of the pure N � 4,
D � 5 supergravity we first introduce the coset map

�0 � e�KeV
iZievYeeveYeeVi eZiee� eK: (3.4)

This parametrization may be considered as a map from the
five-dimensional space-time into a symmetry group whose
structure will not be the interest of this work. Like in [1,11–
13] we will solely focus on the derivation of the Lie super-
algebra which generates the coset parametrization (3.4).
However certainly this algebra would reflect the properties
of the target group at least locally [20]. In a chosen matrix
representation of the Lie superalgebra the pullback of the
Cartan-Maurer form G0 which is defined on the above
mentioned target group G through the map (3.4) can be
given as

G 0 � d�0�0�1: (3.5)

As a result of its definition the Cartan form (3.5) satisfies
the Cartan-Maurer equation

dG0 � G0 ^ G0 � 0: (3.6)

Our construction will be based on the requirement that the
Cartan-Maurer equation should produce the second-order
field Eqs. (2.4) when calculated explicitly. At first glance
one may observe that to calculate the Cartan-Maurer form
thus the Cartan-Maurer equation explicitly one needs the
algebra commutators and the anticommutators of the field
generators (3.2) and (3.3). Therefore one has to discover
the Lie superalgebra structure which would give the correct
second-order bosonic field Eqs. (2.4) via the Cartan-
Maurer equation. When one reaches the algebra structure
one completes the coset construction and succeeds in the
nonlinear realization of the bosonic sector of the pure
N � 4, D � 5 supergravity. The construction of the al-
gebra of the field generators will enable us to express the
bosonic field equations as ingredients of a coset structure.
The direct but the cumbersome way of solving the algebra
structure is to calculate the Cartan-Maurer Eq. (3.6) in
terms of the unknown structure constants of the algebra
and then to read the structure constants by comparing the
result with the second-order equations given in (2.4). To
advance in this direction one needs to make use of the
matrix identities

deXe�X � dX�
1

2!
�X; dX	 �

1

3!
�X; �X; dX		 � . . . ;

eXYe�X � Y � �X; Y	 �
1

2!
�X; �X; Y		 � . . . ; (3.7)

repeatedly starting from the definition of the Cartan-
Maurer form (3.5) and then one should insert the result in
the Cartan-Maurer Eq. (3.6) [1,6]. We should remark one
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point again, like in [11–13] we assume that we work in a
matrix representation of the algebra of the original and the
dual generators. We will not lay out the long steps of the
calculation discussed above. Thus we will only present the
results we have obtained. If one performs the above men-
tioned calculation one finds that the proper commutation
and the anticommutation relations of the original and the
dual generators in (3.2) and (3.3) which lead to the second-
order field equations of (2.4) in (3.6) are

�K;Zi	 �
1���
6
p Zi; �K; Y	 � �

2���
6
p Y;

�K; eY	 � 2���
6
p eY; �K; eZi	 � � 1���

6
p eZi;

fZi; Zjg � �ij eY; fZi; Yg � eZi;
�eZi; Zj	 � 1���

6
p �ij eK; �eY; Y	 � � 2���

6
p eK:

(3.8)

The commutation and the anticommutation relations which
are not listed in (3.8) vanish. If O represents the set of the
original generators and eD the set of the dual generators we
observe that the algebra constructed in (3.8) obeys the
general structure

�O; eDg 
 eD; � eD; eDg � 0: (3.9)

However unlike the algebras constructed in [11–13] we
have

�O;Og 
 O [ eD: (3.10)

Now since we have derived the algebra structure of the
field generators we can calculate the Cartan-Maurer form
G0 � d�0�0�1 starting from the coset map (3.4) exactly.
The calculation again needs the use of the identities in (3.7)
together with the algebra structure derived in (3.8). The
calculation yields

G0 � d�0�0�1� d�K � e��1=
��
6
p
��	dViZi � e

���2=
��
6
p
��	dvY

�

�
1

2
e��2=

��
6
p
��	�ijVi ^ dVj � e��2=

��
6
p
��	dev�eY

� �e���1=
��
6
p
��	Vi ^ dv� e���1=

��
6
p
��	d eVi�eZi

�

�
d e�� 1���

6
p Vi ^ d eVi � 2���

6
p v ^ dev� eK: (3.11)

The nonlinear realization of the supergravity theories as a
result of the dualization of the fields is intimately related to
the Langrange multiplier methods which give rise to the
first-order formulations of these theories [19]. For this
reason our coset formulation also yields the locally inte-
grated first-order field Eqs. (2.5). To obtain the first-order
field equations from the Cartan-Maurer form (3.11) we
have to introduce a pseudoinvolution S of the Lie super-
algebra constructed in (3.8). By following the general
scheme introduced in [1] also discussed in [9,10] we can
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define the action of S on the field generators as

SY � eY; SK � eK; SZi � eZi; S eY � �Y;
S eK � �K; S eZi � �Zi: (3.12)

Now if we require the Cartan-Maurer form in (3.11) to
obey the twisted self-duality constraint

�G0 � SG0; (3.13)

we observe that by equating the coefficients of the linearly
independent algebra generators in (3.13) when (3.11) is
inserted in it we get exactly the first-order field equations
derived in (2.5). Since the equations in (2.5) have been
obtained from the second-order field Eqs. (2.4) algebrai-
cally owing to abolishing an exterior derivative locally we
conclude that the twisted self-duality constraint (3.13)
which is reserved on the Cartan-Maurer form (3.11) is a
justified condition. Thus our formulation have not only
reestablished the bosonic sector of the pure N � 4, D �
5 supergravity as a coset model but it also has produced the
first-order field equations as a twisted self-duality condi-
tion within the coset construction.

IV. CONCLUSION

We have applied the formalism of dualization to con-
struct the nonlinear coset formulation of the bosonic sector
of the pure N � 4,D � 5 supergravity [15–18]. We have
introduced a coset map and constructed the Lie super-
algebra which parameterizes this map so that the Cartan-
Maurer form induced by the coset map generates the
second-order bosonic field equations of the theory in the
canonical Cartan-Maurer equation. In this way we have
established the necessary algebraic background to interpret
the bosonic sector of the pure N � 4,D � 5 supergravity
as a nonlinear coset sigma model. The bosonic field equa-
tions are regained as elements of the geometrical frame-
work of the coset construction. As a consequence of the
dualization method which originates from [1] the first-
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order formulation of the theory is also obtained in the coset
formulation. The first-order field equations appear as a
twisted self-duality constraint [1,3] which the Cartan-
Maurer form satisfies. Therefore we get the first-order field
equations as a byproduct of our formulation. This is not a
surprise as the method of dualization is another manifes-
tation of the Lagrange multiplier formalism.

Although we have derived the Lie superalgebra which
forms the gauge to parameterize the coset representatives
in our nonlinear construction we have not inquired the
group theoretical structure of the coset. The coset map
can be considered to be into a group G which is presum-
ably [1,6] the global symmetry group of the doubled
Lagrangian which is obtained as a result of the dualization
of all the fields. Thus the study of the coset structure may
contribute to the understanding of the global symmetries of
the theory. The local symmetries can also be examined in
the same way. The Lie superalgebra we have constructed
can be considered as a key and a good starting point in the
identification of the coset structure [20].

One may couple matter multiplets to the pure N � 4,
D � 5 supergravity studied in this work [15–18]. The
resulting Maxwell-Einstein supergravity can be related to
the five-dimensional Kaluza-Klein descendant theory of
the ten-dimensional low energy effective heterotic string
by the redefinition, truncation and dualization of appropri-
ate fields [16,21]. Therefore the coset formulation of this
work which brings an insight in the symmetry structure
may also help to understand the symmetries of the heterotic
string.

The gravity and the fermionic sectors can also be in-
cluded in the nonlinear realization analysis. Especially the
coset formulation can be extended to include the gravity
sector in accordance with [22–24] so that the Kac-Moody
symmetries of the pure N � 4, D � 5 supergravity can
be studied. One may also inspect the comparison of the Lie
superalgebra derived here with the ones constructed in
[11–13] to draw a general scheme of symmetries.
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