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Casimir effect for gauge scalars: The Kalb-Ramond case
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In this work we calculate the functional generator of the Green’s functions of the Kalb-Ramond field in
3� 1 dimensions. We also calculate the functional generator, and corresponding Casimir energy, of the
same field when it is submitted to boundary conditions on two parallel planes. The boundary conditions
we consider can be interpreted as a kind of conducting plane for the field in comparing with the Maxwell
case. We compare our result with the standard ones for the scalar and Maxwell fields.
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I. INTRODUCTION

When it was proposed, in 1948, the Casimir effect
referred only to the attraction between two metallic plates,
not charged and placed parallel to each other [1]. The
reason for this attraction was explained as a change of
the vacuum energy of the field due to the presence of the
metallic planes which modifies the electromagnetic vac-
uum field modes. Ever since, there has been much litera-
ture investigating modifications of the vacuum energy of
quantized fields due to the presence of boundary conditions
on several fields along surfaces [2–5]. Nowadays, the
Casimir effect is considered as a modification in the vac-
uum energy of a given quantum field due to the imposition
of boundary conditions on this field on one or more
surfaces.

In this scenario, many questions are raised concerning
the Casimir effect and, also, quantum field theory with
boundary conditions. We would like to mention, for in-
stance, the behavior of the Casimir energy with the intrin-
sic features of the field (dependence with spin, mass, etc.)
and which kind of boundary conditions can be imposed on
a given field.

Motivated by these issues, in this paper we briefly
review the quantum theory and we study the corresponding
Casimir energy of the rank-2 skew-symmetric tensor field,
or commonly, the Kalb-Ramond field [6], submitted to
specific boundary conditions. We consider a situation of
parallel planes in order to compare our results with stan-
dard situations presented in the literature, specifically, the
Casimir configuration (electromagnetic field between con-
ducting planes) and the case of a scalar field with Dirichlet
boundary conditions on parallel planes. The last situation is
more interesting once both the 2-form Kalb-Ramond and
real scalar fields describe a spinless particle, carrying only
one on-shell degree of freedom. Comparing these situ-
ations, we must have some insight on the influence of
possible symmetries on the Casimir effect.
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In addition, despite the fact that the Kalb-Ramond field
describes a spinless particle, which could be also de-
scribed, very simply, by means of a scalar field, it appears
naturally in string theory (as a gauge field) and in super-
gravity (as auxiliary fields), and the task of describing its
dynamics, mainly in the quantum context, is not trivial.
The 2-form gauge field is not commonly studied in the
context of second quantization, even without boundary
conditions.

In this paper, using standard Faddeev-Popov methods
for gauge fields, we shall calculate the generating func-
tional of the Green’s functions for the Kalb-Ramond field
in 3� 1 dimensions without boundary conditions. We
shall also calculate the same generating functional and
the Casimir energy for the same field submitted to bound-
ary conditions on two parallel planes, which can be inter-
preted, in some sense, as a kind of ‘‘conducting’’ plate to
the case of the Kalb-Ramond field, due to its similarity to
the case of the Maxwell field.

We adopt the functional approach to develop the quan-
tum treatment of the Kalb-Ramond field with boundary
conditions, though it is not the standard one usually em-
ployed in the literature to treat the cases of other fields, for
which one normally chooses the canonical quantization.
Functional methods seem to be more appropriate for our
purposes; they were especially developed for gauge fields
[7], which is the case of the Kalb-Ramond field. Moreover,
a complete discussion on canonical quantization of p-form
gauge fields, even without considering boundary condi-
tions, is missing in the literature.

That is an example of a situation where the usual ca-
nonical methods, commonly simpler and more widespread
for problems concerning the Casimir effect, turns out to be
not so simple, and other methods become more appropri-
ate, as is the case of the functional approach.

The paper is organized as follows: in Sec. II, we estab-
lish the quantum theory of the free Kalb-Ramond field
without boundary conditions; in Sec. III, the quantum
theory for the same field submitted to specific boundary
conditions on two parallel planes is contemplated; in
Sec. IV, we present the calculation of the Casimir energy
per unity of area for the considered boundary conditions
-1 © 2005 The American Physical Society
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previously presented. Section V is devoted to our conclud-
ing remarks.
II. FREE PROPAGATOR

Using the conventions ��� � �1;�1;�1;�1� and
�0123 � ��0123 � 1, the system we shall study is described
by the Lagrangian

L �
1

3!
G���G

���; (1)

where

G��� � @�H�� � @�H�� � @�H�� (2)

is the field strength for the Kalb-Ramond field, H��. It is
worth emphasizing thatH is antisymmetric, that is,H�� �
�H��, and that the Lagrangian (1) exhibits the gauge
invariance

H���x� ! H0���x� � H���x� � @����x� � @����x�;

(3)

where �� is an arbitrary vector field [8].
In order to set up the quantum theory for the Lagrangian

(1), we shall calculate the generating functional of the
Green’s functions of the theory using standard Faddeev-
Popov methods do handle divergent contributions which
come from the gauge freedom (3).

Choosing a gauge where

@�H���x� � f��x� � 0; (4)

with f��x� being an arbitrary space time function, it can be
shown that the Faddeev-Popov determinant does not de-
pend on the field H. Therefore, the development of the
Faddeev-Popov method for (1) proceeds analogously to the
electromagnetic case, and the generating functional for the
Kalb-Ramond field reads

W�J� �
Z

DH
Z

Df��@�H
�� � f��;

exp
�
�

i
2�

Z
d4xf�f�

�
; exp

�
i
Z
d4xL� J��H

��
�
;

(5)

where � is a gauge parameter.
Integrating over f in (5), we arrive at

W�J� �
Z

DH exp
�
i
Z
d4xL�L� � J��H��

�
; (6)

with the gauge Lagrangian, L�, given by

L � � �
1

2�
�@�H

����@	H
	
��: (7)

Using (1) and (7), integrating by parts and considering
the antisymmetry ofH and J, we recast Eq. (6) in the form
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W�J� �
Z

DH exp
�
i
Z
d4xJ���x�H���x� �

i
2

�
ZZ

d4xd4yH���y�K��;	
�y; x�H	
�x�
�
; (8)

where we have defined the operator

K��;	
�x; y� � ��4�x� y�
�
�����	���
�@�@��

� 2
�

1�
1

2�

�
�����	��
�@��@��

�
; (9)

taking into account it is antisymmetric by the exchanges
�� � or 	� 
.

The integral (8) yields

W�J� � N exp
�
�
i
2

ZZ
d4xd4yJ���y�D

��;	
�x; y�J	
�x�
�
;

(10)

where D��;	
�x; y� is the Kalb-Ramond propagator whose
Fourier transform is found to be

~D��;	
�p� �
Z d4p

�2��4
D��;	
�x; y�e�ip�x�y�

�
1

p2

�
���	��
� � 2�1� 2������


p��p	�

p2

�
:

(11)

D��;	
�x; y� is the inverse of K��;	
�x; y� in Eq. (9) in the
sense that
Z
d4zD��;��x; z�K�

	
�z; y� � ����	���
��4�x� y�:

(12)

The result (11) agrees with the ones presented in the
literature [9,10] and obtained by other methods (adjusting
appropriately the � parameter).

With Eqs. (10) and (11), the quantum field theory for the
free Kalb-Ramond field is completely established.
III. THE KALB-RAMOND FIELD WITH
‘‘CASIMIR’’ PLATES

To impose a boundary condition on the Kalb-Ramond
field, let us consider, first, the case of the Maxwell field
where a perfectly conducting surface S imposes the bound-
ary condition

n� ~F���x�jS � 0; (13)

on the electromagnetic field, with ~F�� being the dual of the
field strength, ~F�� � �1=2�"��	
@	A
.

Inspired by the boundary condition (13) for the electro-
magnetic case, let us consider a kind of conducting surface
S for the Kalb-Ramond field, by imposing the condition

n� ~G��x�jS � 0) n�����@�H��x�jS � 0; (14)
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where n� is the normal four-vector to the surface S, and
where we have used that

~G��x� �
1

3!
����G���x� ) ~G��x�

�
1

2
����@�H��x�; (15)

which is the dual of the field strength (2).
Now, let us consider the propagator of the Kalb-Ramond

field in 3� 1 dimensions submitted to the boundary con-
ditions (14) on two parallel planes located, in our coordi-
nates system, at z � 0 and z � a. It is

n�����@�H��x�jSk � 0; k � 1; 2; (16)

where S1 and S2 stand, respectively, for the planes z � 0
and z � a, which are the surfaces where the field satisfies
the boundary condition (14), and n� � �0; 0; 0; 1� is the
four-vector normal to these planes.

By comparing with the case of the electromagnetic field,
the boundary condition we consider for the Kalb-Ramond
field can be interpreted, in some sense, as being the one
imposed by a kind of ‘‘conducting plate,’’ analogously to
the Casimir configuration for the Maxwell field.

The generating functional of the Green’s functions for
the Kalb-Ramond field submitted to the condition (16) is
given by

Wc�J� �
Z

DH�c� exp�L�x��; (17)

where DH�c� implies that the functional integration is
calculated only over field configurations that satisfy the
condition (16). Following a procedure developed to calcu-
late functional integrals of the electromagnetic field with
boundary conditions [7], we rewrite the integral (17) in the
form

Wc�J� �
Z

DH
Y
k�1;2

��n�����@�H��x�jSk� exp�L�x��;

k � 1; 2; (18)

where, now, the integral is taken over all field configura-
tions, and the delta functional, ��n�����@�H��x�jSk�,
kills off the contributions to the integral which comes from
field configurations that do not satisfy the conditions (16).

The delta functional presented in (18) has the Fourier
representation

��n��
���@�H��x�jSk� �

Z
DB exp

�
i
Z
dSk�x?�B

k�x?�

� �n��
���@�H��x�jSk�

�

�no sum over k�; (19)

where x? � �x0; x1; x2�, B1�x?� and B2�x?� are auxiliary
fields of scalar nature whose domains are, respectively, the
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planes S1 and S2, and dS1�x?� � d4x��x3�, dS2�x?� �
d4x��x3 � a�, respectively, indicate that we are integrating
along the planes S1 and S2. Replacing the expression (19)
in (18), we have that

Wc�J� �
ZZ

DHDB exp�L�x�� exp
�
i
Z
dSk�x?�Bk�x?�

� �n�����@�H��x�jSk�
�
; (20)

where, now, one considers a summation over the indices k.
In order to write the integral above in a more convenient

form, we perform the following translation on the H field
[11]:

H���x� ! H���x� �
Z
dS‘�y?�B‘�y?�

�

�
n�����

@
@y�

D��;
��x; y�

�
; (21)

where D��;��x; y� is the propagator (11) of the Kalb-
Ramond field without boundary conditions. With this pro-
cedure, Eq. (20) is written as a product of two Gaussian
integrals

Wc�J� � W�J� �W�J�; (22)

whereW�J� is the functional for the field without boundary
conditions, defined in (8), and

�W�J� �
Z

DB exp
�
i
Z
dS‘�y?�B

‘�y?�
�
�
Z
d4xJ��x�

�
1

2
n������

@
@x�

D��;��y; x�
��

� exp
�

1

2

ZZ
dS‘�y?�dSk�z?�B

‘�y?�

�

�
�n��

���� @
@y�

n	�
	
�

�
@
@z


D��;��y; z�
�
Bk�z?�

�
(23)

is a correction due to the presence of the conducting plates.
Calculating the functional integral (23), with the aid of

(11), and using the expression (10), Eq. (22) becomes

Wc�J� � N exp
�
�
i
2

ZZ
d4xd4yJ���x��D��;	
�x; y�

� �D��;	
�x; y��J	
�y�
�
; (24)

where N is a normalization constant and

�D��;	
�x; y� �
1

4

Z d3p?
�2��3

1

L
��p?; x3; y3��3����3	


�

�p�p
L2

�
e�p?�x?�y?�; (25)
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L �
�������
p2
?

q
; (26)
��p?; x
3; y3� �

1

2 sin�La�
�e�iLa�eiL�jx

3j�jy3j�

� eiL�jx
3�aj�jy3�aj�� � �eiL�jx

3�aj�jy3j�

� eiL�jx
3j�jy3�aj���: (27)

With the expression (24), we can interpret the propaga-
tor of the Kalb-Ramond field in the presence of conducting
plates as being given by the free propagator (11) plus the
correction (24) due to the boundary conditions.

With the functional (24), we have established the quan-
tum theory of the Kalb-Ramond field in the presence of the
conducting plates.
IV. CASIMIR ENERGY

In order to calculate the Casimir energy for the Kalb-
Ramond field with the condition (16), we first consider the
00 component of the energy-momentum tensor of this
field, T00, which is given by

T00�x�� � ~G0�x��2�
1

2
~G��x� ~G��x�

�
1

4
�0���0

�	

@
@x�

@
@x�
�H��x�H

	
�x��

�
1

2

1

4
�������	


@
@x�

@
@x�
�H��x�H

	
�x��; (28)

where we have used the definition (15). The Casimir
energy is given by the space integral of the T00, in the
vacuum state, over the region between the plates,

E �
Z

0	x3	a
d3 ~xhT00�x�i

�
Z

0	x3	a
d3 ~x lim

y3!x3

�
i
4
�0���0

�	

@
@x�

@
@y�

� hH��x�H
	
�y�i

��������x?�y?

�

�
1

2

Z
0	x3	a

d3 ~x lim
y3!x3

�
i
4
�������	


@
@x�

@
@y�

� hH��x�H
	
�y�i

��������x?�y?

�
; (29)

where we used regularization by point splitting in the third
spatial coordinate, in addition to the standard regulariza-
tion in the temporal coordinate considered implicitly.
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Using Eq. (24), expression (29) becomes

E �
Z

0	x3	a
d3 ~x lim

y3!x3

�
i
4
�0���0

�	

@
@x�

@
@y�

� � �D�
	
�x; y��

��������x?�y?

�

�
1

2

Z
0	x3	a

d3 ~x lim
y3!x3

�
i
4
�������	


@
@x�

@
@y�

� � �D	

��x; y��

��������x?�y?

�
; (30)

where we discarded a divergent term linear in a and present
even without the presence of the plates. This is justified
once this term is interpreted as a contribution to the energy
which comes from the vacuum without boundary
conditions.

Using Eqs. (25)–(27), making y3 � x3 � �, integrating
over d3 ~x, and taking the limit �! 0, we can show that the
second term in (30) is a divergent a-independent contribu-
tion proportional to the plate area A �

R
d2 ~x?.

Contributions of this kind are interpreted as the self-energy
of the plates, and can be discarded once they do not
produce the Casimir force.

With these considerations and after a number of ma-
nipulations, the first term on the right-hand side of (30)
gives the Casimir energy per unity of area A,

E �
E
A
�
�i

23

Z dp3
?

�2��3
p2

0

L
a

eiLa

eiLa � e�iLa
; (31)

where the integral above is commonly found in calcula-
tions of the Casimir energy for bosonic fields [5]. The
quantity E can be calculated performing the Wick rotation,

p0 ! ik0; ~p? ! ~k?; (32)

by defining L � i‘ and using

e�‘a

e�‘a � e‘a
� �

X1
n�1

e�2‘an: (33)

Also, by using spherical coordinates and integrating in the
angular variables, we get the Casimir energy per unity of
area,

E �
�

27325

1

a3 ; (34)

which gives the repulsive Casimir force between the
planes,

F � �
@E
@a
�

�

2715

1

a4 : (35)

The result (34), or equivalently (36), exhibits interesting
features when compared with results for the other well-
known bosonic fields: the scalar and electromagnetic ones.
To discuss these points, let us denote the Casimir energies
for the scalar field for three different configurations: with
-4
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Dirichlet conditions on the planes, Escalar;DD, Neumann
conditions on the planes, Escalar;NN, and mixed conditions,
Escalar;DN (Dirichlet in one plane and Neumann in the other
one). Let us also consider the case of electromagnetic field
with Casimir configuration, EEM;CC (two perfectly conduct-
ing parallel plates), the situation with two infinitely per-
meable parallel plates, EEM;PP, and the so-called Boyer
configuration (one conducting plate and an infinitely per-
meable one). Comparing these situations with (34), we
have

E � �
1

4
Escalar;DD � �

1

4
Escalar;NN �

1

4

7

8
Escalar;DN

� �
1

8
EEM;CC � �

1

8
EEM;PP �

1

8

7

8
EEM;CP: (36)

From (36), we can see that, although the Kalb-Ramond
field describes a spinless particle, like the Klein-Gordon
field, the Casimir energies of these fields have different
signs, giving forces in opposite directions, when we take
the cases where the scalar field satisfies equal boundary
conditions on the planes (Escalar;DD and Escalar;NN), similarly
to what we have done for the Kalb-Ramond field (34).
Also, (34) differs in modulus with respect to the scalar
cases Escalar;DD and Escalar;NN.

The scalar field exhibits repulsive force for mixed con-
ditions (Escalar;DN), where we have different boundary con-
ditions on the planes; but, even in this case, the modulus of
Escalar;DN is different from E.

The same analysis can be done for the electromagnetic
field. The analogous conducting plates for the Kalb-
Ramond field give repulsive Casimir force, contrary to
the electromagnetic case, where we have attraction for
Casimir and two permeable plate configurations. We
have a repulsive force for the Boyer configuration which
takes different conditions on the plates, contrary to what
we have considered for the Kalb-Ramond field.

The fact that the electromagnetic Casimir energy for two
conducting (or permeable) plates is twice the Casimir
energy for the scalar field with Dirichlet (or Neumann)
conditions on the planes can be interpreted due to the fact
that the electromagnetic field has 2 degrees of freedom and
the scalar field has just one. In this case, the electromag-
netic field is equivalent to two scalar fields, one with
Dirichlet and the other with Neumann conditions on the
plates. The same analysis does not remain true for the
Kalb-Ramond case.
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V. CONCLUSION

In this paper, we have calculated the generating func-
tional of the Green’s functions for the Kalb-Ramond field
in 3� 1 dimensions in the case where it is not submitted to
boundary conditions. We have used standard Faddeev-
Popov methods and our results agree with the ones pre-
sented in the literature and calculated by other methods.

We have also calculated the generating functional of the
Green’s functions for the Kalb-Ramond field submitted to
the conditions of ‘‘perfectly conducting plates,’’ establish-
ing the quantum theory for the Kalb-Ramond field with
these conditions. We have used the previous result to
obtain the Casimir energy for the field submitted to the
referred boundary conditions and we have found the inter-
esting result that the Casimir energy per unit of area (34),
in this case, is repulsive and lower (in modulus) when
compared with the case of the scalar field with Dirichlet
or Neumann conditions on the planes. This happens in spite
of the fact that the Kalb-Ramond field describes a spinless
particle, as the Klein-Gordon field does.

We would like to point out that, with the functional (24),
we could calculate any quantum quantity for the Kalb-
Ramond field with the conditions (16).

It would be interesting to calculate the Casimir energy
for the Kalb-Ramond field submitted to conditions analo-
gous to the ones imposed on the Maxwell field by the
presence of permeable plates, and also consider the con-
ditions analogous to the Boyer configuration (mixed
plates).

As a final comment, we would like to mention that it
would be interesting and of relevance to carry out the
canonical quantization of the Kalb-Ramond field and
then to rederive the Casimir energy, which we have pre-
sented in the text, by standard methods, like frequencies
summation, using the zeta function method, for instance.
With the canonical quantization of the Kalb-Ramond field,
we could also propose a general expression for the Casimir
energy in planar geometry, as has already been done in the
work of Ref. [12] for other fields.
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