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Minkowski vacuum stress tensor fluctuations
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We study the fluctuations of the stress tensor for a massless scalar field in two- and four-dimensional
Minkowski spacetime in the vacuum state. Covariant expressions for the stress tensor correlation function
are obtained as sums of derivatives of a scalar function. These expressions allow one to express spacetime
averages of the correlation function as finite integrals. We also study the correlation between measure-
ments of the energy density along a world line. We find that these measurements may be either positively
correlated or anticorrelated. The anticorrelated measurements can be interpreted as telling us that, if one
measurement yields one sign for the averaged energy density, a successive measurement with a suitable
time delay is likely to yield a result with the opposite sign.
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I. INTRODUCTION

Because physically realizable states in quantum field
theory are not eigenstates of the stress tensor operator,
quantum stress tensor fluctuations are a universal feature
of quantum fields. These fluctuations can have physical
effects, including Casimir force fluctuations [1–4], radia-
tion pressure fluctuations [5], and passive fluctuations of
the gravitational field [6–24]. Passive fluctuations of grav-
ity are those driven by fluctuations of the matter field stress
tensor, as opposed to the active fluctuations due to the
quantum nature of gravity itself. The quantum stress tensor
correlation function is singular in the limit of coincident
points. However, this does not prevent us from obtaining
physically meaningful results for observable quantities,
such as the luminosity fluctuations of a distant source
seen through the fluctuating spacetime [20]. These observ-
ables are expressed as spacetime integrals of the correla-
tion function, which can be defined by an integration by
parts procedure. Alternatively, one could use other ap-
proaches, such as dimensional regularization [25].

In general, the stress tensor correlation function can be
decomposed into three terms: a ‘‘fully normal-ordered’’
term which is state dependent, but free of singularities, a
vacuum term which is singular, but state independent, and
a ‘‘cross term’’ which is both singular and state dependent.
In many situations, one is interested in state dependent
effects, so the vacuum term can be ignored. For example,
radiation pressure fluctuations in a coherent state arise
solely from the cross term [5]. However, this does not
mean that the vacuum term is devoid of any physical
content.

The main purpose of this paper is the search for such
content. Here we will be concerned with a free, massless
address: ford@cosmos.phy.tufts.edu
address: roman@ccsu.edu
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scalar field in Minkowski spacetime, and its stress tensor
correlation function in the Minkowski vacuum state. In a
previous paper [26], we studied the subtle stress tensor
correlations in nonvacuum states created by moving mir-
rors in two-dimensional flat spacetime. One of the key
results of the present paper will be the derivation of a
covariant expression for the correlation function as a sum
of total derivative terms. This expression will be given in
Sec. II A for two dimensions and in Sec. III A for four
dimensions, with the details of the derivations presented in
Appendices A and B, respectively. We will discuss space-
time averages of the energy density correlation function in
Secs. II B and III B, and averages along a world line in
Secs. II C and III C. The results will be summarized and
discussed in Sec. IV. Units in which @ � c � 1 and a
spacelike metric signature will be used throughout this
paper.
II. TWO DIMENSIONS

A. Covariant stress tensor correlation function

We will be concerned with the stress tensor correlation
function

C�����x; x0� � h:T���x�::T���x0�:i (1)

for a massless, minimally coupled scalar field in two-
dimensional Minkowski spacetime in the vacuum state.
Here :T���x�: is the normal-ordered stress tensor operator,
so h:T���x�:i � 0. We especially seek an expression for
C�����x; x0� as a sum of terms, each of which is a total
derivative of a function with at most logarithmic singular-
ities as x0 ! x. This will allow us to define integrals of the
correlation function by integration by parts.

Such a form is derived in Appendix A, where it is shown
that
-1 © 2005 The American Physical Society
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C�����x;x0��
1

384�2 ��8@�@�@�@�f1�2g��g����f2

��g��g���g��g�����f2�2�g��@�@�

�g��@�@���f2��g��@�@��g��@�@�

�g��@�@��g��@�@���f2�; (2)

where

f1 � ln��x2=‘2�; (3)

and

f2 � ln2��x2=‘2�; (4)

where ‘ is an arbitrary constant with dimensions of length.
The correlation function is independent of the choice of ‘.
Here � � @�@� is the wave operator, and �x2 � �x� �
x0���x� � x

0
��. Because @�f1 � @f1=@x

� � �@�0f1 �

@f1=@x0�, the correlation function, Eq. (2), can be written
in several equivalent forms.

The energy density correlation function becomes

C�x; x0� � Cttt0t0 � �
1

48�2 @
4
t f1 � �

1

48�2 @
2
t @2

t0f1: (5)

Note that none of the f2 terms contribute in this case. This
expression allows us to compute the mean squared average
energy density. Let g�t� be a time sampling function, and
h�x� be a spatial sampling function. Then we define the
averaged energy density operator as

�� �
Z
dt g�t�

Z
dx h�x�:Ttt:: (6)

The mean square of this operator is

Ĉ � h ��2i

�
Z
dt g�t�

Z
dxh�x�

Z
dt0 g�t0�

Z
dx0 h�x0�C�x; x0�:

(7)

If we insert Eq. (5) into the above expression, and then
integrate by parts, we can write

Ĉ � �
1

48�2

Z
dt �g�t�

Z
dt0 �g�t0�

Z
dx h�x�

�
Z
dx0 h�x0�f1: (8)

In the limit that the width of the spatial sampling function
goes to zero, h�x� ! ��x� and we obtain

Ĉ � �
1

48�2

Z
dt �g�t�

Z
dt0 �g�t0� ln���t�2=‘2�: (9)
B. Averaging over space and time—2D

Rather than using Eq. (9), in some cases we can also
directly evaluate the integral in Eq. (7) using contour
integration methods. For the explicit examples to be treated
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in this paper, the latter approach is more convenient. The
energy density correlation function, Eq. (5), can be ex-
pressed as

C�x; x0� �
��t2 � �x2�2 � 4�t2�x2

4�2��t2 ��x2�4
; (10)

where �t � t� t0, and �x � x� x0. In this subsection we
will sample this correlation function in both space and time
with Lorentzian functions of width � in t and t0, and � in x
and x0. Further, let the spatial sampling functions coincide,
but let the temporal ones be displaced by t0.

Let

Ĉ�t0� �
Z 1
�1

dt gL��; t� t0�
Z 1
�1

dt0 gL��; t0�

�
Z 1
�1

dx gL��; x�
Z 1
�1

dx0 gL��; x0�C�x; x0�

(11)

where

gL��; t� �
�

��t2 � �2�
; (12)

and
Z 1
�1

dt gL��; t� � 1: (13)

Now let t! t� t0, so that we have

Ĉ�t0� �
Z 1
�1

dt gL��; t�
Z 1
�1

dt0 gL��; t0�

�
Z 1
�1

dxgL��; x�

�
Z 1
�1

dx0 gL��; x
0�C�t� t0 � t0; x� x

0�

�
Z 1
�1

d� gL�a; ��
Z 1
�1

d�gL�b; ��C��� t0; ��;

(14)

where a � 2�, b � 2�, � � t� t0 and � � x� x0. In the
last step, we used the identity

Z 1
�1

dt gL��; t�
Z 1
�1

dt0 gL��; t0�F�t� t0�

�
Z 1
�1

d� gL�a; ��F���: (15)

We may do the integral on � first, by contour integration.
The integrand has simple poles at � � 	ib and fourth
order poles at � � 	��� t0�. We choose a contour in
the upper half-plane which avoids the fourth order poles,
the contour C1 in Fig. 1. In fact, we could use other
contours such as C2 and still obtain the same answer.
Even if we chose a contour which enclosed either of the
fourth order poles, our answer for the real part of the
-2
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FIG. 1. Some possible integration contours for Eq. (16) are
illustrated. There are two simple poles on the imaginary axis,
and two higher order poles on the real axis. Both types of poles
are denoted by the letter X. The contours C1 and C2 both yield
the same result for the integral. Integration around either of the
poles on the real axis (dashed line circles) gives an imaginary
result, so the real part of the integral is independent of whether
these poles are enclosed or not.
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integral would still be the same. This is because the con-
tribution of either of these poles, the result of integrating
around the closed circular paths, is pure imaginary. Note
that the straight segments and the semicircular segments of
C1 each contain real terms which diverge as the radii of the
semicircles go to zero. However, these terms cancel when
the straight and semicircular contributions are added. The
divergent terms on the straight segments are the boundary
terms that would arise from integrating by parts along these
segments only. Thus integration by parts along the straight
segments and discarding the boundary terms produces the
same result as integration along the complete contour.

In any case, using the residue theorem we obtain

Z 1
�1

d�gL�b; ��C��� t0; ��

�
���� t0�2 � b2�2 � 4b2��� t0�2

4�2���� t0�
2 � b2�4

: (16)

The subsequent �-integration was performed and yields

Ĉ�t0��

�t0�t0�2a�2b���a�b�2��t0�t0�2a�2b���a�b�2�

4�2�t20��a�b�
2�4

:

(17)

(This and several other calculations in this paper were done
using the public domain algebraic manipulation program
MAXIMA.) In the special case when t0 � 0, we simply have

Ĉ�0� �
1

4�2�a� b�4
: (18)
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Let us define

K�t0; a; b� �
Ĉ�t0�

Ĉ�0�
: (19)

In general, we have that Ĉ�t0� � Ĉ��t0�. From Eqs. (17)
and (19), we find that

Z 1
�1

K�t0; a; b� dt0 � 0; (20)

and similarly

Z 1
0
K�t0; a; b� dt0 � 0: (21)

This result tells us that positively correlated regions (K >
0), and anticorrelated regions (K < 0) have equal weight.

C. Sampling along a world line—2D

In this subsection, we shall specialize to the case of
sampling along a world line, i.e., we will effectively set
the width of the spatial sampling function to zero. Define a
normal-ordered smeared stress tensor operator by

S�t0� �
Z 1
�1

dt g�t; t0�:Ttt�t�:; (22)

where g�t; t0� is a sampling function whose peak is at t �
t0. Although hSi � 0 in the vacuum state, hS2i � 0. From
Eq. (9), we have that

hS2i �
Z 1
�1

dt
Z 1
�1

dt0 g�t; t0�g�t
0; t0�C�t; t

0�

� �
1

48�2

Z 1
�1

dt �g�t; t0�
Z 1
�1

dt0 �g�t0; t0� ln��t2=‘2�:

(23)

The case we want to consider is two regions of time-
sampled energy density which are allowed to initially
coincide but which are then gradually separated from one
another. One sampling function has its peak at t0 � 0 and
the other at t � t0. We want to imagine sliding these
regions away from one another (see Fig. 2), and examine
the behavior of the vacuum correlation function as we vary
t0.

With Eq. (22), we can write

hS�t0�S�0�i �
Z 1
�1

dt
Z 1
�1

dt0 g�t; t0�g�t
0; 0�C�t; t0� (24)

� �
1

48�2

Z 1
�1

dt
Z 1
�1

dt0 �g�t; t0� �g�t
0; 0� ln��t2=‘2�:

(25)

This represents the smeared energy density correlation
function for two displaced regions along a world line. We
-3
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FIG. 3. The graph of K�t0� versus t0 for a Lorentzian sampling
function, in units with a � 1. Here we have chosen b � 0, so the
sampling is in time only. Here (a) shows the overall form of
K�t0�, but on a scale which does not reveal the final maximum.
This peak is revealed on a smaller scale graph, (b).

FIG. 2. Two sampling functions which initially coincide and
are then gradually separated.
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can normalize this quantity by defining

K�t0� �
hS�t0�S�0�i

hS2�0�i
: (26)

As an example, we take the sampling function to be a
Lorentzian. If we set b � 0 and a � 1 in Eq. (17), we find

K�t0� �
�t20 � 2t0 � 1��t20 � 2t0 � 1�

�t20 � 1�4
�
�1� 6t20 � t

4
0�

�1� t20�
4 :

(27)

The choice of b � 0 corresponds to sampling in time only,
with displaced sampling functions. A plot of this function
appears in Fig. 3(a). The plot is somewhat deceiving
because there is actually a second positive peak which,
on the scale of the plot, is too small to be seen. However, it
must be there since Ĉ�t0� 
 1=�4�2t40�, as t0 ! 1, and
hence K�t0� has to approach 0 from above for large t0.
The magnified view in Fig. 3(b) reveals the second positive
peak. We can also see this by computing the extrema of
K�t0� using

K0�t0� � �
4t0�t40 � 10t20 � 5�

�t20 � 1�5
: (28)
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One finds that K0�t0� � 0 at t0 � 0 (first maximum), t0 �
0:73 (minimum), and t0 � 3:1 (second maximum).

As a second example, consider a compactly supported
sampling function of width a with g � _g � 0 at t � t0 	
a=2 . A simple choice of function which has this form is

g�t; t0� � g�t� t0� �
30

a5
�t� t0 � a=2�2�t� t0 � a=2�2:

(29)

The second derivative of this function is

�g�t� t0� �
30�12�t� t0�

2 � a2�

a5
; (30)

and

hS2�0�i �
25

2�2a4 : (31)
-4
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FIG. 4. The graph of K�t0� versus t0 for the compactly sup-
ported sampling function given by Eq. (29), in units where a �
1.
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Using Eqs. (25), (26), (30), and (31), one can evaluate
K�t0�, which is plotted as a function of t0 in Fig. 4. Note
that the number of maxima and minima of K�t0� for the
compactly supported sampling function, given in Eq. (29),
is the same as for the Lorentzian sampling function shown
earlier. However, for the compactly supported sampling
function case, the second maximum is much more pro-
nounced. A calculation also shows that, for both the
Lorentzian and the compactly supported sampling func-
tions, we have that

Z 1
0
K�t0�dt0 � 0: (32)

We will show in Appendix C that this is true for arbitrary
smooth sampling functions. In this appendix, we also prove
that

hS2�0�i> 0: (33)

This establishes that the behavior illustrated in Fig. 4 is
independent of the details of the sampling function. The
fact that hS2�0�i> 0 implies that nearly overlapping re-
gions are positively correlated with one another. As t0
increases, the correlation is replaced by anticorrelation,
as shown by the negative minimum in K�t0�. This anticor-
relation implies that, if we measure positive energy in a
given region, there must be negative energy found nearby.
Finally, when the regions are sufficiently separated, the
positive correlation returns, as evidenced by the final posi-
tive peak in Fig. 4. One can understand why disjoint
regions must be positively correlated from the fact that
C�x; x0�> 0. When x � x0 everywhere in the range of
integration, then the integral for Ĉ is well defined as an
ordinary integral, and must be positive. On the other hand,
when we must integrate through points where x � x0, then
C�x; x0� becomes defined only as a distribution, and the
integration by parts procedure can produce a negative
result.
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III. FOUR DIMENSIONS

A. Covariant stress tensor correlation function

In this section, we consider the vacuum stress tensor
correlation function in four dimensions. The covariant
form of this function is derived in Appendix B, with the
result

C�����x;x0���
1

61440�4 �8@�@�@�@���f2

�6g��g���4f2��g��g���g��g����
4f2

�6�g��@�@��g��@�@���
3f2��g��@�@�

�g��@�@��g��@�@��g��@�@���
3f2�:

(34)

Note that only the function f2, defined in Eq. (4), appears
here, in contrast to the two-dimensional result. The energy
density correlation function in four dimensions is given by

C�x; x0� � Cttt0t0 � �
1

7680�4 �r
2�2�2f2

� �
1

7680�4r
2r02� �0f2; (35)

where r2 � �� @2
t is the three-dimensional Laplacian

operator. This form may be used to compute the mean
squared average energy density over a spacetime region
defined by a sampling function F�x�. If we define

�� �
Z
d4xF�x�:Ttt:; (36)

then

Ĉ � h ��2i �
Z
d4xF�x�

Z
d4x0 F�x0�C�x; x0�: (37)

After an integration by parts, this may be expressed as

Ĉ � �
1

7680�4

Z
d4xr2�F�x�

�
Z
d4x0 r02�0F�x0�f2�x� x0�: (38)

At first sight, the process of obtaining finite spacetime
averages of the correlation function may seem mysterious.
We start with an expression for C�����x; x0� which di-
verges as �x� x0��8 as x0 ! x, which seems to be a non-
integrable singularity. Yet we nonetheless obtain finite
integrals of this expression. The reason that this is possible
is that although C�����x; x0� is singular as a function, it is a
well-defined distribution. This is shown by the existence of
the expression, Eq. (34), whereC�����x; x0� is expressed as
-5
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a sum of derivatives of a function with no more than
logarithmic singularities. An alternative treatment of the
singularities of stress tensor correlation functions was
given in Ref. [25]. There dimensional regularization was
used to render the correlation functions finite. In the limit
in which n! 4, where n is the spacetime dimension, time-
ordered stress tensor correlation functions possess a pole
term, which can be absorbed in a renormalization involv-
ing R2 and R��R�� counterterms in the gravitational ac-
tion. However, the correlation functions without time
ordering, such as C�����x; x0�, have no pole term and are
hence finite in dimensional regularization in the n! 4
limit. This is another way to understand why
C�����x; x0� is a well-defined distribution, and why the
integration by parts method yields finite results.

B. Averaging over space and time— 4D

Here we will perform a calculation analogous to that in
Sec. II B, except involving averaging over space and time
in four dimensions. The energy density correlation func-
tion, Eq. (35), may be expressed as

C�x; x0� �
��2 � 3r2��3�2 � r2�

2�4��2 � r2�6
; (39)

where � � t� t0 and r � jx� x0j. As before, we use
Lorentzian sampling functions of width � in t and in t0.
The time-averaged correlation function is

Ĉ T �
Z 1
�1

dt gL��; t�
Z 1
�1

dt0 gL��; t0�C�x; x0�

�
Z 1
�1

d� gL�a; ��C�x; x0�; (40)

where a � 2�. The integrand in the � integral has first
order poles at � � 	ia and sixth order poles at � � 	r.
The integral may be performed by contour integration in a
way analogous to the integral in Eq. (16). The result is

Ĉ T �
�3r2 � a2��r2 � 3a2�

2�4�r2 � a2�6
: (41)

Next we wish to average ĈT over the spatial directions.
Here it will be convenient to use a Gaussian sampling
function

gG��; x� �
1����
�
p

�
e�x

2=�2
; (42)

in each of the Cartesian space coordinates, x; y; z; x0; y0; z0,
and define the spacetime average as

Ĉ �
Z 1
�1

dx gG��; x�
Z 1
�1

dy gG��; y�
Z 1
�1

dz gG��; z�

�
Z 1
�1

dx0 gG��; x
0�
Z 1
�1

dy0 gG��; y
0�

�
Z 1
�1

dz0 gG��; z0�ĈT: (43)
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We may use the fact that
Z 1
�1

dxgG��; x�
Z 1
�1

dx0 gG��; x
0�f�x� x0�

�
Z 1
�1

d�x gG�b;�x�f��x�; (44)

where �x � x� x0 and b �
���
2
p
�. This leads to

Ĉ �
Z 1
�1

d�x gG�b;�x�
Z 1
�1

d�y gG�b;�y�

�
Z 1
�1

d�z gG�b;�z�ĈT

�
4����
�
p

b3

Z 1
0
dr r2e�r

2=�2
ĈT; (45)

where r2 � ��x�2 � ��y�2 � ��z�2. If we use Eq. (41),
then we can write the spacetime averaged correlation
function as

Ĉ �
2

�9=2b3

Z 1
0
dr r2 �3r

2 � a2��r2 � 3a2�

�r2 � a2�6
e�r

2=�2
:

(46)

The integral in the above expression may evaluated in
terms of the error function, erf, as

Ĉ �
1

15�4ab13

� ����
�
p

�
1� erf

�
a
b

��
ea

2=b2
�15b6 � 90a2b4

� 60a4b2 � 8a6� � 2ab�3b2 � 2a2��11b2 � 2a2�

�
:

(47)

Now we wish to discuss the limits in which one sampling
length scale is small compared to the other. First consider
the case of a small spatial scale, b� a. The exponential
factor in Eq. (46) guarantees that only values of r & b
contribute. Thus we can assume that r� a in the inte-
grand and write

�3r2 � a2��r2 � 3a2�

�r2 � a2�6
�

3

a8 : (48)

Then we have

Ĉ �
3

2�4a8 (49)

when b� a. This shows that only temporal sampling is
necessary in order for Ĉ to be finite. Equation (49) may
also be derived from the explicit form, Eq. (47), by use of
the asymptotic form of the error function for large
argument.

Next we consider the opposite limit, where a� b.
However, Ĉ! 1 as a! 0 for fixed, nonzero b. This
may be seen from the integral, Eq. (46), which becomes
proportional to

R
1
0 drr

�6e�r
2=�2

as a! 0. Alternatively,
we can expand Eq. (47) for small a and show that
-6
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Ĉ

1

�7=2ab7
; as a! 0: (50)

Thus in four dimensions, averaging over space alone is not
sufficient to lead to a finite mean squared energy density.
This result was obtained previously by Guth [27] and by
Roura [28].

C. Sampling along a world line— 4D

In the previous subsection, we found that it is possible to
take the limit of a vanishing spatial sampling scale, so that
one is sampling along a world line. Here we will consider
that limit for displaced temporal sampling functions. First

MINKOWSKI VACUUM STRESS TENSOR FLUCTUATIONS
105010
consider Lorentzian sampling functions and let

Ĉ�t0; r� �
Z 1
�1

dt gL��; t� t0�
Z 1
�1

dt0 gL��; t
0�C��; r�

�
Z 1
�1

d� gL�a; �� t0�C��; r�; (51)

where C��; r� is given by Eq. (39), and a � 2�. If we were
to sample in space with a function whose width is small
compared to a, the result is the same as setting r � 0 in the
above expression. More precisely, we perform the integral
for nonzero r, using the same method as used to obtain
Eq. (16), and then take the r! 0 limit. The result is
Ĉ�t0; 0� �
�t40 � 4at30 � 6a2t20 � 4a3t0 � a4��t40 � 4at30 � 6a2t20 � 4a3t0 � a4�

�4�t20 � a
2�8

: (52)
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FIG. 5. The graph of K�t0� in four dimensions as a function of
t0 for the compactly supported sampling function given by
Eq. (56), in units where a � 1.
This function has a form similar to that illustrated in Fig. 3,
except that it has three maxima and two minima. It is
somewhat difficult to graph because the relative sizes of
the extrema decrease very rapidly.

In the limit that r � 0, we may write the four-
dimensional correlation function as

C�t; t0� �
3

2�4�t� t0�8
� �

1

6720�4 @
4
t @

4
t0 ln��t� t

0�2=‘2�:

(53)

We can sample the energy density with arbitrary displaced
sampling functions and write

hS�t0�S�0�i �
Z 1
�1

dt
Z 1
�1

dt0 g�t� t0�g�t0�C�t; t0� (54)

� �
1

6720�4

Z 1
�1

dt
Z 1
�1

dt0�@4
t g�t� t0��

� �@4
t0g�t

0�� ln��t2=‘2�: (55)

It should be noted that here we did not use the form of the
energy density correlation function, Eq. (35), which fol-
lows from the covariant form. Instead, we let r! 0, and
then expressed the result in terms of time derivatives of a
logarithmic function. A more rigorous approach would be
to average Eq. (35) over both space and time, and then let
the widths of the spatial sampling functions go to zero.
However, this is difficult to do explicitly with general
sampling functions. The equivalence of the two approaches
needs to be studied more carefully.

Let us next consider a compactly supported sampling
function given by

g�t� �
630

a9 �t� a=2�4�t� a=2�4; (56)

for jtj 
 a=2, and g�t� � 0 for jtj � a=2. Note that g�t�
and its first three derivatives vanish at t � 	 1

2a, so all
surface terms vanish when we integrated by parts in
Eq. (55) to obtain the second form for hS�t0�S�0�i. We
may again define K�t0� by Eq. (26) and evaluate it numeri-
cally. The result is plotted in Fig. 5.

As in two dimensions, there are regions of correlation
and of anticorrelation as t0 increases. However, the behav-
ior in four dimensions is more complicated, with three
maxima and two minima. This appears to be due to the
greater number of derivatives of the sampling function in
Eq. (55), as compared to Eq. (25).

In Appendix C, we show that in two and four dimensions

Z 1
0
K�t0�dt0 � 0; (57)

and that

hS2�0�i> 0; (58)

for a general g�t�. From Eq. (52), we can also explicitly
-7
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verify that
R
1
0 K�t0�dt0 � 0 for the Lorentzian sampling

function.
IV. SUMMARY

In this paper, we have presented covariant expressions
for the Minkowski vacuum stress tensor correlation func-
tion in two dimensions, Eq. (2), and in four dimensions,
Eq. (34). These expressions are of the form of a sum of
terms, each of which is a derivative of a scalar function
with logarithmic singularities in the coincidence limit.
These expressions allow one to write spacetime averages
of the correlation function as finite integrals. We explicitly
evaluated such averages of the energy density in two
dimensions using Lorentzian sampling functions in both
space and time. The resulting expression, Eq. (17), is
symmetric in the spatial and temporal sampling widths,
and is finite as either width goes to zero with the other
width fixed at a nonzero value.

We next studied the correlations of the sampled 2D
energy density along a world line using displaced sampling
functions. This reveals the correlation and anticorrelation
of measurements of the energy density in overlapping
intervals. The result is illustrated in Fig. 4 for a compactly
supported sampling function. When the intervals nearly
overlap, the two measurements are positively correlated,
as expected. When the overlap has decreased somewhat,
the two measurements become anticorrelated. This can be
interpreted as telling us that, if we find energy density of
one sign on the first measurement, we should find the
opposite sign on the next measurement. Finally, as the
intervals become disjoint, the measurements are again
positively correlated. Furthermore, we show that, for an
arbitrary sampling function, the net area under the corre-
lation graph, e.g., the one depicted in Fig. 4, is equal to
zero. It is hoped that further investigation will elucidate
this interesting behavior.

The analogous calculation in four dimensions yields
similar results. However, in this case there are two regions
of anticorrelation and three of positive correlation. The
fluctuations in the averaged energy density remain finite
in the limit that the spatial width vanishes, but not in the
limit that the temporal width goes to zero. Thus, in four
dimensions, the averaged energy density correlation func-
tion requires averaging in time to be finite.

There is a vaguely analogous result concerning quantum
inequalities on the averaged expectation value of the stress
tensor in an arbitrary state. There are finite lower bounds
on the expectation value of the energy density averaged on
a world line in both 2D and 4D, and on the spatial average
in 2D. However, the spatial average in 4D has no lower
bound [29]. The search for a deeper link between quantum
inequalities and the vacuum stress tensor correlation func-
tion is a topic for future research.

Another question which needs to be explored further is
that of the physical effects of the passive metric fluctua-
105010
tions driven by vacuum stress tensor fluctuations. One
approach is that adopted in Ref. [20] where the
Raychaudhuri equation was used as a Langevin equation
to study the luminosity fluctuations and angular blurring of
a distant source produced by passive metric fluctuations.
The case of the Minkowski vacuum was briefly discussed
in Ref. [20], where it was found that the natural quantum
uncertainty in the test particles used to probe the fluctuat-
ing geometry tends to hide the effects of the metric fluc-
tuations. However, this does not necessarily mean that
these fluctuations are in principle unobservable. This is
another question for further study.
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APPENDIX A

In this appendix, we give the derivation of the stress
tensor correlation function in two-dimensional spacetime
in the Minkowski vacuum state. We first start with the form
of the stress tensor for a massless, minimally coupled
scalar field:

T�� � 	;�	;� �
1

2
g��	

;�	;�: (A1)

From this expression we find the correlation function

C�����x; x
0� � h:T���x�::T���x

0�:i

� h:@�	@�	::@�0	@�0	:i

�
1

2
g��h:@

�	@�	::@�0	@�0	:i

�
1

2
g��h:@�	@�	::@


0
	@
0	:i

�
1

4
g��g��h:@

�	@�	::@

0
	@
0	:i:

(A2)

Here unprimed indices refer to the point x and primed
indices to x0. Next we use the identity

h:	1	2::	3	4:i � h	1	3ih	2	4i � h	1	4ih	2	3i;

(A3)

where the 	i are quantum fields or derivatives of quantum
fields. From this identity, we can show that

h:@�	@�	::@�0	@�0	:i � �@�@�0D��@�@�0D�

� �@�@�0D��@�@�0D�; (A4)

where
-8
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D � D�x; x0� � h	�x�	�x0�i (A5)

is the two-point function. We can express the correlation
function in terms of derivatives of D as

C�����x; x0� � �@�@�0D��@�@�0D� � �@�@�0D��@�@�0D�

� g���@�@�0D��@�@�0D�

� g���@�@

0
D��@�@
0D�

�
1

2
g��g���@�@


0
D��@�@
0D�: (A6)

An equivalent expression for the case of a massive, non-
minimal scalar field has been given by Martin and
Verdaguer. [See Eq. (3.42) in Ref. [13].] The analogous
expression for the electromagnetic field is given in
Ref. [18].

Up to this point, our treatment applies to spacetimes of
any dimensionality. Now we specialize to two-dimensional
Minkowski spacetime. There is an infrared divergence in
the two-point function for a massless scalar field in the
Minkowski vacuum state in two dimensions. Thus, the field
must either have a nonzero mass, or else the only physi-
cally allowed states are ones which break Lorentz invari-
ance [30]. Fortunately, the details of either approach have
no effect on our results. If we let the scalar field have a
small mass m, then the two-point function is given by

D � �
1

4�
ln�cm2�x2� (A7)

in the limit that m�2 � �x2. Here c is a dimensionless
constant and �x2 � �x� � x0���x� � x

0
��. Because the

stress tensor correlation function depends only upon de-
rivatives of D, it is independent of c and m. The second
derivative of D is

@�@�0D � �
2�x��x� � g���x2

2���x2�2
; (A8)

where �x� � x� � x
0
�. We can now combine Eqs. (A6)

and (A8) to obtain an explicit expression for the stress
tensor correlation function in two dimensions:

C�����x; x0� �
1

4�2

�
8

��x2�4
�x��x��x��x�

�
2

��x2�3
�g���x��x� � g���x��x�

� g���x��x� � g���x��x��

�
1

��x2�2
�g��g�� � g��g�� � g��g���

�
:

(A9)

We next wish to express C�����x; x0� as a sum of de-
rivatives of scalar functions. Lorentz symmetry suggests
that these be functions of �x2. Let f � f��x2�. Then the
derivatives of f are
105010
@�f � 2�x�f0; (A10)

@�@�f � 2g��f0 � 4�x��x�f00; (A11)

@�@�@�f � 4�g���x� � g���x� � g���x��f
00

� 8�x��x��x�f000; (A12)

and

@�@�@�@�f � 4�g��g�� � g��g�� � g��g���f00

� 8�g���x��x� � g���x��x�

� g���x��x� � g���x��x�

� g���x��x� � g���x��x��f000

� 16�x��x��x��x�f0000: (A13)

Here primes denote derivatives of f with respect to its
argument. We will also need some expressions involving
the wave operator:

�f � @�@
�f � 2nf0 � 4�x2f00; (A14)

� �f � 4n�n� 2�f00 � 16�n� 2��x2f000

� 16��x2�2f0000; (A15)

and

@�@��f � 4�n� 2�g��f
00 � 8�g���x2

� �n� 4��x��x��f
000

� 16�x��x��x2f000; (A16)

where n is the dimension of the spacetime.
Our goal is to express C�����x; x0� as a sum of deriva-

tives acting on one or more choices of f. Because @�f1 �

�@�0f1, we can write our results in several equivalent
forms, but here and in Appendix B we will use derivatives
with unprimed indices. If f is dimensionless, then in two
dimensions we will need four derivatives in each term in
order that C�����x; x0� has dimensions of length�4. There
are five fourth-rank tensors that we can form which have
the correct dimensions and symmetry properties:

@�@�@�@�f; (A17)

�g��@�@� � g��@�@���f; (A18)

�g��@�@� � g��@�@� � g��@�@� � g��@�@���f;

(A19)

g��g��� �f; (A20)

and

�g��g�� � g��g���� �f: (A21)
-9
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We would like f to have an integrable singularity at
�x2 � 0, so a natural choice is a power of a logarithmic
function. First consider

f1 � ln��x2=‘2�; (A22)

where ‘ is an arbitrary constant with dimensions of length.
However, �f1 � 0 in two dimensions, so the only nonzero
tensor from the above list which can be formed from f1 is

@�@�@�@�f1 � �
96

��x2�4
�x��x��x��x�

�
16

��x2�3
�g���x��x� � g���x��x�

� g���x��x� � g���x��x�

� g���x��x� � g���x��x��

�
4

��x2�2
�g��g�� � g��g�� � g��g���:

(A23)

This is not sufficient to form C�����x; x0�, so we need
another choice of f, which we take to be

f2 � ln2��x2=‘2�: (A24)

From Eqs. (A15) and (A16) with n � 2, we find

�f2 �
8

�x2 (A25)

and

� �f2 �
32

��x2�2
: (A26)

This allows us to form four tensors from f2 with the correct
symmetry properties and dimension:

g��g��� �f2 � 32g��g��
1

��x2�2
; (A27)

�g��g�� � g��g���� �f2 � 32�g��g�� � g��g���

�
1

��x2�2
; (A28)

�g��@�@� � g��@�@���f2

� �32
g��g��
��x2�2

� 64
g���x��x� � g���x��x�

��x2�3
;

(A29)
105010
and

�g��@�@� � g��@�@� � g��@�@� � g��@�@���f2

� �32
g��g�� � g��g��

��x2�2
�

64

��x2�3
�g���x��x�

� g���x��x� � g���x��x� � g���x��x��:

(A30)

Note that @�@�@�@�f2 is not a suitable term because it
contains logarithmic pieces that do not appear in
C�����x; x0� and which cannot be canceled by any other
terms. This leaves us with five tensors from which to form
the stress tensor correlation function.

Let

C�����x;x0��
1

384�2 �c1@�@�@�@�f1�c2g��g����f2

�c3�g��g���g��g�����f2

�c4�g��@�@��g��@�@���f2

�c5�g��@�@��g��@�@�

�g��@�@��g��@�@���f2�: (A31)

If we insert Eq. (A23) and Eqs. (27)–(30) into this ex-
pression and compare with Eq. (A9), we find five condi-
tions on the five coefficients. The unique solution of these
conditions gives

c1 � �8; c2 � �c4 � �2;

and c3 � �c5 � 1:
(A32)

As a check, the correlation function may be shown explic-
itly to satisfy the conservation law

@�C�����x; x
0� � @�

0
C�����x; x

0� � 0: (A33)
APPENDIX B

Here we repeat the derivation in the previous appendix
for the case of four-dimensional Minkowski spacetime.
The general form, Eq. (A6), for the correlation function
still holds, but the two-point function for a massless scalar
field is now

D �
1

4�2�x2 : (B1)
-10



MINKOWSKI VACUUM STRESS TENSOR FLUCTUATIONS PHYSICAL REVIEW D 72, 105010 (2005)
If we insert this form into Eq. (A6), we find the four-
dimensional analog of Eq. (A9):

C�����x;x0��
1

4�4

�
32

��x2�6
�x��x��x��x�

�
4

��x2�5
�g���x��x��g���x��x�

�g���x��x��g���x��x��

�
8

��x2�5
�g���x��x��g���x��x��

�
1

��x2�4
�g��g���g��g���4g��g���

�
:

(B2)

In four dimensions, the correlation function has dimen-
sions of 1=length8. Thus any expression involving deriva-
tives on a dimensionless function will require eight
derivatives. Because there are only four free indices, there
will have to be at least two wave operators. This eliminates
the logarithm function f1, Eq. (A22), because in four
dimensions

� �f1 � 0: (B3)

However, the squared logarithm function f2 may be used to
form the following five tensors with the correct dimensions
and symmetry:

@�@�@�@�� �f2; (B4)

�g��@�@� � g��@�@���
3f2; (B5)

�g��@�@� � g��@�@� � g��@�@� � g��@�@���3f2;

(B6)

g��g���4f2; (B7)

and

�g��g�� � g��g����4f2: (B8)

We may repeatedly use Eqs. (A14) and (A15) with n � 4
to demonstrate that, in four dimensions,

� �f2 � �
32

��x2�2
; (B9)

�3f2 � �
256

��x2�3
; (B10)

and

�4f2 � �
6144

��x2�4
: (B11)

From these expressions, we may show that
105010
@�@�@�@���f2��
61440

��x2�6
�x��x��x��x�

�
6144

��x2�5
�g���x��x��g���x��x�

�g���x��x��g���x��x�

�g���x��x��g���x��x��

�
768

��x2�4
�g��g���g��g��

�g��g���; (B12)

�g��@�@� � g��@�@� � g��@�@� � g��@�@���3f2

�
3072

��x2�4
�g��g�� � g��g��� �

12 288

��x2�5
�g���x��x�

� g���x��x� � g���x��x� � g���x��x��;

(B13)

and

�g��@�@� � g��@�@���
3f2

� 3072
�g��g��
��x2�4

� 4
g���x��x� � g���x��x�

��x2�5

�
:

(B14)

We now express the correlation function as a sum of the
tensors formed from f2 as

C�����x; x0� �
1

61 440�4 �c1@�@�@�@�� �f2

� c2g��g���4f2 � c3�g��g��

� g��g����4f2 � c4�g��@�@�

� g��@�@���
3f2 � c5�g��@�@�

� g��@�@� � g��@�@�

� g��@�@���3f2�: (B15)

If we insert the explicit forms for these tensors and com-
pare with Eq. (B2), we again find five conditions on the five
coefficients, leading to the solution

c1 � �8; c2 � �c4 � �6;

and c3 � �c5 � �1:
(B16)

As required, the correlation function has a vanishing di-
vergence on any index.

APPENDIX C

In this appendix, we will prove Eqs. (32) and (33) in both
two and four dimensions. We will proceed by first showing
that

Z 1
�1

K�t0�dt0 � 0: (C1)
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Then we will prove that K�t0� is a symmetric function, and
hence show that Z 1

0
K�t0�dt0 � 0; (C2)

as well.
Let g�t� be an arbitrary smooth sampling function. From

Eq. (24) or (54) and Eq. (26), we have

K�t0� �
1

hS2�0�i

Z 1
�1

dt g�t� t0�
Z 1
�1

dt0 g�t0�C�t� t0�:

(C3)

Then

Z 1
�1

K�t0�dt0 �
1

hS2�0�i

Z 1
�1

dt
Z 1
�1

dt0 g�t� t0�

�
Z 1
�1

dt0 g�t0�C�t� t0�

�
1

hS2�0�i

Z 1
�1

dt0 g�t0�
Z 1
�1

dtC�t� t0�;

(C4)

where we have interchanged the order of integrations, and
used the fact that, for y � t� t0,
Z 1
�1

dt0 g�t� t0� � �
Z �1
1

dy g�y� �
Z 1
�1

dy g�y� � 1:

(C5)

However, if we can write C�t� t0� � @F�t� t0�=@t, where
F�t� t0� ! 0 as t! 	1, then

Z 1
�1

dtC�t� t0� � �F�t� t0��t��1t��1 � 0; (C6)

which in turn implies that
Z 1
�1

K�t0�dt0 � 0: (C7)

Recall that in two dimensions, the world line vacuum
correlation function is C�t� t0� � 1=�4�2�t� t0�4�, and
in four dimensions it is C�t� t0� � 3=�2�4�t� t0�8�, so
in both cases the condition Eq. (C6) is satisfied. Note that
in four dimensions, it is necessary to assume that we set the
spatial separation r in Eq. (39) to zero and then average
over time, as discussed in Sec. III C.
105010
We now show that K�t0� � K��t0�. Let us write

hS2�0�iK�t0� �
Z 1
�1

dt g�t� t0�
Z 1
�1

dt0 g�t0�C�t� t0�

�
Z 1
�1

d�t g��t�
Z 1
�1

dt0 g�t0�C��t� t0 � t
0�

�
Z 1
�1

d�t g��t�
Z 1
�1

d�t0 g��t0 � t0�C��t� �t0�;

(C8)

where we have let �t � t� t0, so t � �t� t0, and �t0 � t0 �
t0. If we now let �t0 ! t; �t! t0, we have

hS2�0�iK�t0� �
Z 1
�1

dt g�t� t0�
Z 1
�1

dt0 g�t0�C�t0 � t�

� hS2�0�iK��t0�; (C9)

where we have used the fact C�t0 � t� � C�t� t0�. Note
that the symmetry of K�t0� depends only on that of C and
does not assume that the sampling function g�t� is sym-
metric. Thus since

Z 1
�1

K�t0� dt0 � 0; (C10)

and K�t0� is symmetric, it also follows that

Z 1
0
K�t0� dt0 � 0: (C11)

In order to determine whether a fluctuation is correlated
or anticorrelated with itself, we must determine the sign of
hS2�0�i in the general case. We would expect that a fluc-
tuation should be correlated with itself, and thus that
hS2�0�i> 0. This can be proven from the fact that S�0�,
as defined by Eq. (22), is a self-adjoint operator [31]. Let
j i be the state under consideration, which in our case is
the Minkowski vacuum. Then

j�i � S�0�j i (C12)

is a well-defined state vector with positive norm. Thus we
have

k�k2 � h jSy�0�S�0�j i � hS2�0�i> 0: (C13)
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