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Perturbations of Schwarzschild black holes in the Lorenz gauge: Formulation
and numerical implementation
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We reformulate the theory of Schwarzschild black hole perturbations in terms of the metric perturbation
in the Lorenz gauge. In this formulation, each tensor-harmonic mode of the perturbation is constructed
algebraically from ten scalar functions, satisfying a set of ten wavelike equations, which are decoupled at
their principal parts. We solve these equations using numerical evolution in the time domain, for the case
of a pointlike test particle set in a circular geodesic orbit around the black hole. Our code uses
characteristic coordinates, and incorporates a constraint-damping scheme. The axially symmetric, odd-
parity modes of the perturbation are obtained analytically. The approach developed here is especially
advantageous in applications requiring knowledge of the local metric perturbation near a point particle; in
particular, it offers a useful framework for calculations of the gravitational self-force.
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I. INTRODUCTION

There has been much progress, over the past few years,
on the problem of finding the ‘‘self-force’’ (SF) correction
to the geodesic motion of point particles in curved geome-
tries [1,2]. This had strong motivation from the need to
accurately model the orbital evolution in astrophysical
binaries with extreme mass ratios—a key type of sources
for the planned gravitational-wave detector LISA (the
Laser Interferometer Space Antenna) [3]. Yet, despite the
fact that a formal framework for calculations of the gravi-
tational SF exists since quite a while ago [4–7], most
actual computations so far have been restricted to toy
models based on scalar or electromagnetic fields, with
very little progress on the gravitational problem of rele-
vance to LISA. What held progress up, mainly, is a certain
gap within the standard glossary of techniques comprising
black hole perturbation theory. Here we intend to supple-
ment the necessary piece of perturbative technology
needed to facilitate calculations of the gravitational SF.
Although our motivation bears primarily on the SF prob-
lem, we expect the perturbation approach to be developed
here to be useful in a wider class of problems in mathe-
matical and numerical relativity.

What has been hindering calculations of the gravita-
tional SF can be described, in most simple terms, as
follows. The term ‘‘gravitational SF’’ refers to the effective
local force exerted on a point mass particle through inter-
action with its own gravitational field. (The notion of a
‘‘point particle,’’ in our general-relativistic context, builds
on the clear separation of length scales in the extreme-
mass-ratio inspiral problem—see, e.g., the discussion in
[1].) Technically, the SF appears as a correction term,
quadratic in the particle’s mass, in the geodesic equation
of motion. To obtain the SF one first needs to address the
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subtle issue of ‘‘regularization’’: telling the part of the
particle’s field whose backreaction affects the motion,
from a remaining, singular piece that can be safely ‘‘re-
moved’’ without affecting the motion. A formal procedure
for identifying the correct ‘‘regularizable’’ piece (for mass
particles in any vacuum curved spacetime) has been estab-
lished in works by Mino et al. [5], Detweiler and Whiting
[6], and others.

The above regularization procedure involves the intro-
duction of a suitable local frame for the particle, and also
the imposition of an appropriate gauge condition for the
particle’s field, the latter being treated as a perturbation
over the fixed background of the massive black hole. Re-
call here that the metric perturbation (MP) is subject to a
gauge freedom, associated with infinitesimal coordinate
transformations. The full MP induced by the particle is
gauge dependent, and so is the form of its singular, regu-
larizable piece. This local piece is most conveniently con-
structed within the so-called ‘‘Lorenz gauge’’: an analogue
of the familiar Lorenz gauge of electromagnetism, wherein
the covariant divergence of the (trace-reversed) MP is
taken to vanish [see Eq. (3) below]. The Lorenz-gauge
condition conforms with the isotropic form of the singu-
larity very close to the particle (as viewed from a suitable
local frame), and the Lorenz-gauge MP correctly reflects
the ‘‘inverse-distance’’ behavior of this singularity. This
local isotropy of the Lorenz gauge is an essential feature
that should not be taken for granted: Expressed in a poorly
chosen gauge, the physical point singularity may take a
complicated form that could render analysis intractable.
Indeed, it has been shown that with the standard gauge
choices commonly made in studies of black hole perturba-
tions (see below) the physical point singularity can take a
distorted form, and may even cease to be isolated [8].
-1 © 2005 The American Physical Society
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Once the ‘‘correct’’ singular piece of the MP is identi-
fied, the construction of the SF proceeds by removing this
piece from the full (retarded) field of the particle, and then
calculating the force exerted on the particle by the remain-
ing finite field. (The full field is obtained, in principle, by
solving the perturbation equations with an energy-
momentum source term representing the point particle.)
A practical way to subtract the singular piece from the full
field is offered by the mode-sum scheme [7], in which one
first decomposes the full MP into multipole harmonics
(defined with respect to the background black hole geome-
try) and then carries out the subtraction mode by mode—
thereby avoiding the need to deal with singular fields. The
mode-by-mode subtraction scheme, like the original con-
struction in [4,5], is formulated in the Lorenz gauge, and
relies on having at hand the full Lorenz-gauge MP near the
particle.

Unfortunately, the standard toolkit of black hole pertur-
bation theory does not include practical techniques or
working tools for calculating the MP in the Lorenz gauge.
Standard formulations of black hole perturbations employ
other gauges, which are favored for their algebraic sim-
plicity. A most commonly favored gauge choice for ana-
lyzing perturbations of spherically symmetric black hole
spacetimes is the one introduced long ago by Regge and
Wheeler (RW) [9] (and developed further by others, in-
cluding Zerilli [10,11] and Moncrief [12]). In the RW
gauge, certain projections of the MP onto a tensor-
harmonic basis, in a specific coordinate system, are taken
to vanish.1 Another such ‘‘algebraic’’ gauge proven useful
is the one referred to as the radiation gauge [14], where
one sets to zero the projection of the MP along a principal
null direction of the background black hole geometry.
Perturbations of the Kerr geometry have been studied al-
most exclusively through the powerful Teukolsky formal-
ism [15], in which the perturbation is formulated in terms
of the Weyl scalars, rather than the metric. A reconstruc-
tion procedure for the MP, out of the perturbation in the
Weyl scalars, has been prescribed by Chrzanowski [14]
(with later supplements by Wald [16] and Ori [17]). This
reconstruction is formulated within the radiation gauge,
and relies crucially on this choice of gauge.

Hence, we are in a situation where the singular, ‘‘re-
movable’’ piece of the MP near the particle is given in the
Lorenz gauge (which best reflects the symmetry of the
point singularity), while the full field of the particle can
only be calculated in the RW or radiation gauges (which
bear on the symmetries of the black hole background).
Much effort has been invested recently in trying to resolve
this problematic issue. One approach has been to try re-
formulating the SF, and the subtraction scheme, entirely
1There is an equivalent formulation of the RW gauge, which
does not rely on a tensor-harmonic decomposition [8,13]. In this
formulation one sets to zero certain combinations of the MP
components and their derivatives, in a certain coordinate system.
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within the RW gauge (in the Schwarzschild background)
[18,19]. Another approach incorporated an ‘‘intermediate’’
gauge, in which the MP admits the isotropic Lorenz-
gauge form near the particle, but gradually approaches
the form of the RW (or radiation) gauge as one moves
away from the particle [8]. Neither approach has gone
very far, partly because of the difficulty in tackling the
singular gauge transformations involved. The complicated
singular nature of these gauge transformations reflects
the fact that the RW/radiation gauges are far from being
natural gauges to describe point-particle singularities.
For example, it has been demonstrated [8] that the
radiation-gauge MP develops a singularity along an in-
finite ray emanating from the particle. Indeed, the only
actual computation of the gravitational SF carried out so
far [20,21] was restricted to a special case where the RW-
gauge MP happens to coincide with the Lorenz-gauge MP
(the case of a strictly radial infall into a Schwarzschild
black hole).

Of course, the above gauge problem would have never
occurred, had we the right tools for calculating the full
perturbation field of the particle in the Lorenz gauge. This
would have allowed a direct approach to SF calculations,
based entirely on the Lorenz gauge and avoiding the above
gauge-related complications. In this work we begin devel-
oping such practical tools for analysis of Lorenz-gauge
perturbations. This paper deals with MP of the
Schwarzschild black hole. It formulates the Lorenz-gauge
MP equations in a form accessible to numerical time-
evolution treatment, and presents calculations of the
Lorenz-gauge field in the example of a mass particle mov-
ing in a circular geodesic in the strong field of the black
hole. The paper also discusses, in brief, how we might go
about carrying out Lorenz-gauge calculations in the Kerr
spacetime. This important task is currently subject to in-
tensive study.

It may be worthwhile to summarize here the main
strengths of our Lorenz-gauge approach to black hole
perturbations. The following points also give clues to the
variety of problems where such an approach can prove
useful.
(i) A
-2
regularization scheme for the SF in Kerr space-
time has only been prescribed in the Lorenz gauge.
It is not clear yet how one goes about formulating
and calculating the gravitational SF in other
gauges. Having at hand the Lorenz-gauge MP
allows one, immediately, to compute the gravita-
tional SF, without having to resort to cumbersome
gauge adjustments.
(ii) I
n our approach one solves directly for the MP
components, without resorting to complicated re-
construction procedures. This feature becomes im-
portant in problems where knowledge of the Weyl
scalars (or RW/Zerilli’s variables, or Moncrief’s
variables) is insufficient, and direct access to the
MP itself is necessary.
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(iii) R
elated to the last point is the fact that, in our
approach, the MP reconstruction is algebraic (see
Sec. II E below), and does not involve differentia-
tion of the field variables. This comes to be a great
advantage in numerical applications, where differ-
entiation often results in loss of numerical accu-
racy. In particular, in SF calculations it is necessary
to resolve the MP near the particle with a great
precision. The higher the order of the derivatives
involved in constructing the SF are, the tougher
the resolution requirements become. If the SF is
to be constructed from the Weyl scalars (or
from Moncrief’s variables, as in [21]), this con-
struction would necessitate taking three successive
derivatives—two to reconstruct the MP, and a fur-
ther one to obtain the force exerted by the MP.
This has proven to be very demanding computa-
tionally [21]. In our approach, one need only take
a single derivative of the numerical field vari-
ables.
(iv) Y
et another advantage of working with the Lorenz-
gauge MP components as field variables is that
these behave more regularly near point particles
than do Teukolsky’s or Moncrief’s variables. This
has a simple manifestation when considering the
multipole decomposition of the MP: The individ-
ual multipole modes of the Lorenz-gauge MP are
continuous at the particle; only their first deriva-
tives are discontinued there. The multipole modes
of Teukolsky’s or Moncrief’s variables, on the
other hand, are themselves discontinuous at the
particle, and so are, in general, the modes of the
MP in the RW gauge. Obviously, this better regu-
larity of the Lorenz-gauge MP comes to be a great
advantage when it comes to numerical imple-
mentation.
(v) T
he Lorenz-gauge perturbation equations take a
fully hyperbolic form. (Compare with the situation
in the RW or radiation gauges, where the set of
perturbation equations splits into a subset of hyper-
bolic field equations, and a subset of elliptic equa-
tions that constrain the evolution.) This makes the
Lorenz-gauge formulation especially convenient
for numerical applications which are based on
time-domain evolution. The supplementary gauge
conditions indeed take the form of elliptic ‘‘con-
straint’’ equations, but these can be made to hold
automatically. We shall discuss this point in
Sec. II.
(vi) T
he Lorenz-gauge condition does not interfere
with the local isotropic symmetry of point-particle
singularities. This makes it well suited—in gravi-
tational perturbation theory as in electromagne-
tism—for study of the local field near such
particles. Other gauge choices (the RW and radia-
tion gauges are examples) may artificially distort
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this symmetry, requiring a more cautious treat-
ment.
(vii) T
he use of (generalized) ‘‘harmonic coordinates,’’
closely related to the choice of Lorenz gauge in
a perturbative context, has lately been a popu-
lar trend in numerical relativity (e.g., [22]). It
has been partially responsible for the signifi-
cant progress made recently in fully nonlin-
ear simulations of binary black hole mergers
[23]. There is still much to understand about
the underlying mathematics that makes this for-
mulation so successful. The simpler realm of per-
turbation theory can provide a good test bed for
these ideas, and help gain insight into some of
the mathematical features of hyperbolic form-
ulations.
The obvious down side of the Lorenz-gauge formulation
is that one can no longer benefit from the kind of algebraic
simplicity that has made the RW/radiation gauges so popu-
lar. There is no known way to fully decouple between the
various tensorial components of the Lorenz-gauge MP, and
one has to treat the perturbation equations as a coupled set.
This, seemingly, has discouraged the development of a
Lorenz-gauge MP formulation in the past. Part of our
aim here is to demonstrate that such formulation is trac-
table, and accessible to numerical implementation, despite
the lack of algebraic simplicity.

This paper is structured as follows. In Sec. II we for-
mulate MP theory in the Lorenz gauge. Specializing to the
case of a point mass source in Schwarzschild geometry, we
decompose the field equations (and the gauge conditions)
into tensor-harmonic multipoles, and obtain a set of ten
hyperbolic wave equations for each multipole mode (each
l;m). This set couples between the various tensorial com-
ponents of the MP; however, the MP variables are chosen
in such a way that the equations are decoupled at their
principal parts. Using the supplementary gauge conditions
we modify the original wave equations to incorporate a ‘‘-
constraint-damping’’ scheme: a mechanism designed to
guarantee that violations of the gauge conditions (due,
e.g., to numerical errors) are damped automatically during
numerical evolution. In Sec. III we implement the above
formulation for the case of a source particle in a circular
geodesic orbit around the black hole. We give analytic
solutions for the monopole mode of the MP, and for all
of its axially symmetric, odd-parity modes. To solve for the
rest of the modes, we present a numerical code, based on
characteristic time evolution in 1� 1 dimensions.
Section IV presents a series of validation tests for our
code. In particular, we use our Lorenz-gauge solutions to
extract the fluxes of energy (in each of the multipole
modes) radiated to infinity in gravitational waves, and
compare them with the values given in the literature.
Finally, in Sec. V, we discuss the applicability of our
approach to more general orbits in the Schwarzschild
spacetime, and to orbits around Kerr black holes.
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II. FORMULATION

A. Linearized Einstein equations in the Lorenz gauge

Let g�� be the metric in a given ‘‘background’’ space-
time, which we assume to be Ricci flat [i.e., R���g��� �
0]. Let then h�� represent a small gravitational perturba-
tion away from g��, produced by a given energy-
momentum distribution T��. Linearization of the
Einstein equations, G���g�� � h��� � 8�T��, in the per-
turbation h�� about the background g�� yields the general
form [11]

�h�� � g���h� h;�� � 2R����h�� � h��
;�

;�

� h��
;�

;� � g��h��;�� � �16�T��; (1)

where a semicolon denotes covariant differentiation in the
background metric g��, � � ;�

;� is the covariant
D’Alambertian operator, h � g��h�� is the trace of h��,
and indices are raised and lowered using the background
metric g��. Here, and throughout this paper, we follow the
conventions of Ref. [24]; hence, the metric signature is
�� ����, the connection coefficients are ���� �
1
2 g

���g��;� � g��;� � g��;�), the Riemann tensor is
R���� � ����;� � ����;� � �������� � ��������, the Ricci
tensor and scalar are R�� � R���� and R � R��, and
the Einstein equations are G�� � R�� �

1
2g��R �

8�T��. We shall use standard geometrized units, with c �
G � 1.

It is convenient to reexpress the MP equations (1) in
terms of the new variables

�h �� � h�� �
1

2
g��h: (2)

[Note �h�� �h�
�� � �h; hence �h�� is referred to as the ‘‘-

trace-reversed’’ MP.] Imposing the Lorenz-gauge condi-
tion,

�h ��
;� � 0; (3)

the MP equations reduce to the compact form

� �h���x� � 2R��
�
�

�h�� � �16�T��: (4)

This is a ‘‘linear, diagonal second-order hyperbolic’’ sys-
tem, which admits a well-posed initial-value formulation
on a spacelike Cauchy hypersurface (see, e.g., Theorem
10.1.2 of [25]). Furthermore, if the gauge conditions (3) are
satisfied on the initial Cauchy surface, then they are guar-
anteed to hold everywhere [assuming that Eqs. (4) are
satisfied everywhere, and that T��

;� � 0].2
2The conditions (3) do not fully specify the gauge: There is a
residual gauge freedom within the family of Lorenz gauges,
h�� ! h�� � ��;� � ��;�, with any �� satisfying ��� � 0. It
is easy to verify that the form of both (3) and (4) is invariant
under such gauge transformations.
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The main motivation for this work comes from problems
where the source of perturbation can be regarded as a
‘‘point particle,’’ with a definite trajectory defined on the
background metric. (See [1] for a discussion of how the
notions of a ‘‘point particle’’ and a ‘‘trajectory’’ can be
made sense of in a general-relativistic context.) In this
case, the source term in the MP equations takes the form

T���x�� � �
Z 1
�1
��g��1=2�4�x� � x�p �	��u�u�d	

�particle case�;
(5)

where � is the mass of the particle, g is the determinant of
g��, x�p �	� denotes the particle’s world line (parametrized
by proper time 	), and u� � dx�p =d	 is a tangent 4-
velocity defined along the world line.

B. Multipole decomposition

In the rest of this work we restrict our discussion to
perturbations of the Schwarzschild black hole spacetime.
The line element in the background geometry is then given
by

ds2 � �fdt2 � f�1dr2 � r2�d
2 � sin2
d’2�; (6)

where f � 1� 2M=r, M is the mass of the black hole, the
event horizon is at f�r� � 0, and t; r; 
; ’ are the standard
Schwarzschild coordinates, which we adopt throughout
this paper. We shall proceed by decomposing the MP
into multipole harmonics. This will be achieved by pro-
jecting �h�� onto a basis of 2nd-rank tensor harmonics,
defined, in the background Schwarzschild geometry, on
2-spheres t; r � const [26]. The spherical symmetry of
the background geometry will guarantee that the individual
multipole harmonics (‘‘l; m modes’’) are eigenvectors of
the wave operator in Eqs. (4), and hence evolve indepen-
dently. However, the ten tensorial components of (each l;m
mode of) the perturbation will generally remain coupled.

We will adopt here the basis of tensor harmonics defined
in Appendix A, which represents a slightly modified ver-
sion of the one introduced by Zerilli [10]. We denote our
tensor harmonics by Y�i�lm�� �
;’; r�, where l and m are the
multipole and azimuthal numbers, respectively, i �
1; . . . ; 10 labels the ten elements of the tensorial basis,3

and �;� are tensorial indices.4 The harmonics Y�i�lm�� de-
pend only on the Schwarzschild coordinates 
 and ’,
except for simple multiplicative powers of r and f�r� that
pendent basis elements: There are only four independent ele-
ments at l � 0, and eight independent elements at each of the
three l � 1 modes—see Sec. II D below for a more detailed
discussion.

4To avoid confusion we note that, despite the similar notation,
the Y�i�lm�� ’s adopted here differ from the basis used by one of the
authors in [27].
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are included in their definition (see Appendix A)—the
former in the interest of dimensional balance, and the latter
for regulating the behavior at the event horizon. With this
definition, the noncoordinate-basis components Y�i�lm

�̂ �̂
�

�g��g���1=2Y�i�lm�� (no summation over repeated indices)
are all dimensionless, and become r independent at the
limit M=r! 0. Also, these harmonics are regular at the
event horizon [f�r� � 0], in the sense that they attain finite
(generally nonzero) values there when expressed in regu-
lar, ‘‘horizon penetrating’’ coordinates (like the Kruskal
coordinates).

The Y�i�lm�� ’s constitute an orthonormal set, in the sense
that

Z
d��������Y�i�lm�� �	Y

�j�l0m0

�� � �ij�ll0�mm0 (7)

(for any i; j � 1; . . . ; 10), where ��� �
diag�1; f; r�2; r�2sin�2
�, an asterisk denotes complex
conjugation, and the integration is carried over a 2-sphere
of constant r and t. The seven harmonics i � 1; . . . ; 7
constitute a basis for all covariant 2nd-rank symmetric
tensors of even parity, while the remaining three harmonics
i � 8; 9; 10 span all such tensors which are of odd parity.
Any covariant 2nd-rank symmetric tensor t�� can hence be

expanded as t�� �
P
l;m
P10
i�1 t

�i�lm�r; t�Y�i�lm�� , where the

time-radial coefficients are given by t�i�lm�r; t� �R
d�t���

������Y�i�lm�� �	.
We expand the trace-reversed metric perturbation in the

above tensor harmonics as

�h �� �
�
r

X
l;m

X10

i�1

a�i�l �h�i�lm�r; t�Y�i�lm�� �
; ’; r�: (8)

The coefficients a�i�l are introduced for the purpose of
simplifying the form of Eqs. (18) below, and are given by

a�i�l �
1���
2
p 


8><
>:

1; i � 1; 2; 3; 6;
�l�l� 1���1=2; i � 4; 5; 8; 9;
��l�l� 1���1=2; i � 7; 10;

(9)

where

� � �l� 2��l� 1�: (10)

The dimensionless scalar fields �h�i�lm�r; t� will serve as
integration variables for the numerical time evolution of
the mode-decomposed perturbation equations. For that
reason, the above construction is careful in making sure
that these fields are well behaved (i.e., attain finite, gen-
erally nonzero values) both at spacial infinity and along the
event horizon. The factor 1=r in front of the expansion (8)
was inserted to guarantee �h�i�lm / const as r! 1. The
�h�i�lm’s are guaranteed to be regular at the horizon since
both the physical perturbation �h�� and the harmonics Y�i�lm��

are regular there.
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In a similar manner, we expand the energy-momentum
tensor as

T�� �
X
l;m

X10

i�1

T�i�lm�r; t�Y�i�lm�� �
; ’; r�; (11)

with the time-radial coefficients given by

T�i�lm�r; t� �
Z
d��������Y�i�lm�� �	T��: (12)

For the point-particle source with energy momentum given
in Eq. (5), this becomes

T�i�lm�r; xp� �
�

utr2
p

u�u��
���xp��

���xp�


 Y�i�lm	�� ��p���r� rp�

�particle case�; (13)

where, recall, xp�	� denotes the particle’s trajectory, and u�

its 4-velocity.
We now wish to obtain equations for the various fields

�h�i�lm�r; t� (numbering ten, for each given l;m) that are
fully separated with respect to l;m, and are uncoupled
with respect to i at their principal part. This is achieved
by first substituting both expansions (8) and (11) into the
field equations (4), and then constructing certain combina-
tions of the resulting equations. For example, to obtain an
equation for �h�1�lm, one has to add the tt component of
Eqs. (4) to the rr component of that equation multiplied by
f2. For some of the other �h�i�lm’s one has to combine certain
derivatives of the field equations. The full list of necessary
combinations is given in Appendix B. This procedure
yields a set of ten equations, where the principal part of
the ith equation involves solely the ith MP function, �h�i�lm.
One proceeds by showing that, in each of the ten equations,
the angular dependence on both sides is simply / Ylm. One
then uses the orthogonality of the spherical harmonics to
separate the equations into multipole modes.

To write the resulting separated equations in a conve-
nient form, we introduce the standard two-dimensional
scalar-field wave operator (including centrifugal potential),

�2d
sc � @uv �

f
4

�
f0

r
�
l�l� 1�

r2

�
; (14)

where f0 � df=dr � 2M=r2 and v; u are the Eddington-
Finkelstein null coordinates, defined by v � t� r	 and
u � t� r	, with dr	=dr � f�1. (Throughout this paper
it is to be understood that partial derivatives with respect
to v or u are taken with fixed u or v, respectively, while
partial derivatives with respect to t or r are taken with fixed
r or t, respectively.) The separated field equations then take
the form

�2d
sc

�h�i�lm � ~M�i�l
�j�

�h�j�lm � 4���1�rf=a�i��T�i�lm � S�i�lm

�i � 1; . . . ; 10�: (15)
-5
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The quantities ~M�i�l
�j� are differential operators, of the first

order at most, that couple between the various �h�j�’s (with
same l; m�. The explicit form of the ~M�i�l

�j� ’s can be found in
Appendix C. As expected, one finds that the seven equa-
tions for the even-parity modes �h�1;...;7� decouple from the
remaining three equations for the odd-parity modes
�h�8;9;10�: We have ~Ml�i�

�j� � 0 for any i � 1; . . . ; 7 with j �
8; 9; 10, and for any i � 8; 9; 10 with j � 1; . . . ; 7. Further
reduction of the system will be achieved in the next step,
where we reemploy the gauge conditions.

C. Gauge conditions and constraint damping

The field equations (4) are supplemented by the gauge
conditions Z� � �h��

;� � 0 of Eq. (3). In a mode-
decomposed form, these four conditions read

Hlm
1 �r; t� � � �h�1�;t � �h�3�;t � f� �h

�2�
;r � �h�2�=r� �h�4�=r� � 0;

(16a)

Hlm
2 �r; t� � �h�2�;t � f� �h

�1�
;r � �h�3�;r � � �1� 4M=r� �h�3�=r

� �f=r�� �h�1� � �h�5� � 2f �h�6�� � 0; (16b)

Hlm
3 �r; t� � �h�4�;t � f� �h

�5�
;r � 2 �h�5�=r� l�l� 1� �h�6�=r

� �h�7�=r� � 0; (16c)

Hlm
4 �r; t� � �h�8�;t � f� �h

�9�
;r � 2 �h�9�=r� �h�10�=r� � 0: (16d)

[To obtain these equations, insert the expansion (8) into the
equations Zt � 0, Zr � 0, �sin
Z
�;
 � �Z’= sin
�;’ � 0,
and Z
;’ � Z’;
 � 0, respectively; then show that the an-
gular part in all cases is proportional to Ylm and use the
orthogonality of the spherical harmonics to separate the
equations.] These conditions, relating the various �h�i�’s and
their first derivatives, are to supplement the separated field
equations (15).

One now faces one of the standard problems of numeri-
cal relativity: the fact that the combined set of ten field
equations and four gauge conditions (or ‘‘constraints’’) is
overdetermined. Given initial data, the solutions are deter-
mined uniquely, in principle, by evolving the ten field
equations; how do we then make sure that the gauge
conditions are satisfied as well during the evolution? In
our case of Lorenz-gauge perturbations, and in the contin-
uum limit, theory has it that if the gauge conditions are
satisfied on the initial Cauchy surface, then the field equa-
tions will preserve them throughout the evolution. To see
why this is true, simply take the divergence of Eqs. (4),
which, with the help of the contracted Bianchi identities
and assuming Ricci flatness of the background geometry
and T��

;� � 0, yields a simple homogeneous wave equa-
tion for the divergence of �h��: �Z� � 0. Thus, in the
continuum limit, if �h�� satisfies a well-posed initial-value
problem and Z� � 0 on the initial surface, then Z� � 0 is
guaranteed throughout the evolution. However, in actual
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numerical time-evolution implementations, gauge-
condition violations due to finite differentiating and/or
round-off errors can grow out of control even provided
appropriate initial data. Moreover, in most cases it is
practically impossible to devise initial data that satisfy
the gauge conditions precisely, and at the same time are
consistent with the field equations.

Gundlach et al. [28] recently proposed a general scheme
for dealing with the above problem (in the wider context of
fully nonlinear numerical relativity), which employs the
idea of constraint damping. Adapted to our problem of
Lorenz-gauge perturbations, the idea would be to add to
the linearized Einstein equations, Eqs. (4), a term of the
form�
�t�Z� � t�Z��, where 
 is a positive constant and
t� is a future-directed timelike vector field. Obviously, the
new system of 10� 4 equations is equivalent (in the con-
tinuum limit) to the original system. Also, the added term
does not alter the principal part of the field equations and
hence does not interfere with their neat hyperbolic form.
However, the evolution equation for Z� now becomes
�Z� � 
�t�Z� � t�Z��

;� � 0, which includes a damping
term. One then expects that, under a range of circumstan-
ces [28], Z� would ‘‘automatically’’ damp to zero during
the evolution (with a time scale set by 
, if t� is taken to be
of unit length).

Here we will be inspired by the above scheme, but will
allow ourselves an amount of freedom in executing it: We
will seek to add terms / Z� to our field equations, which
would assure efficient damping of the constraints, and at
the same time would lead to simplification in the final form
of the decoupled field equations (putting in mind simple
numerical implementation). The ultimate ‘‘justification’’
for the specific form selected for the added terms would
come from numerical experiments with circular orbits,
described in the following sections.

We take t� � ��t�, and add to the field equations (4) a
term 
��t� ~Z� � �t� ~Z��, where 
 � 
�r� � f0 � 2M=r2

and ~Z� � �Zr; 2Zr; Z
; Z’� (Schwarzschild components).
This choice simplifies the form of the ten field equations,
and leads to partial decoupling as we describe below. Our 

is not constant, but is expected to suit its purpose as it
varies slowly, on a scale of the background curvature,
which is much larger than the typical scale for constraint
violations in evolution of perturbations from a point parti-
cle. (As our numerical experiments demonstrate, the latter
scale tends to relate to the radius of curvature associated
with the particle—see, for example, Fig. 10 in the next
section.) The seemingly odd form of ~Z� (note it has Zr for
its t component) has been selected based on numerical
experiments with circular orbits. It turns out (see
Sec. IV B) to yield efficient damping of all four constraints
Z� � 0, but we shall not attempt here to explain that on
theoretical ground.

At the level of the mode-decomposed equations (17), the
addition of the above term to the field equations amounts to
-6
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adding �f0=2�H2 at i � 1; 2, adding �f0=4�H3 at i � 4; 5, and adding �f0=4�H4 at i � 8; 9. This brings the separated field
equations to their final form:

�2d
sc

�h�i�lm �M�i�l
�j�

�h�j�lm � S�i�lm �i � 1; . . . ; 10�; (17)

where the terms M�i�
�j�

�h�j� are given explicitly (omitting the indices l;m for brevity) by

M�1�
�j�

�h�j� �
1

2
ff0 �h�3�;r �

f

2r2 �1� 4M=r�� �h�1� � �h�5�� �
1

2r2 �1� 6M=r� 12�M=r�2� �h�3� �
f2

2r2 �6M=r� 1� �h�6�; (18a)

M�2�
�j�

�h�j� �
1

2
ff0 �h�3�;r � f0� �h

�2�
;v � �h�1�;v � �

f2

2r2 �
�h�2� � �h�4�� �

1

2
�f0=r���1� 4M=r� �h�3� � f� �h�1� � �h�5� � 2f �h�6���; (18b)

M�3�
�j�

�h�j� �
1

2
ff0 �h�3�;r �

1

2r2 �1� 8M=r� 10�M=r�2� �h�3� �
f2

2r2 �
�h�1� � �h�5� � �1� 4M=r� �h�6��; (18c)

M�4�
�j�

�h�j� �
1

2
f0� �h�4�;v � �h�5�;v � �

1

2
l�l� 1��f=r2� �h�2� �

1

4
f0f=r�3 �h�4� � 2 �h�5� � �h�7� � l�l� 1� �h�6��; (18d)

M�5�
�j�

�h�j� �
f

r2

�
�1� 4:5M=r� �h�5� �

1

2
l�l� 1�� �h�1� � �h�3�� �

1

2
�1� 3M=r��l�l� 1� �h�6� � �h�7��

�
; (18e)

M�6�
�j�

�h�j� � �
f

2r2 �
�h�1� � �h�5� � �1� 4M=r��f�1 �h�3� � �h�6���; (18f)

M�7�
�j�

�h�j� � �
f

2r2 �
�h�7� � � �h�5��; (18g)

M�8�
�j�

�h�j� �
1

2
f0� �h�8�;v � �h�9�;v � �

1

4
f0f=r�3 �h�8� � 2 �h�9� � �h�10��; (18h)

M�9�
�j�

�h�j� �
f

r2 �1� 4:5M=r� �h�9� �
f

2r2 �1� 3M=r� �h�10�; (18i)

M�10�
�j�

�h�j� � �
f

2r2 �
�h�10� � � �h�9��: (18j)
Recall in these equations f � 1� 2M=r, f0 � 2M=r2,
� � �l� 2��l� 1�, @r is taken with fixed t, and @v is taken
with fixed u.

D. Hierarchical structure of the separated
field equations

Following the above manipulations, the five equations
for the even-parity modes i � 1; 3; 5; 6; 7 no longer couple
to the remaining two equations for i � 2; 4. Similarly, in
the odd-parity subset, the two equations for i � 9; 10 no
longer couple to the third equations, for i � 8. One can
then solve the set of field equations (17) in a hierarchical
manner, starting with the five even-parity equations for
�h�1;3;5;6;7� and the two odd-parity equations for �h�9;10�, and
then using the solutions as source terms in the equations for
�h�2;4� (even parity) and �h�8� (odd parity). This simplification
is achieved regardless of the form of the source term T��.
Note that the functions �h�2;4;8� are those constructing the
MP components �htr, �ht
, and �ht’ [see Eqs. (20) below],
which are associated with the shift vector on the surface
t � const.

The multipole sum in Eq. (8) [and in Eq. (11)] contains
the two modes l � 0; 1. At these modes there are fewer
than ten independent tensor-harmonic basis elements. At
l � 0, the ‘‘vectorial’’ elements Y�4;5;8;9� and ‘‘tensorial’’
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elements Y�7;10� vanish identically, and the monopole MP is
then composed, in general, of only the four ‘‘scalar’’
elements Y�1;2;3;6� (which are all even parity). The system
of field equations (17) thus reduces, at l � 0, to a hier-
archical set of three coupled equations for �h�1;3;6�, plus a
single equation for �h�2�. As to the dipole, l � 1 mode, here
the two tensorial elements Y�7;10� vanish identically, and
one is left with a hierarchical set of 4� 2 equations for the
even-parity modes, and a second hierarchical set of 1� 1
equations for the odd-parity modes.

Table I summarizes the hierarchical structure of our
separated field equations, for the different values of l.

E. Reconstruction of the metric perturbation

Finally, it is useful to have at hand explicit formulas for
reconstructing the various components of the original met-
ric perturbation h��, given the functions �h�i�lm�r; t�. Using
h�� � �h�� �

1
2g��

�h, together with Eq. (8) and
Appendix A, we find

h�� �
�
2r

X1
l�0

Xl
m��l

hlm��; (19)

with
-7



TABLE I. The hierarchical structure of the decoupled field
equations (17) [numbers in this table refer to ‘‘i’’ values of the
tensorial-harmonic modes �h�i�]: The full set of ten equations first
decouple into two subsets of seven equations (even-parity
modes, i � 1; . . . ; 7), and three equations (odd-parity modes, i �
8; 9; 10). Both even and odd sectors then further reduce into
smaller subsets of equations (in a hierarchical sense): For modes
with l � 2, the even-parity sector reduces to a subset of five
equations, for i � 1; 3; 5; 6; 7, whose solutions are then used as
source terms in solving for i � 2; 4. Similarly, the odd-parity
sector decouples into two (hierarchical) subsets of two and one
equations. In the monopole and dipole cases the system is
simpler: At l � 0 the MP is purely even parity, and one solves
two (hierarchical) subsets with three and one equations. At l � 1
one deals with 4� 2 equations in the even-parity sector, and 1�
1 equations in the odd-parity sector. When the source of the
perturbation is an orbiting point particle, we can choose to work
in a Schwarzschild coordinate system in which the orbit is
confined to the equatorial plane (
 � �=2). In this case, modes
with even values of l�m will be of pure even parity, while
modes with odd values of l�m will be of pure odd parity. The
relevant m modes that contribute to each of the entries of the
table, in the case of a source particle in an equatorial orbit, are
indicated in square brackets.

Even parity Odd parity

l � 0 1; 3; 6! 2 �m � 0� 
 
 


l � 1 1; 3; 5; 6! 2; 4 �m � �1� 9! 8 �m � 0�
l � 2 1; 3; 5; 6; 7! 2; 4 �l�m even� 9; 10! 8 �l�m odd�
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hlmtt � � �h�1� � f �h�6��Ylm;

hlmtr � f�1 �h�2�Ylm;

hlmrr � f�2� �h�1� � f �h�6��Ylm;

hlmt
 � r� �h�4�YlmV1 �
�h�8�YlmV2�;

hlmt’ � r sin
� �h�4�YlmV2 �
�h�8�YlmV1�;

hlmr
 � rf�1� �h�5�YlmV1 �
�h�9�YlmV2�;

hlmr’ � irf�1 sin
� �h�5�YlmV2 �
�h�9�YlmV1�;

hlm

 � r2�f�1 �h�3�Ylm � �h�7�YlmT1 �
�h�10�YlmT2�;

hlm
’ � ir2 sin
� �h�7�YlmT2 �
�h�10�YlmT1�;

hlm’’ � r2sin2
�f�1 �h�3�Ylm � �h�7�YlmT1 �
�h�10�YlmT2�;

(20)

where we have omitted the indices lm from �h�i�lm for
brevity, and where YlmV1, YlmV2, YlmT1 , and YlmT2 are angular
functions constructed from the spherical harmonics
through

YlmV1 �
1

l�l� 1�
Ylm;
 ; YlmV2 �

1

l�l� 1�
sin�1
Ylm;’ ;

YlmT1 �
1

�l�l� 1�
�sin
�sin�1
Ylm;
 �;
 � sin�2
Ylm;’’�;

YlmT2 �
2

�l�l� 1�
�sin�1
Ylm;’ �;
:

(21)
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Note Eq. (19) gives the MP itself, not its trace-reversed
counterpart. In applying Eqs. (20) to l � 0; 1, recall
Yl�0

V1;V2 � Yl�0
T1;T2 � 0 and Yl�1

T1;T2 � 0. Finally, note that the
trace of the MP is simply given by

h � g��h�� � ��=r�
X
lm

�f�1 �h�3� � �h�6��Ylm: (22)

This implies that the function �h�3� must vanish at the event
horizon (where f � 0), since the trace h must be regular at
the horizon, and the functions �h�3� and �h�6� are both finite
there by construction.

The various fields hlm�� are complex quantities. However,
the sum

P
mh

lm
�� is guaranteed to be real. From the defini-

tion of the harmonics Y�i�lm in Appendix A, and the de-
coupled field equations (17), one readily verifies the
symmetry relation

� �h�i�Y�i�lm�m!�m � � �h�i�Y�i�lm�	 (23)

(namely, the product �h�i�Y�i�lm is invariant under simulta-
neous sign reversal of m and complex conjugation), which
is valid for each i and any l. Hence, the sum over modes m
in the reconstruction formula (19) can be written in the
form

Xl
m��l

hlm�� � hl;m�0
�� � 2

Xl
m�1

Re�hlm���; (24)

which is manifestly real. In practice, this allows a more
economic implementation of the reconstruction scheme:
One need only compute the m � 0 modes to reconstruct
the full MP.
III. IMPLEMENTATION: CASE OF A PARTICLE IN
A CIRCULAR GEODESIC ORBIT

A. Setup

Consider a pointlike particle of mass �, in a circular
orbit around a Schwarzschild black hole with mass M�
�. Neglecting SF effects, the particle traces a geodesic
x� � x�p �	�, with four-velocity u� � dx�p =d	. In what fol-
lows we work in a Schwarzschild coordinate system
t; r; 
; ’ at which the orbit is confined to the equatorial
plane:

x�p�	� � �t�	�; r0 � const; 
0 � �=2; ’�	��: (25)

This geodesic is completely parametrized by the radius r0,
or, alternatively, by an ‘‘angular velocity’’

! � d’=dt �
������������
M=r3

0

q
: (26)

The circular geodesic can also be parameterized by the
(conserved) specific energy, given by

E � �ut � f0�1� 3M=r0�
�1=2; (27)

where f0 � 1� 2M=r0. The four velocity of the particle is
-8



PERTURBATIONS OF SCHWARZSCHILD BLACK HOLES . . . PHYSICAL REVIEW D 72, 104026 (2005)
then given (in Schwarzschild coordinates) by

u� � �E=f0��1; 0; 0; !�: (28)

Our goal here is to calculate the physical (stationary) MP
associated with this orbiting particle, in the Lorenz gauge.

B. Source terms

From Eqs. (13) and (15) we obtain the source terms for
our decoupled field equations (17). They read

S�i�lm�r; t� � 4�E��i���r� r0�




�
Ylm	��=2; !t�; i � 1–7 �even�;
Ylm	;
 ��=2; !t�; i � 8–10 �odd�;

(29)

where the coefficients ��i� are given by

��1� � ��3� � f2
0=r0; ��2� � ��5� � ��9� � 0;

��4� � 2if0m!; ��6� � r0!
2;

��7� � r0!2�l�l� 1� � 2m2�; ��8� � 2f0!;

��10� � 2imr0!2:

(30)

Note the special case m � 0: For these axially symmet-
ric modes the field equations for both �h�9� and �h�10� are
sourceless, and (since these two equations do not couple to
any of the other �h�i�’s) one finds

�h �9�m�0 �
�h�10�
m�0 � 0: (31)

The entire axially symmetric, odd-parity perturbation is
then described by a single function �h�8�, satisfying a closed-
form equation. Since, in the circular-orbit case, m � 0
modes are static, this equation is in fact an ordinary dif-
ferential equation (ODE), and is readily solvable analyti-
104026
cally. Below we construct the analytic solutions for these
axially symmetric, odd-parity modes.

In the even-parity sector, both functions �h�2� and �h�4�

have vanishing source terms at m � 0. Inspecting the field
equations in their form (15), with Eqs. (C1b) and (C1d), we
observe that �h�2� and �h�4� couple not only to each other, but
also to �h�1� and �h�5�. However, since this coupling occurs
through t derivative terms, and since in our circular-orbit
case m � 0 modes are static, these coupling terms in fact
vanish, and we find

�h �2�m�0 �
�h�4�m�0 � 0: (32)

Hence, the axially symmetric, even-parity part of the per-
turbation is described by the five functions �h�1;3;5;6;7�, which
satisfy a coupled set of ODEs.

C. Analytic solutions for the axially symmetric,
odd-parity modes

As we explained above, in the circular-orbit case, axially
symmetric (m � 0), odd-parity modes of the MP are con-
structed, at each l, from the single function �h�8�m�0, which is t
independent in this case. Denoting �h�8�m�0 � �l�r�, the field
equation for �h�8� [Eqs. (17) and (18h)] takes the form

�00l � Vl�r��l � �4f�2S�8�m�0 � �l 
 ��r� r0�; (33)

where a prime denotes d=dr,

Vl�r� � �f
�1�r�

�
l�l� 1�

r2 �
4M

r3

�
; (34)

and the coefficient �l is given by
�l � �32�f�1
0 E!Yl;m�0

;
 �
 � �=2� �
�

16f�1
0 E!��1��l�1�=2���2l� 1��1=2l!!=�l� 1�!!; l odd;

0 l even:
(35)
Hence, we have �l�r� � 0 for all modes with even values
of l, and we need only consider modes with odd l values.

Two independent homogeneous solutions to Eq. (33) are
given, for l � 2 (we will discuss the mode l � 1 separately
below), by

�EH
l�2�r� �

x
1� x

Xl�1

n�0

alnx
n;

�1l�2�r� � �EH
l lnf�

1

1� x

Xl�1

n�0

blnxn;

(36)

where

x � r=�2M� � 1; (37)

and the coefficients read
aln �
l�l� 1��l� n� 1�!

�l� n� 1�!�n� 1�!n!
; bln �

Xl�n�1

k�0

��1�k
aln�k
k� 1

:

(38)

These solutions have the following asymptotic behavior at
the horizon (r! 2M, x! 0, f ! 0) and at infinity (r; x!
1):

�EH
l�2 /

�
f; r! 2M;
rl�1; r! 1;

(39)

�1l�2 /

�
f lnf; r! 2M;
r�l; r! 1:

(40)

The solution �EH
l is regular (analytic) at the horizon but

diverges at r! 1, whereas the solution �1l is regular at
r! 1 but irregular at the horizon (it vanishes there, but it
-9
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is nondifferentiable). Matching these solutions at the par-
ticle’s location (r � r0), we hence construct a unique
regular, continuous solution for the inhomogeneous equa-
tion (33):

�l�2 � �2M��l 

�
�EH
l �r��

1
l �r0�; r � r0;

�1l �r��
EH
l �r0�; r � r0;

(41)

where, recall, � � �l� 2��l� 1�. In obtaining this solution
we have used the fact that the Wronskian W �
�EH��1�0 � ��EH�0�1 must be constant [since the ODE
(33) contains no �0l term]. Evaluating it at x � 0 one then
easily obtains W � �bl0=�2M� � ��2M��

�1.
At l � 1, the function �1l of Eq. (36) fails to be a

solution of the homogeneous part of Eq. (33) (although
�EH
l�1 still is a solution). Instead, the general homogeneous

solution takes the simple form

�l�1 � ar2 � b=r; (42)

where a and b are constants. [Note that for l � 1 the
effective potential in Eq. (33) reduces to simply V�r� �
�2=r2.] The coefficients a and b are determined uniquely
by requiring regularity at the horizon5 and at infinity, and
imposing continuity at r � r0, along with a ‘‘jump’’ con-
dition for the derivative there: ��0l�1�r0

� �l�1. This yields

�l�1 � �
1

3
r0�l�1 


�
�r=r0�

2; r � r0;
�r0=r�; r � r0;

(43)

with �l�1 � 16
�������
3�
p

f�1
0 E!.

We can now write down explicitly the solution for the
axially symmetric, odd-parity part of the MP h�� itself.
From the reconstruction equations (19) [with Eqs. (20)],
recalling YlmV2 � 0 at m � 0, we find that the only non-
vanishing axially symmetric, odd-parity components are
ht’ � h’t, given by

ht’�m�0;odd���
�
2

X
oddl

sin
 �h�8�m�0Y
l;m�0
V1

��
X
oddl

�
2l�l�1�

�l�r�sin
Yl;m�0
;
 �
�: (44)

The lowest multipole contribution to the sum in Eq. (44)
is a ‘‘conservative’’ piece coming from the dipole mode,
l � 1. It reads
5There is a subtlety here: The homogeneous solution / 1=r is
regular everywhere for any finiteM and r0. However, we do wish
to require that the solution remains regular even at the limit M !
0 (taken with fixed r0, which is mathematically equivalent to the
limit r0 ! 1, taken with fixed M). This excludes the solution
/ 1=r at r < r0, as it grows unboundedly at the horizon in that
limit.
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ht’�m � 0; l � 1� � �
1

4
��l�1 sin
Yl�1;m�0

;


� �2�f�1
0 E!r0sin2





�
�r=r0�

2; r � r0;

�r0=r�; r � r0:
(45)

This agrees with the odd-parity dipole solution first ob-
tained by Zerilli [11], which, as pointed out recently by
Detweiler and Poisson [29], is a Lorenz-gauge solution. [In
comparing our solution (45) with Eq. (4.1) of [29], note
f�1

0 E!r2
0 � �Mr0=�1� 3M=r0��

1=2 is the particle’s spe-
cific angular momentum, denoted ~L in [29].] This piece
of the MP describes the shift in the angular momentum
content of the perturbation across the surface r � r0.

D. Analytic solution for the monopole (l � 0) mode

The lowest multipole contribution to the MP comes from
the monopole, l � m � 0 mode. This conservative piece
of the MP (which is purely even parity) describes the shift
in the mass parameter of the perturbation across the surface
r � r0. As was the case with the m � 0, odd-parity modes
considered above, at l � 0, too, the field equations (17)
simplify enough that one can obtain the solution analyti-
cally, with moderate effort. This solution was derived
recently by Detweiler and Poisson [29].6 For the sake of
completeness, and since Detweiler and Poisson do not
actually write down their solution explicitly (as they are
interested mainly in the SF exerted by the monopole, not
the monopole MP itself ), we bring this solution here.

At r � r0, the nonvanishing components of the Lorenz-
gauge monopole perturbation are given by

hl�0
tt �r � r0� � �

AfM

r3 P�r�; (46a)

hl�0
rr �r � r0� �

A

r3f
Q�r�; (46b)

hl�0


 �r � r0� � �sin
��2hl�0

’’ �r � r0� � AfP�r�; (46c)

where

A �
2�E

3Mr0f0
�M� �r0 � 3M� lnf0�; (47)

P�r� � r2 � 2Mr� 4M2;

Q�r� � r3 �Mr2 � 2M2r� 12M3:
(48)

At r � r0, the solutions read
6In fact, Detweiler and Poisson did not obtain their solution by
directly tackling the Lorenz-gauge equations. Rather, they
started with the l � 0 solution derived by Zerilli [11] in a non-
Lorenz gauge, and then, essentially, solved the gauge trans-
formation equations that take Zerilli’s solution to the Lorenz
gauge.
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hl�0
tt �r � r0� �

2�E

3r4r0f0

f3r3�r0 � r� �M
2�r2

0 � 12Mr0 � 8M2�

� �r0 � 3M���rM�r� 4M� � rP�r�f lnf� 8M3 ln�r0=r��g; (49a)

hl�0
rr �r � r0� � �

2�E

3r4r0f0f
2 f�r

3r0 � 2Mr�r2
0 � 6Mr0 � 10M2� � 3M2�r2

0 � 12Mr0 � 8M2�

� �r0 � 3M��5Mr2 � �r=M�Q�r�f lnf� 8M2�2r� 3M� ln�r0=r��g; (49b)

hl�0


 �r � r0� � �sin
��2hl�0

’’ �r � r0� � �
2�E

9rr0f0
f3r2

0M� 80M2r0 � 156M3

� �r0 � 3M���3r2 � 12Mr� 3�r=M�P�r�f lnf� 44M2 � 24M2 ln�r0=r��g: (49c)
It can be readily verified that these solutions match con-
tinuously at r � r0. It can also be checked that they satisfy
both the field equations (17) and the gauge conditions (16).
To see this, notice that at l � 0 the only nonvanishing �h�i�’s
are �h�1;3;6�, and use the relations �h�1�l�0�2

����
�
p

��1r�htt�
f2hrr�, �h�6�l�0�2

����
�
p

��1rf�1�htt�f2hrr�, and �h�3�l�0�
4
����
�
p

��1�f=r�h

.
The above monopole solution is regular both at the event

horizon and at infinity, taking the asymptotic forms

hl�0
tt � �

2
3Af�O�f

2�

f2hl�0
rr �

2
3Af�O�f

2�

hl�0


 � 12M2Af�O�f3�

9>=
>; as r! 2M�f ! 0�; (50)

hl�0
tt � �

2�E
r0
f�1

0 �1� r0=r�

hl�0
rr �

2�E
r

r�2hl�0


 �

2�E
r f�1

0 �1� 3M=r0�

9>=
>;�O�1=r2�;

as r! 1:

(51)

Detweiler and Poisson show [29] that this is a unique
Lorenz-gauge solution which is regular both at the event
horizon and at infinity: Any gauge transformation of this
solution within the class of Lorenz gauges would lead to
irregular behavior at one (or both) of these asymptotic
domains.7

Physically, the monopole perturbation of Eqs. (46) and
(49) describes a shift in the Schwarzschild mass across r �
r0. This is most clearly evident from Zerilli’s form of the
monopole solution [10] (which differs from the above
Lorenz-gauge solution only by a gauge transformation
[29]), where it is easily seen that the geometry described
by g� � hl�0

�� is that of a Schwarzschild black hole with
mass M at r < r0, and that of yet another Schwarzschild
black hole, with mass M��E, at r > r0.

The above Lorenz-gauge monopole solution is plotted in
Fig. 1, for a sample of r0 values.
7Note, however, the peculiar feature of the above solution,
htt ! const�� �2�E�r0f0�

�1� at r! 1, which means that the
perturbed metric, expressed in Schwarzschild coordinates, does
not tend to the Minkowski metric at infinity. (Recall, however,
that this peculiarity merely relates to the choice of gauge; the
underlying perturbed geometry is, of course, asymptotically flat.)

104026
E. Numerical solutions for the rest of the modes

For the modes considered so far (those with m � 0 and
l � 0; 1; 3; 5; . . . ) the field equations simplify enough to
allow a fully analytic treatment (at least within the sim-
plicity of the circular-orbit case). To solve for the rest of the
modes we will resort to numerical methods, employing the
full machinery of the formalism developed in Sec. II. In the
rest of this section we briefly describe our numerical
method, and plot a sample of numerical solutions. In the
next section we shall present various validation tests for
our numerical code.

We need to integrate, numerically, the set of coupled
field equations (17), with the source terms given in
Eq. (29). Recall that for each given l;m, we are facing
two sets of seven (even-parity) and three (odd-parity)
equations, which couple in the manner described in
Table I (but recall that no coupling occurs at the principal
parts of the equations). We choose to integrate these equa-
tions in the time domain, i.e., without introducing a Fourier
decomposition. A frequency-domain analysis (of the sort
employed many times in the past—see, e.g., [30]) is likely
to be more efficient, numerically, for studying circular
orbits. Our strong motivation in developing a time-domain
evolution code stems from the fact that such a code is
readily extensible to any type of orbit, with arbitrary
eccentricity. A time-domain code can handle radial plunge
trajectories as efficiently as it handles circular orbits.
Frequency-domain codes, on the other hand, quickly lose
their efficiency with growing eccentricity, as the number of
Fourier modes one must sum over grows rapidly with
eccentricity. Orbits with eccentricities greater than �0:7
are essentially intractable with a frequency-domain treat-
ment [31]. Another reason to opt for a time-evolution
approach, especially having in mind SF applications, is
the following: A frequency-domain analysis of the field
equations requires careful implementation of boundary
conditions, which becomes increasingly difficult with in-
creasing l values. The technical reason for this is ex-
plained, e.g., by Hughes in [32]. With a time-domain
evolution one can avoid this difficulty, either by expanding
the spacial boundaries of the numerical domain such as to
dismiss any boundary effects, or by using characteristic
evolution (as described below) which avoids boundaries
-11
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FIG. 1 (color online). The Lorenz-gauge monopole solution, Eqs. (46) and (49), plotted here for three values of the orbital radius,
r0 � 4M; 7M; 12M. By construction (Detweiler and Poisson, Ref. [29]) this solution is continuous across the orbit, and well behaved
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specific energy parameter, denoted elsewhere in this paper by E.)
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FIG. 2. Numerical grid for characteristic evolution of the field
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altogether. Hence, a time-domain approach should allow
better accessibility to the higher l modes.

A suitable numerical method, for time evolution of the
field equations with a particle source represented by a delta
function, was first presented by Lousto and Price [33]. It
has since been implemented in a variety of a cases: a
radially falling scalar charge [34], a radially falling mass
particle [21,35], a mass particle in a circular orbit [36], and,
lately, a mass particle in eccentric and parabolic orbits
[37]. In the scalar-field case [34] the source term in the
decoupled field equations [the scalar-field equivalent of our
Eqs. (17)] is simply proportional to a delta function ��r�
rp�	��. However, in the gravitational field case, all above
works [21,35–37] employed the Regge-Wheeler–Zerilli–
Moncrief’s formulation, where the source involves also
terms proportional to d��r� rp�	��=dr. As a consequence,
solutions to the Regge-Wheeler–Zerilli–Moncrief equa-
tions turn out discontinuous across the orbit, which, of
course, complicates considerably the implementation of
the above numerical method. One great advantage of work-
ing with the Lorenz-gauge MP is that the source term in the
field equations involves only a delta function, no deriva-
tives thereof—as in the simple scalar case. The solutions
are then continuous everywhere, and the implementation of
the numerical integration scheme of Ref. [33] becomes
much simpler.

Our numerical code is based on characteristic evolution
and uses double-null coordinates v � t� r	 and u � t�
104026
r	 (like in [34], but unlike, e.g., in [37]). The numerical
domain is a two-dimensional, fixed-step grid, as illustrated
in Fig. 2. The evolution starts with characteristic data on
v � v0 and u � u0, where we take v0 � r	�r0� and u0 �
�r	�r0�. That is, we take t � 0 at the initial instance of the
evolution [represented by the vortex �v0; u0�], and take the
two initial null surfaces to be the ingoing and outgoing
-12
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light rays emanating from the particle at that instance. The
location of the event horizon on this grid is approximated
by a large value of u (with constant v), while a large value
of v (with constant u) approximates the location of null
infinity. The trajectory of the particle is represented by the
vertical line v� u � 2r	�r0�, connecting the lower- and
upper-most vertices of the grid. Since our numerical evo-
lution variables are continuous at the trajectory, there are
no complications involved in taking the trajectory to cut
through grid points, as we do here; in fact, we found this
setup most convenient.

The numerical evolution is based on the finite difference
scheme developed in [33]—as simplified to the case where
the source term contains no derivatives of a delta function,
and generalized to deal with a set of simultaneous equa-
tions. Since the scheme has been described in detail else-
where, we shall not elaborate on it here, but rather refer the
reader to [33] or [35]. The finite difference algorithm is
second-order convergent. The value of the solution at a grid
point with coordinates �vi; ui� is approximated, within an
error quadratic in the step size, based on the values at the
three grid points �vi�1; ui�, �vi; ui�1�, and �vi�1; ui�1�,
which have been solved for in previous steps. For terms
containing derivatives @v we also use information from the
grid points �vi; ui�2� and �vi�1; ui�2� (which is necessary
to maintain second-order convergence). The numerical
evolution proceeds along successive lines v � const,
from v0 to large values of v (‘‘null infinity’’), where along
each such line the integration proceeds from u � u0 to
large values of u (the ‘‘event horizon’’).

Obviously, we do not know how to prescribe exact initial
data for our problem. (In our stationary scenario, knowl-
edge of the exact solution at one particular moment would
be equivalent to having at hand the solution at all times.)
This is a standard problem of numerical relativity.
However, unlike the situation in fully nonlinear simula-
tions of (say) equal-mass black hole mergers, here we have
the luxury of being able to stably run our evolution for as
long as it takes for any effect of ‘‘corrupted’’ initial data to
dissipate off the numerical domain, and for the solution to
settle down to its correct, ‘‘physical’’ value. To explain the
basic idea, consider first the case of a scalar field, where the
evolution is not constrained. Suppose that we prescribe
some initial data on the initial surface (e.g., in our charac-
teristic initial-data formulation, determine the magnitude
of the scalar field along v � v0 and u � u0), and then
numerically integrate the inhomogeneous scalar-field
equation, with a source particle. Suppose that the solution
we thus obtain represents, in the continuum limit, an exact
solution of the inhomogeneous field equation. This solu-
tion would then differ from the true, physical solution by a
homogeneous solution of the field equation. We may hence
view the numerical solution as a superposition of the
physical solution and a spurious homogeneous perturba-
tion. However, homogeneous (i.e., vacuum) perturbations
104026
of black hole spacetimes always decay at late time (the ‘‘no
hair’’ theorem). One need only wait long enough until the
spurious waves radiate away and the ‘‘true’’ solution is
revealed. On theoretical ground, we expect the spurious
waves to die off in time with a power-law tail, where the
power index depends on the multipole number of the mode
in question. In the circular-orbit case, experiment shows
that one practically has to wait for about one orbital period
before the spurious waves clear out (see [21,34,37], and
also Figs. 3–7 below).

The above picture becomes slightly more involved in our
case, where the evolving fields are components of the MP,
which are subject to certain constraints in the form of
gauge conditions. The initial data are now no longer freely
specifiable, but are required to satisfy the gauge condi-
tions—or otherwise our solution would not be guaranteed
to satisfy the gauge conditions even at late time.
Alternatively, one may incorporate in the numerical evo-
lution procedure a machinery for damping out constraint
violations, like the one described above.

Here we follow the second strategy: We use a version of
the field equations that has constraint damping built into it
[i.e., above Eqs. (17)], and free ourselves from the need to
devise exact initial data. This option has two obvious
advantages: First, the required exact initial data would
depend on the source in question, and will have to be
developed case by case. On the other hand, once an effec-
tive constraint-damping scheme is established for circular
orbits, it should be equally effective in other cases (say,
eccentric orbits). Second, and more importantly, a success-
ful constraint-damping scheme should take care of both
initial constraint violations, and constraint violations from
numerical errors. Specifying constraint-obeying initial
data, on the other hand, would not guarantee, by itself,
that constraint violations due to numerical (e.g., finite
differentiation) errors remain small.

As initial data for our numerical evolution we take, most
simply,

�h �i�lm�v � v0� � �h�i�lm�u � u0� � 0; (52)

for any l;m and each of i � 1; . . . ; 10.

F. Sample numerical results

Figures 3–7 show typical numerical solutions for the
various functions �h�i�lm. For these plots we have taken the
particle to move in a strong-field circular geodesic orbit at
r0 � 7M (corresponding to a period of Torb � 116M). The
fields are evolved for an amount of time equivalent to
5 Torb, which we find more than sufficient to allow the
transient spurious waves to die off. The linear resolution
for these runs is set at a few grid points perM in both v and
u, which translates to a few hundreds points per wave cycle
at m � 1. With this resolution, the magnitude of the vari-
ous �h�i�lm’s is resolved at a fractional accuracy better than
�10�4 even near the particle’s location, where the fields’
-13
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FIG. 3 (color online). Numerical solutions for the (dimensionless) Lorenz-gauge MP functions �h�i�l�2;m�1;2, evaluated at the
particle’s location, for a particle in a circular orbit at r � r0 � 7M. In the Lorenz gauge (unlike in the Regge-Wheeler gauge, for
example) the mode-decomposed MP is continuous at the particle, and has a definite value there. The early stage of the time evolution is
dominated by transient spurious waves associated with the imperfection of the initial data. This part of the evolution (which, of course,
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gradients are largest (cf. Fig. 8 in the next section). With
these specifications, a single l; m mode takes of order a
second to run on a standard laptop.

The graphs in Figs. 3–6 show the various �h�i�lm’s for l �
2 and m � 1; 2. Plotted are the absolute values, j �h�i�lmj �
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f�Re� �h�i�lm��2 � �Im� �h�i�lm��2g1=2. The different figures
present different slice cuts through the two-dimensional
numerical grid: r � const�� 7M�, t � const, u � const
(i.e., an outgoing ray approaching null infinity), and v �
const (an incoming ray approaching the event horizon).
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Note that in Fig. 3 we show the fields �h�i�lm evaluated at the
particle’s location; recall these fields are continuous and
admit definite values there. The last plot, in Fig. 7, shows
the numerical solutions for l � 10 and m � 9; 10. High-l
calculations are more demanding computationally, as the
spacial scale of variation of the fields decreases with
increasing l. In its present from, our code can handle
multipoles up to l� 20; this should be sufficient for high
precision calculations of the SF, through the mode-sum
scheme.

Here are some features to notice when examining
Figs. 3–7: (i) The early stage of the fields’ evolution is
dominated by spurious waves associated with the imper-
fection of the initial data. These are transients, and die off
almost entirely within one orbital period of evolution time
(the rate of decay of the spurious waves seems roughly
independent of l;m). Typically, one can safely read off the
values of the fields after �2 Torb of evolution time. In
performing precision calculations (e.g., of the SF) for
periodic orbits, it is easy (and advisable) to monitor the
level of ‘‘contamination’’ from transient waves, by com-
paring the values of the fields at, say, t �
Torb; 2 Torb; 3 Torb; . . . . (ii) As emphasized above, the fields
�h�i�lm are all continuous through the particle’s location.
This is manifested in Figs. 4–7. Those fields �h�i�lm whose
evolution equations have nonvanishing source terms (in
our circular-orbit case, i � 1; 3; 4; 6; 7; 8) have discontinu-
ous spacial derivatives across the particle, as expected on
theoretical grounds. Those functions that are sourceless
(i � 2; 5; 9; 10) have continuous derivatives there. The val-
ues of the fields and their gradients at the particle provide
104026
sufficient information for calculating the gravitational SF.
Our code resolves these values with great accuracy.
(iii) The various �h�i�lm’s approach finite values at null
infinity and toward the event horizon, as they are designed
to do by construction. These finite values are generally
nonzero, except that �h�3�lm vanishes toward both ends. The
reason for the vanishing of �h�3�lm at the horizon has been
explained above [see the discussion surrounding Eq. (22)].
The reason for the vanishing of this function at r! 1 will
be discussed in Sec. IV C below.

Finally, we remind the reader that, given the �h�i�lm’s, the
MP itself is constructed algebraically through formula
(19).

IV. CODE VALIDATION

In this section we present a series of tests we have
performed to check the validity of our numerical evolution
code. These include (i) a test of numerical convergence,
(ii) confirmation that the numerical solutions satisfy the
Lorenz-gauge conditions, and (iii) comparison of the flux
of energy radiated in gravitational waves to infinity, as
extracted from our solutions, with the values obtained
using other methods. The second and third of these tests
check both our new formulation of the MP equations, and
the validity of its numerical implementation.

A. Numerical convergence

Our code is second-order convergent in the fields �h�i�.
This is demonstrated in Figs. 8 and 9 for the fields �h�4� and
�h�8�. (We have chosen these two functions for our demon-
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FIG. 9 (color online). Demonstration of second-order numerical convergence. These four plots provide a quantitative test of the
solution’s numerical convergence rate. The left and right panels of the upper (lower) row correspond, respectively, to the left and right
insets in the left (right) panels of Fig. 8. The red (pale) line in each of the plots shows the ratio �j �h�i��4pts=M� �
�h�i��8pts=M�j�=�j �h�i��8pts=M� � �h�i��16pts=M�j�, where i � 4; 8 and �h�i��4pts=M�, for example, represents the numerical solution
obtained with resolution of four grid points per M. The blue (dark) lines similarly show the ratio �j �h�i��8pts=M� �
�h�i��16pts=M�j�=�j �h�i��16pts=M� � �h�i��32pts=M�j�. Both ratios approach the value of 4 with growing resolution, which indicates
second-order convergence.
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FIG. 8 (color online). Illustration of numerical convergence: Shown here are numerical solutions for (the absolute values of) the
functions �h�4�l�2;m�2 (left panel) and �h�8�l�2;m�1 (right panel) along an outgoing ray u � const � 3 Torb —the solutions also shown in
Fig. 5. In each of the figures we have superposed four numerical solutions, obtained with different numerical resolutions: 4, 8, 16, and
32 grid points per M (this corresponds to the linear resolution; the numbers of grid points per unit grid area M2 are the squares of these
values). The insets show, greatly magnified, two details from each plot: one near the peak (the particle’s location), and the other at the
far right end (‘‘null infinity’’). It clearly appears that the solutions are numerically convergent, and that the convergence rate is faster
than linear. Note also that, with the range of resolutions used here, the magnitude of the fields is already resolvable to within fractional
errors of �10�5. This is the case even near the particle, where the fields’ gradients are largest.
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stration here since the evolution of these specific fields
couples to that of all other fields �h�i�.)

B. Preservation of the Lorenz-gauge conditions

As discussed above, we do not impose the Lorenz-gauge
conditions actively in the numerical evolution scheme. It is
therefore important to verify that (or, rather, monitor how
well) our numerical solutions indeed satisfy these four
conditions, given by H1 � H2 � H3 � H4 � 0 [see
Eqs. (16)].
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FIG. 10 (color online). Verifying that our numerical solutions sat
values of the) four functionsH1,H2,H3, andH4 of Eqs. (16), normali
figures, the particle is moving on a circular geodesic orbit with r0 �
which involve the even-parity MP modes) and l � 2, m � 1 (for H
condition is satisfied if (and only if) all four functions H vanish at
superposed, a sequence of four lines, obtained with decreasing step
four functions H appear to converge to values very close to zero, indi
See the text for further discussion.
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To check this, our code contains a subroutine that con-
structs the functions H (out of the �h�i�’s and their first
derivatives) along specified slice cuts through the two-
dimensional numerical grid. If the gauge conditions are
fully damped along the specified slice cut, we should
expect all of these four quantities to converge to zero
with decreasing numerical step size (and, since the H’s
are calculated to second-order accuracy, we expect this
convergence to be quadratic). On the other hand, if there
exists a finite-size constraint violation, one or more of the
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isfy the Lorenz-gauge conditions. Plotted here are the (absolute
zed by �m!��1, along an outgoing ray u � 3 Torb. As in previous
7M. We consider here the modes l � m � 2 (for H1, H2, and H3,
4, which involves the odd-parity MP modes). The Lorenz-gauge

the limit of vanishing step size. In each of the plots we show,
sizes. The insets magnify specific areas in each of the plots. All
cating that the gauge conditions are satisfied with good accuracy.
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8Generally, the supplementary gauge condition h � 0 cannot
be imposed in addition to the Lorenz-gauge condition (3), unless
spacetime is globally vacuum—which is not our case here. That
our solutions indeed have h � 0 is demonstrated in Figs. 3–7,
recalling the trace is constructed from the �h�i�’s through Eq. (22).
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H’s should converge (quadratically, again) to a nonzero
value.

Figure 10 shows the behavior of the four functions H
along an outgoing ray at late retarded time (u � 3 Torb), in
the example of the modes l � m � 2 and l � 2, m � 1.
The functions H1, H2, and H3 are constructed from the
even-parity MP modes, and are not trivially zero for l �
m � 2. The function H4 is constructed from the odd-parity
MP modes, and is not trivially zero for l � 2, m � 1. We
normalize the H’s (which have units of 1/distance) by
�m!��1, the typical length scale on which the MP varies
(away from the particle). The plots demonstrate that, at
least in the part of the evolution later than t� Torb, all four
gauge conditions are satisfied with great accuracy, to
within numerical error. Similar results are obtained when
examining the late time behavior along incoming rays
(nearing the horizon) or along slices of fixed r.

We emphasize that the nonzero values of the functionsH
in Figs. 10 are not associated with constraint violations that
have not yet been fully damped—these would have tended
to vanish rapidly with increasing (advanced) time. Rather,
the finite-size values of the H’s are merely discretization
errors (coming both from the calculation of the MP fields
�h�i�, and from the construction of the H’s), which tend to
zero with increasing numerical resolution. Similarly, the
large numerical values of the H’s near the particle should
not be interpreted as indicative of a higher level of con-
straint violation there, since at the particle, too, all func-
tions H converge to zero with increasing resolution.
(Obviously, larger numerical errors arise in the H’s near
the particle, since the field gradients are larger there.)

C. Energy flux at the wave zone

Further tests of our code could be performed by compar-
ing with other calculations of the Lorenz-gauge MP. The
only such calculation we are aware of was carried out by
Pfenning and Poisson [38], for a particle in a weak-field
orbit. However, the analysis in [38] is mainly concerned
with the SF acting on the particle, and does not provide
expressions for the MP itself. Another option is to compare
gauge invariant quantities derived from the MP. One such
quantity is the flux of energy radiated to infinity in gravi-
tational waves. For circular orbits in the Schwarzschild
spacetime, the energy flux (as distributed among the l;m
modes) was computed previously by Poisson [30] via
frequency-domain numerical integration of the perturba-
tion equations in the standard Regge-Wheeler gauge. More
recently, Martel [37] reproduced these fluxes (as well as the
fluxes from eccentric orbits) using a time-domain analysis
of the perturbation equations, still in the Regge-Wheeler
gauge. Here we shall compare the energy fluxes con-
structed from our Lorenz-gauge solutions, with those ob-
tained by Poisson and Martel.

We shall first need an expression for the energy flux at
infinity in terms of the Lorenz-gauge MP. Let _E1 denote
104026
the total energy per unit time crossing (outward) the 2-
sphere r � const where r is very large. We assume that r is
large enough that the above 2-sphere resides in the ‘‘wave
zone,’’ where the radius of curvature R is much larger than
the longest wavelength ~� of the MP, and the perturbation
takes the form of plane gravitational waves. The overdot in
_E1, and in the expressions below, may stand for either @t or
@u (both taken with fixed r), since the two are equal at the
wave-zone limit. Note also that at the wave zone we can
replace h��;r (fixed t) with �h��;t (fixed r), and covariant
derivatives with ordinary (partial) derivatives, the latter
two differing by an amount of O�~�=R�.

The flux of energy in the gravitational waves can be
obtained from Isaacson’s effective energy-momentum ten-
sor, T ��, as explained, e.g., in Appendix B of Ref. [37].
However, we must use caution here: The standard expres-
sion for T ��, as derived in [39] and used extensively in the
literature (e.g., [37]), assumes that the MP is given in a
gauge where it is traceless. Our Lorenz-gauge MP is gen-
erally not traceless,8 and we will need to generalize the
expression for the effective energy-momentum tensor to
the case h � 0. This can be done by repeating Isaacson’s
derivation, starting at his Eq. (2.4) and going through the
averaging procedure described in his analysis—but this
time keeping track of all the trace terms. The result is

T �� �
1

32�

�
�h��;�

�h��;� �
1

2
�h;� �h;�

�
; (53)

where h
 
 
i denotes an average over a region of spacetime
much larger than ~�. The first term in this expression (which
is invariant under �h�� ! h��) is the standard Isaacson
tensor. The second term is a necessary correction when
the MP has a nonzero trace. The form (53) is now truly
gauge invariant (unlike Isaacson’s original formula) and
can be used to extract the energy flux from the Lorenz-
gauge MP. Given the effective energy-momentum tensor,
the energy flux at infinity is given by [37]

_E1 � �r
2
Z
d�T tr; (54)

where the integration is carried over the above-mentioned
2-sphere. Note that the integration over d� automatically
takes care of averaging T �� over a scale �R, so one can
effectively ignore the averaging procedure in Eq. (53)
when evaluating the flux.

We next consider the distribution of _E1 among the
different multipoles. To this end, we substitute for the
-19
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MP in Eq. (53) using the expansion (8). In each of the two
quadratic terms we formally replace one of the MP factors
by its complex conjugate (which is allowed since the MP is
a real function). One can sort the resulting terms inside the
integral

R
d� into three groups, according to their angular

dependence: One group of terms comes with Yl
0m0Ylm	, the

other with Yl
0m0
;
 Ylm	;
 � sin�2
Yl

0m0
;’ Ylm	;’ , and the third with

�D2Yl
0m0 ��D2Ylm	� � sin�2
�D1Yl

0m0 ��D1Ylm	�. Using the
orthogonality relations (A4), and replacing all derivatives
@r by �@t, one obtains _E1 �

P
lm

_Elm1 , with the individual
multipolar contributions given by

_Elm1 �
�2

32�

�
1

2
�j

_�h�1�1 j2 � j
_�h�2�1 j2 � 2j

_�h�3�1 j2�

�
1

4l�l� 1�
�j

_�h�4�1 j2 � j
_�h�5�1 j2 � j

_�h�8�1 j2 � j
_�h�9�1 j2�

�
1

2�l�l� 1�
�j

_�h�7�1 j2 � j
_�h�10�
1 j

2�

�
: (55)

Here, the subscript 1 under the �h�i�’s indicates that these
functions are to be evaluated at the wave zone.

The above expression for _Elm1 simplifies by virtue of the
gauge conditions. Consider, for example, the condition
H1 � 0 [Eq. (16a)]: Neglecting nonderivative terms
[which at the wave zone are O�~�=R� times smaller than
the derivative terms], and replacing @r ! �@t, we find
�h�2�1;t � � �h�1�1;t � �h�3�1;t. Similarly, from H2 � 0, H3 � 0,
TABLE II. Comparison of energy fluxes per l; m mode at infinity, a
using other methods. The values in the table give _E1lm [in units of ��=
The results from Poisson’s and Martel’s computations are quoted fro
the MP in the Regge-Wheeler gauge, the former using frequency-do
time domain. The values under ‘‘this paper’’ are derived using Eq. (
l�m) and �h�10� (for modes with odd l�m) extracted at v � 40 Tor

The values in square brackets under ‘‘Poisson’’ and ‘‘Martel’’ give th

l m _E1lm, this paper: t domain, from hLorenz
��

_E1lm, Poisson [30

2 1 8:1654e–07 8:1633e–07 ��0
2 1:7061e–04 1:7063e–04 ��0

3 1 2:1734e–09 2:1731e–09 ��0
2 2:5207e–07 2:5199e–07 ��0
3 2:5479e–05 2:5471e–05 ��0

4 1 8:3982e–13 8:3956e–13 ��0
2 2:5099e–09 2:5091e–09 ��0
3 5:7759e–08 5:7751e–08 ��0
4 4:7284e–06 4:7256e–06 ��0

5 1 1:2598e–15 1:2594e–15 ��0
2 2:7877e–12 2:7896e–12 ��0
3 1:0934e–09 1:0933e–09 ��0
4 1:2319e–08 1:2324e–08 ��0
5 9:4623e–07 9:4563e–07 ��0

Total 2:0291–04 2:0292e–04 ��0
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and H4 � 0 we find, respectively, �h�2�1;t � � �h�1�1;t � �h�3�1;t,
�h�4�1;t � � �h�5�1;t, and �h�8�1;t � � �h�9�1;t. Altogether, we thus have

j
_�h�2�1 j2 � j

_�h�1�1 j2; j
_�h�3�1 j2 � 0;

j
_�h�4�1 j2 � j

_�h�5�1 j2; j
_�h�8�1 j2 � j

_�h�9�1 j2:

(56)

(In our stationary scenario we have j
_�h�2�1 j2 � m2!2j �h�2�1 j2,

which means that the asymptotic relations (56) hold be-
tween the functions �h�i� themselves, not only between their
time derivatives. That our numerical solutions satisfy these
relations at large r is easily visible in Figs. 4 and 5. This
provides yet another validity test for our code.) Hence,
Eq. (55) reduces to the final form

_E lm
1 �

�2

64��l�l� 1�
�j

_�h�7�1 j2 � j
_�h�10�
1 j

2�: (57)

Note that the flux carried by each individual mode is
extracted from a single �h�i� function: �h�7� in the case of
even-parity modes (even l�m), or �h�10� in the case of odd-
parity modes (odd l�m).

Table II lists the values of _E1lm for l � 1; . . . ; 5, as
computed from our numerical Lorenz-gauge solutions
based on Eq. (57). For this table we set the particle to
move on a circular geodesic at r0 � 7:9456M, to allow
comparison with Poisson and Martel, who provide results
s extracted from our Lorenz-gauge MP, with the values obtained
M�2] for r0 � 7:9456, with m< 0 modes folded over onto m> 0.
m Ref. [37]. Both Poisson and Martel extracted their fluxes from
main analysis and the latter integrating the field equations in the
57), with the Lorenz-gauge functions �h�7� (for modes with even

b and u � 3 Torb (corresponding to r� 2100M and t� 2500M).
e relative difference, in percents, between their results and ours.

]: f domain, from hRW
��

_E1lm, Martel [37]: t domain, from hRW
��

:03%� 8:1623e–07 ��0:04%�
:01%� 1:7051e–04 ��0:06%�
:01%� 2:1741e–09 ��0:03%�
:03%� 2:5164e–07 ��0:17%�
:03%� 2:5432e–05 ��0:18%�
:03%� 8:3507e–13 ��0:57%�
:03%� 2:4986e–09 ��0:45%�
:01%� 5:7464e–08 ��0:51%�
:06%� 4:7080e–06 ��0:43%�
:03%� 1:2544e–15 ��0:43%�
:07%� 2:7587e–12 ��1:04%�
:01%� 1:0830e–09 ��0:95%�
:04%� 1:2193e–08 ��1:02%�
:06%� 9:3835e–07 ��0:83%�

:005%� 2:0273e–04 ��0:09%�
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for this radius. The functions �h�7� and �h�10� are evaluated at
v � 40 Torb and u � 3 Torb, corresponding to r� 2100M
and t� 2500M. It is possible to estimate the error we make
in extracting the flux at a finite r by looking at the residual
values of, e.g., j �h�3�j and j �h�8�j � j �h�9�j, which should van-
ish at the limit r! 1. If we assume that the finite-r error
in �h�7� is the same as the largest among the residues in
j �h�3�j, j �h�1�j � j �h�2�j, and j �h�4�j � j �h�5�j, we obtain from our
code that the fractional error in the flux, for even-parity
modes, is typically of order 0.1%–0.2%. In the same way,
assuming that the finite-r error in �h�10� is the same as the
residue in j �h�8�j � j �h�9�j, we expect a fractional error of
order 0.01%–0.3% for the various odd-parity modes.

Our code reproduces the energy fluxes of Poisson [30]
and Martel [37] with very good accuracy. Our values are no
more than �1% off those of Martel, and no more than
0.07% off those of Poisson. The overall energy flux
(summed over the first five modes) agrees with that com-
puted by Poisson with a mere �5
 10�5 relative
difference.
V. SUMMARY AND DISCUSSION OF FUTURE
APPLICATIONS

We advocate here a new approach to the computation of
the metric perturbation from a small particle orbiting a
black hole. The approach incorporates the following ‘‘prin-
ciples’’: (a) The particle is represented as a delta function
source term (rather than an extended distribution) in the
field equations; (b) The perturbation equations are formu-
lated and integrated for the MP itself (rather than generat-
ing functions thereof); (c) The MP is solved for in the
Lorenz gauge; (d) The numerical integration of the pertur-
bation equations is carried out in the time domain.

The main advantages offered by this approach are the
following: (i) in applications requiring knowledge of the
MP itself, one avoids the difficult issue of MP reconstruc-
tion; (ii) the Lorenz-gauge MP provides the most natural
description of the field near the particle, and is the most
convenient to work with in analyzing the singular structure
of this field; (iii) the Lorenz-gauge MP can be incorporated
immediately into existing schemes for calculating the
gravitational SF; (iv) time-domain numerical integration
is more efficient in dealing with eccentric orbits than tradi-
tional frequency-domain methods, and is more easily gen-
eralizable from one set of orbits to another.

Here we developed the above approach, and explored its
feasibility, for orbits in the Schwarzschild spacetime. The
core of our formulation includes the decoupled field equa-
tions, Eqs. (17), along with the supplementary gauge con-
ditions, Eqs. (16). We implemented this formulation
numerically for the case of circular orbits, using a charac-
teristic time-evolution code that incorporates a constraint-
damping scheme. We demonstrated that such a code can
104026
efficiently resolve the singular field near the particle, in a
computationally inexpensive manner.

Since our code integrates the perturbation equations in
the time domain, it is possible to use it for analyzing any
orbit in the Schwarzschild spacetime: For any given tra-
jectory xp�	� (which, if geodesic, can always be taken to be
equatorial) one merely has to specify appropriate source
functions S�i�lm�rp�	�� in Eqs. (17), and feed these func-
tions into the subroutine in our code that tells the numerical
integrator where the particle is at each step of the evolu-
tion. The numerical properties of the evolution code
(stability, convergence rate, constraint damping) are insen-
sitive to the choice of source. Since our code performs well
with circular orbits, it will perform well with any other
orbit.

Much more challenging is the extension to the Kerr case,
which, however, also provides the main motivation for the
above approach. On a Kerr background, the perturbation
equations are no longer separable into multipole modes in
the time domain. A time-domain integrator will therefore
have to evolve the equations in 2� 1 dimensions (two
spacial dimensions, and time; the azimuthal direction re-
mains separable even in the time domain). There exist a
few working codes for integrating Teukolsky’s equation in
the time domain, for vacuum perturbations in Kerr geome-
try (see, e.g., [40,41]). A similar code will have to be
developed for integrating the Lorenz-gauge field equations
(4), with a particle source. The challenge here is not in the
expected high computational expense insomuch as it is in
the difficulty of treating the particle singularity: In 2� 1
dimensions the Lorenz-gauge perturbation field is no lon-
ger continuous and finite near the particle (as it is, con-
veniently, in 1� 1 dimensions). Rather, it diverges toward
the particle. Although this divergence is slow (logarithmic
in proper distance from the particle), it poses a serious
problem when it comes to numerical implementation.

One possible way around this problem is to implement a
procedure reminiscent of the ‘‘puncture’’ scheme often in
use in numerical relativity. To sketch the basic idea, let us
represent the field equation (4), symbolically, by
‘‘�h � �,’’ where ‘‘�’’ represents a given fixed trajectory
on the black hole background, and the left-hand side is
understood to contain also the Riemann term. We introduce
a world tube around the particle, of some fixed radius � that
we keep as a control parameter. � should be much smaller
than the background’s radius of curvature, and much larger
than the radius of curvature associated with the particle;
say, ��

���������
M�
p

. The numerical time-evolution integrator
then utilizes the following algorithm: At any point (in the
2� 1-dimensional numerical grid space) outside the above
world tube, the integrator evolves the homogeneous equa-
tion �h � 0 as it is. However, at points inside the tube, the
integrator solves for a different, ‘‘punctured’’ field hpunct �

h� hsing, where hsing is an analytic approximation for the
field h near the singularity, chosen such that hpunct is
-21
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continuous everywhere inside the world tube, including on
the world line itself. Thus, inside the world tube one solves
the equation �hpunct � ���hsing, where the source term
on the right-hand side is now distributed, but ‘‘more regu-
lar’’ than the original source. The evolution across the
boundary of the world tube proceeds by matching the
external solution h to hpunct � hsing. That this (simple)
idea could work in practice has been demonstrated recently
with a toy model of a scalar field in the Schwarzschild
spacetime [42].

As explained in the Introduction, our main drive in
developing the computational approach of this paper is
the problem of calculating the SF. With the new computa-
tional tools at hand, freeing us from gauge complexities
and issues of MP reconstruction, we can straightforwardly
implement the mode-sum scheme [7]. The scheme, we
remind the reader, requires the values of each multipole
of the Lorenz-gauge MP and its derivatives at the particle.
The modes are then ‘‘regularized’’ individually, by sub-
tracting a certain quantity, given analytically (the ‘‘regu-
larization parameters’’ [7]), from each. The sum over
regularized modes then gives the physical SF experienced
by the particle. Our current code can be used to calculate
the SF in this manner, for any orbit in the Schwarzschild
spacetime. One minor technical matter still to be addressed
is the fact that the regularization parameters prescribed in
the literature correspond (somewhat awkwardly) to a sca-
lar-harmonic decomposition of the force’s components,
whereas the entities we calculate numerically are tensor-
harmonic components of the MP, yielding the vector-har-
monic components of the force. It will be required to obtain
104026
the appropriate regularization parameters for the vector-
harmonic components, or, alternatively, expand the vector-
harmonic components in scalar harmonics in order to allow
them to communicate with the standard parameters. Either
of these options is essentially straightforward to imple-
ment.
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APPENDIX A: BASIS OF TENSOR HARMONICS

The tensor harmonics Y�i�lm�� adopted in this paper are
given, in Schwarzschild coordinates t; r; 
; ’, by
Y�1��� �
1���
2
p

1 0 0 0

0 f�2 0 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCAYlm; Y�2��� �

f�1���
2
p

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCAYlm; Y�3��� �

1���
2
p

1 0 0 0

0 �f�2 0 0

0 0 0 0

0 0 0 0

0
BBBB@

1
CCCCAYlm; (A1a)

Y�4��� �
r������������������

2l�l� 1�
p

0 0 @
 @’
0 0 0 0

@
 0 0 0

@’ 0 0 0

0
BBBBB@

1
CCCCCAY

lm; Y�5��� �
rf�1������������������

2l�l� 1�
p

0 0 0 0

0 0 @
 @’
0 @
 0 0

0 @’ 0 0

0
BBBBB@

1
CCCCCAY

lm; (A1b)

Y�6�lm�� �
r2���

2
p

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 s2

0
BBBB@

1
CCCCAYlm; Y�7�lm�� �

r2���������������������
2�l�l� 1�

p
0 0 0 0

0 0 0 0

0 0 D2 D1

0 0 D1 �s2D2

0
BBBB@

1
CCCCAYlm; (A1c)
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Y�8�lm�� �
r�������������������

2l�l� 1�
p

0 0 s�1@’ �s@

0 0 0

s�1@’ 0 0 0

�s@
 0 0 0

0
BBBBB@

1
CCCCCAY

lm; (A2a)

Y�9�lm�� �
rf�1�������������������

2l�l� 1�
p

0 0 0 0

0 0 s�1@’ �s@

0 s�1@’ 0 0

0 �s@
 0 0

0
BBBB@

1
CCCCAYlm; (A2b)

Y�10�lm
�� �

r2����������������������
2�l�l� 1�

p
0 0 0 0

0 0 0 0

0 0 s�1D1 �sD2

0 0 �sD2 �sD1

0
BBBB@

1
CCCCAYlm; (A2c)
TABLE III. Component combinations used in separating the
perturbation equations. Here s � sin
, and the angular differen-
tial operators D1 and D2 are those defined in Eqs. (A3). Curly
brackets represent Schwarzschild components of Eqs. (4); thus,
‘‘fttg � f2frrg,’’ for example, stands for ‘‘take the tt component
of Eqs. (4), and add to it the rr component of that equation,
multiplied by f2.’’

To get equation for . . . use the combination . . .

i � 1 fttg � f2frrg
i � 2 ftrg
i � 3 fttg � f2frrg
i � 4 �sft
g�;
 � �s

�1ft’g�;’
i � 5 �sfr
g�;
 � �s

�1fr’g�;’
i � 6 f00g � s�2f’’g
i � 7 s�2D1�sf
’g� � s�1D2�s2f

g

� f’’g�=2
i � 8 ft
g;’ � ft’g;

i � 9 fr
g;’ � fr’g;

i � 10 s�2D1�s

2�f

g � s�2f’’g��=2
� s�1D2�sf
’g�
where f � �1� 2M=r�, Ylm�
;’� are the standard scalar
spherical harmonics, s � sin
, � � �l� 1��l� 2�, and the
angular operators D1 and D2 are given by

D1 � 2�@
 � cot
�@’;

D2 � @

 � cot
@
 � s
�2@’’:

(A3)

The radial factors involving r and f are introduced for
dimensional balance and for settling the horizon behavior.
The harmonics Y�i�lm�� constitute an orthonormal set, in the
sense expressed in Eq. (7). This can be readily verified
based on the identities

Z
Yl
0m0Ylm	d� � �ll0�mm0 ; (A4a)

Z
�Yl

0m0
;
 Ylm	;
 � sin�2
Yl

0m0
;’ Ylm	;’ �d� � l�l� 1��ll0�mm0 ;

(A4b)Z
��D2Y

l0m0 ��D2Y
lm	� � sin�2
�D1Y

l0m0 ��D1Y
lm	��d�

� �l�l� 1��ll0�mm0 ;

(A4c)

where the integration is carried over a 2-sphere r � const,
an asterisk denotes complex conjugation, and �nn0 is the
Kronecker delta.

APPENDIX B: SEPARATION OF THE FIELD
EQUATIONS

The field equations (15), which are fully separated with
respect to l;m, and uncoupled at their principal part with
respect to i, are obtained by substituting both expansions
(8) and (12) into Eqs. (4), and then considering certain
combinations of the resulting equations and derivatives
thereof. The necessary combinations are given in Table III.
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APPENDIX C: MODE-DECOMPOSED
LINEARIZED EINSTEIN EQUATIONS IN THE

LORENZ GAUGE

We give here the explicit expressions for the terms ~M�i�
�j�

appearing in the original form of the separated field equa-
tions, Eqs. (15). For the numerical evolution in this paper
we use a different form of the separated equations [i.e.,
Eqs. (17), with Eqs. (18), which incorporate a constraint-
damping scheme], and so the original functions ~M�i�

�j� are
not needed in our analysis. We nevertheless give them here,
as they might be useful as a starting point for anyone
wishing to implement a different numerical scheme. The
terms ~M�i�

�j� are given by
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~M�1�
�j�

�h�j� �
1

2
ff0 �h�1�;r �

1

2
f0 �h�2�;t �

f2

2r2 �
�h�1� � �h�3� � �h�5� � f �h�6��; (C1a)

~M�2�
�j�

�h�j� �
1

2
ff0 �h�2�;r �

1

2
f0 �h�1�;t �

f2

2r2 �
�h�2� � �h�4��; (C1b)

~M�3�
�j�

�h�j� �
1

2
ff0 �h�3�;r �

1

2r2 �1� 8M=r� 10�M=r�2� �h�3� �
f2

2r2 �
�h�1� � �h�5� � �1� 4M=r� �h�6��; (C1c)

~M�4�
�j�

�h�j� � 1
4f
0f �h�4�;r � 1

4f
0 �h�5�;t �

3
4f
0�f=r� �h�4� � 1

2l�l� 1��f=r2� �h�2�; (C1d)

~M�5�
�j�

�h�j� �
1

4
ff0 �h�5�;r �

1

4
f0 �h�4�;t �

f

r2 �1� 3:5M=r� �h�5� �
f

2r2 l�l� 1�� �h�1� � �h�3� � f �h�6�� �
f2

2r2
�h�7�; (C1e)

~M�6�
�j�

�h�j� � �
f

2r2 �
�h�1� � �h�5� � �1� 4M=r��f�1 �h�3� � �h�6���; (C1f)

~M�7�
�j�

�h�j� � �
f

2r2 �
�h�7� � � �h�5��; (C1g)

~M�8�
�j�

�h�j� � 1
4f
0f �h�8�;r � 1

4f
0 �h�9�;t �

3
4f
0�f=r� �h�8� (C1h)

~M�9�
�j�

�h�j� �
1

4
f0�f �h�9�;r � �h�8�;t � �

f

r2 ��1� 3:5M=r� �h�9� � �f=2� �h�10��; (C1i)

~M�10�
�j�

�h�j� � �
f

2r2 �
�h�10� � � �h�9��; (C1j)

where we have omitted all indices l;m for brevity.
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