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Counterterm charges generate bulk symmetries
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We further explore the counterterm subtraction definition of charges (e.g., energy) for classical
gravitating theories in spacetimes of relevance to gauge/gravity dualities; i.e., in asymptotically anti-de
Sitter (AdS) spaces and their kin. In particular, we show in general that charges defined via the counter-
term subtraction method generate the desired asymptotic symmetries. As a result, they can differ from
any other such charges, such as those defined by bulk spacetime-covariant techniques, only by a function
of auxiliary nondynamical structures such as a choice of conformal frame at infinity (i.e., a function of
the boundary fields alone). Our argument is based on the Peierls bracket, and in the AdS context allows
us to demonstrate the above result even for asymptotic symmetries which generate only conformal
symmetries of the boundary (in the chosen conformal frame). We also generalize the counterterm
subtraction construction of charges to the case in which additional nonvanishing boundary fields are
present.
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I. INTRODUCTION

In recent years, the study of gravitational theories in
asymptotically anti-de Sitter (AdS) spaces has been of
great interest due to the AdS/conformal field theory
(CFT) correspondence [1–4], a conjectured equivalence
between at least certain such ‘‘bulk’’ string theories (which
therefore contain gravity) and nongravitational dual theo-
ries. In the case of AdS, the nongravitating dual theories
are associated with spacetimes that may be considered to
form the boundary of the asymptotically anti-de Sitter
space. Similar so-called gauge/gravity correspondences
also arise for other systems (see e.g. [5–7]) and involve
bulk spacetimes with some of the same features as anti-de
Sitter space.

As one may expect, the notion of energy (and of other
conserved charges) is of significant use in understanding
this correspondence. For some time, it has been clear that
the dual field theories are closely associated with what is
called the ‘‘counterterm subtraction’’ definition of energy
[8–16] in the bulk. Such ideas are well developed for the
case of anti-de Sitter space, and one might expect a suitable
generalization to apply to other contexts as well. However,
a number of other definitions of energy [17–24] have also
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been given for bulk theories in AdS, and these are known to
differ from the counterterm subtraction definition.

In particular, these other definitions all assign zero en-
ergy to pure AdS space, as is required if the charges are to
form a representation of the AdS group. In contrast, in odd
dimensions the counterterm subtraction approach assigns a
nonzero value to AdS space which, moreover, depends on
the choice of an auxiliary structure: a conformal frame �
at infinity. This feature is natural from the point of view of
the dual gauge theory (where it is associated with the
conformal anomaly [8,9]), but raises the question of the
general relationship between the counterterm subtraction
energy and other constructions.

A reasonable conjecture is that the difference between
these various notions of energy amounts to a ‘‘constant
offset’’ which might in general depend on the choice of
auxiliary conformal frame �, but which in no way depends
on the dynamical bulk degrees of freedom. If this were so,
the difference would be a constant over the phase space of
the theory and all notions of energy would generate the
same action on observables via the Poisson Bracket. This
conjecture is consistent with the interpretation of the ‘‘vac-
uum energy’’ assigned to pure AdS as arising from the
Casimir energy in the dual field theory. It is also suggested
by numerous calculations (see e.g., [8–16,25], and also
[26–28] for cases with slightly weaker asymptotic condi-
tions) of the value of the counterterm energy assigned to
particular families of spacetimes (e.g., the Schwarzschild-
AdS spacetimes) in a particular conformal frame and also
-1 © 2005 The American Physical Society
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1The case of certain scalar fields was considered in
[11,12,14,16]. The contribution of gauge fields to the divergence
of the stress tensor was considered in [46]. In addition, we
understand that the corresponding conserved quantities are
also constructed in unpublished work by Kostas Skenderis,
with results similar to those presented below.
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by [29]. Under appropriate asymptotically anti-de Sitter
asymptotic conditions, this conjecture was recently proven
[30] for all solutions and in all conformal frames in d � 5
bulk spacetime dimensions. Reference [30] also derives an
explicit formula for this difference as a function of the
metric on the conformal boundary defined by �, and shows
under their boundary conditions that the definitions [17–
23] also agree with a covariant phase space definition based
on techniques of [31–33]. Finally, since the appearance of
the first version of the present paper, [34] has extended
such arguments to more general asymptotically AdS
boundary conditions.

Our purpose here is to demonstrate similar results in
all dimensions, and also for a much broader class of
asymptotic behaviors. In fact, our arguments below will
use only a few basic features associated with the con-
struction of counterterm charges. We state most of the
required properties in Sec. II A below, but these properties
follow immediately in cases where counterterm sub-
traction is associated with the conformal boundary of
the spacetime manifold. In addition, we will impose
a simple causality requirement in Sec. III which naturally
occurs whenever the conformal boundary has Lorentz
signature. Thus, our results imply those of [30,34] and,
in addition, apply equally well to other contexts such as
the domain-wall spacetimes renormalized in [35–37]
and to the cascading geometries renormalized in [38]
(and first studied in [39– 41]). Furthermore, if an appro-
priate set of counterterms can be found, they would
also apply to the more general gauge/gravity dualities
described in [5].

Our arguments will be based on general properties of the
so-called Peierls bracket [42], a manifestly covariant con-
struction which is equivalent to the Poisson bracket on the
space of observables (see [43] for extensions of the Peierls
bracket to algebras of gauge-dependent quantities and
[44,45] for recent related work in quantum field theory).
We begin by reviewing both the counterterm subtraction
definition of charge and the Peierls bracket in Sec. II. This
serves to set a number of conventions, and the counterterm
charge discussion provides an opportunity to comment on
subtle features associated with the choice of conformal
frame � used to define the charge associated with a
particular asymptotic symmetry �. In particular, depending
on the choice of conformal frame, a given asymptotic
symmetry need not act as a strict symmetry on the collec-
tion of boundary fields used to construct the counterterm
charges. Instead, it might act only as a conformal symme-
try. However, in the special case of appropriate asymptoti-
cally anti-de Sitter behavior, one may nevertheless show
[8–16] that the difference between the charge evaluated on
any two hypersurfaces is determined entirely by the con-
formal frame � and is independent of the bulk dynamics.
Thus, even in this context the counterterm definition re-
mains useful. We also take this opportunity to generalize
the construction to allow arbitrary tensor and spinor bound-
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ary fields.1 Following this review, we give our main argu-
ment in Sec. III and close with a brief discussion of the
results.

Since our arguments below will rely only on general
properties of the Peierls bracket, they are independent of
the details of the bulk dynamics. This is in sharp contrast to
the results of [30,34] which also compared various defini-
tions of energy, but which were based on a common
technique involving explicit expansion of the Einstein
equations in a power series around the boundary of an
asymptotically anti-de Sitter space. Our results here are
correspondingly more general, but also much less explicit.
We remind the reader that [30] was able not only to relate
the counterterm energy to the covariant phase space
Hamiltonian, but also to show that the covariant phase
space Hamiltonian agrees with the constructions of
Ashtekar et al. based on the electric part of the Weyl tensor
[17,18], with the Hamiltonian charge due to Henneaux and
Teitelboim [19], and finally with the spinor charge of [21–
23] (which guarantees positivity). The Abbott and Deser
construction [20] and its extensions [47–49] and the KBL
construction [24] (applied to AdS in [50]) were not con-
sidered in [30].
II. PRELIMINARIES

In this section, we review the two constructions central
to our analysis: the counterterm subtraction definition of
conserved charges (Sec. II A) and the Peierls bracket
(Sec. II C) between observables.

A. Counterterm subtraction charges

The setting for the counterterm subtraction construction
of conserved charges [8,9] is to consider systems associ-
ated with a certain sort of variational principle. Now, in
general, such a principle specifies a class of variations with
respect to which one requires the associated action S to be
stationary. Let us suppose that this is done by positing a
space of kinematically allowed histories H (‘‘bulk varia-
bles’’) within which one is allowed to perform an arbitrary
variation. There will also be certain features (‘‘boundary
values’’) which are identical for all histories in H and
which are not to be varied. Thus, we in fact consider a
family of actions S, each with an associated space of
histories H , parametrized by some set of allowed bound-
ary values. Although typically discussed in the context of
the conformal completion of some spacetime, the counter-
term subtraction construction of conserved charges gener-
-2
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alizes naturally to a somewhat more abstract setting. We
will therefore find it useful to state the minimal axioms for
this construction. The reader may readily verify that each
axiom holds when the boundary manifold @M described
below is the conformal boundary of the spacetime M.
Though our setting is in principle more abstract, it is
convenient to use the term ‘‘boundary manifold’’ and other
such terms in our discussion.

The counterterm subtraction construction of conserved
charges is relevant when the following conditions hold:
(1) T
he boundary values can be described by a set of
tensor (and perhaps spinor) ‘‘boundary fields’’ on an
auxiliary manifold @M which is called the ‘‘bound-
ary of the spacetime M.’’ This will typically require
the introduction of some auxiliary structure, which
we call �, and which may include, for example, a
choice of conformal frame at infinity. The choice of
� is typically not unique, but is by definition a fixed
kinematical structure independent of the bulk state.
Given �, the boundary fields are determined by the
bulk fields.
(2) O
ne of these boundary fields is a metric hab on @M
such that �@M; hab� is a globally hyperbolic
spacetime.
(3) T
he action S is diffeomorphism invariant in the
following sense: Every diffeomorphism  @ of the
boundary manifold @M is (not uniquely) associated
with a diffeomorphism  of the bulk spacetime
which i) induces the action of  @ on the boundary
fields through the map that constructs boundary
fields from bulk fields, ii) preserves the auxiliary
structure �, iii) preserves the space H of histories
on which the action S is defined, and iv) is such that
S is invariant under the simultaneous action of  on
the bulk fields,  @ on the boundary values, and the
corresponding transformation on the initial and/or
final boundary conditions appropriate to the action
S. As a result, the equations of motion are invariant
under the action of  . We refer to the vector fields
generating  and  @ as � and �@. Note that only
diffeomorphisms  for which  @ acts as the identity
on @M are gauge transformtations.
(4) F
irst functional derivatives of the action S with
respect to the boundary fields are well-defined and
finite when evaluated on the space S of solutions to
the equations of motion. This is typically arranged
by an appropriate choice of ‘‘counterterms,’’ leading
to the name counterterm subtraction method.
As a particular example of this construction, one may
consider asymptotically anti-de Sitter spacetimes. In this
case, one takes @M to be the conformal boundary of M
defined by the conformal frame �. The condition that  in
requirement (3) above should preserve the conformal
frame � determines how  @ is extended from @M to M,
at least near @M.

In addition, we shall further assume:
104025
(5) G
-3
iven �, �@ as in (3) and any smooth function f on
M, there is a smooth function f@ on @M such that the
action on bulk fields of a diffeomorphism along f�
induces the action of a diffeomorphism on boundary
fields along f@�@.
This latter condition clearly follows when the boundary
@M is constructed by conformal completion ofM, and will
be useful in our arguments below.

The above setting is somewhat analogous to considera-
tion of a field theory in the presence of nondynamical
background fields. Here, however, the role of the back-
ground fields is played only by the boundary fields. As a
result, there is an important difference: typically, one may
vary background fields independently of dynamical fields,
such as when one constructs the stress-energy tensor by
varying a background metric for some field theory in
curved spacetime. Clearly this is not possible here: since
the boundary fields are limiting values of the bulk fields,
any variation of the boundary fields necessarily requires a
corresponding variation of the bulk fields. This will lead to
certain subtleties which must be properly taken into ac-
count below.

As a result, the current context will require more reli-
ance on the space of solutions (i.e., ‘‘on-shell’’ techniques)
than in the usual background-field setting. In particular,
one makes heavy use of the fact that, when evaluated on the
space of solutions, variations which preserve both the
boundary fields and appropriate boundary conditions in
the past and/or future will leave the action invariant. It is
this fact which allows property (4) above to hold: as noted
above, any variation of the boundary fields must be ac-
companied by a variation of the bulk fields, and away from
the space of solutions the change in the action S depends
nontrivially on the choice of bulk variation. However,
when evaluated on-shell, the change in S is independent
of the choice of bulk variation, so long as it satisfies
appropriate boundary conditions in the past and/or future.
As a result, one may follow [8–16,46] and define the
‘‘boundary stress tensor’’ �ab as a function on the space
of solutions satisfying

�ab� � �2
�S

�hab
; (2.1)

where the functional derivative is computed holding all
other boundary fields constant and fixing appropriate
boundary conditions in the past and/or future. Here we
have used the notation � � ��a1a2...an� for the natural
n-form associated with hab, identified with a density.

The definition (2.1) is sufficient when the metric is the
only nontrivial boundary field; i.e., in the context consid-
ered by [8,9]. In that context one may show that �ab is
covariantly conserved with respect to the metric hab on @M
by following the essential steps through which one would
derive covariant conservation of the stress-energy tensor
Tab in a curved spacetime. We will describe this argument
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below, but we also wish to consider the more general case
in which other boundary fields may be nonvanishing.
When the extra fields are not scalars, this generalization
will require us to introduce a ‘‘modified boundary stress
tensor’’ with extra terms representing contributions from
these extra boundary fields.

To do so, let us introduce some complete set of bulk
fields �I on M, where the I ranges over an appropriate
label set to include components of vector and tensor (and
perhaps spinor) fields as well as scalars. In particular, �I

includes the bulk metric (and any frame fields; see below).
We also wish to pick out a complete set of boundary fields.
However it turns out that the tensor (or spinor) rank of
these fields will affect the detailed form of certain expres-
sions below (including the definition of the charges). As a
result, it is convenient at this stage to replace the boundary
metric hab with a set of frame fields eaA satisfying

hab � �ABeaAeb
B (2.2)

for a fixed metric �AB (perhaps the Minkowski metric).
The introduction of the frame fields allows us to write all
remaining boundary fields without loss of generality in
terms of a set of scalar fields, e.g., a tensor field Xab...c is
encoded in the set XAB...C � Xab...ceA

aeB
b � � � eC

c of scalar
fields. We denote the collection of scalar fields on @M by
�i
@. Thus, these boundary scalars are just the ‘‘tangent

space components‘‘ of any remaining2 vector, tensor, or
spinor boundary fields. We denote the full set of such
boundary scalar fields and the frame fields by

�I
@ � ��

i; eA
a�: (2.3)

Having replaced the boundary metric by a set of frame
fields, it is natural to introduce the ‘‘modified boundary
stress tensor’’

T ab� �
�S

�eb
A e

aA; (2.4)

where the functional derivative is computed holding fixed
the scalars �i

@ (i.e., the tangent space components of
boundary fields).

More specifically, let us introduce the future and past
boundaries �� (perhaps at infinity) of our system in order
to keep track of all boundary terms. We shall assume that,
as is most common, the action is chosen so that its func-
tional derivatives yield the equations of motion when
boundary fields are held fixed together with the fields3

�I on ��. Thus, a general variation of the action may be
2The tangent space components of the frame fields are, of
course, trivial by definition. These may be included in the set �i

@
for convenience of notation, but only the set f�i

@; eA
ag of

boundary scalars together with boundary frame fields forms a
complete set of boundary fields.

3More generally, one might use an action appropriate to fixing
various derivatives of �I at ��. It will be clear from the
treatment below that our results apply equally well to such cases.
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written:

�S �
Z
M

�S
��I ��I 	

Z
@M

�S
��i

@
��i

@ 	
Z
@M
�Ta

A�ea
A

	
Z

��

�I��I; (2.5)

where
R

��
includes integrals over both �	 and �� and we

take the momenta �I to be defined by this final term. We
are then interested in the value of Ta

A on the space of
solutions.

In the case where the nontrivial boundary fields are just
the metric and some scalars on @M, the modified and
original boundary stress tensors agree; Tab � �ab.
However, in the presence of other nontrivial boundary
fields, Tab contains extra contributions from these fields.
As usual, we will use the frame fields eaA and the inverse
frames to convert spacetime indices into tangent space
indices (and vice versa). In particular, we will make use
of Ta

A, which is in fact a more fundamental quantity than
Tab.

Now, in general, the modified boundary stress tensor
TA

a will fail to be covariantly conserved due to the pres-
ence of the other background fields �i

@. However, its co-
variant divergence takes a simple and useful form. This
may be demonstrated by considering the simultaneous
action of an arbitrary infinitesimal boundary diffeomor-
phism  @, which we take to be generated by the vector field
�a@, and the associated bulk diffeomorphism  generated by
�a. By property (3) above we then have

0 �
Z
M

�S
��IL��I 	

Z
@M

�S
��i

@
L�@�

i
@

	
Z
@M
�Ta

AL�@ea
A 	

Z
��

�IL��I; (2.6)

If we evaluate (2.6) on the space of solutions (so that the
bulk equations of motion hold), then the first term vanishes.
Considering the second term, the �i

@ are scalars so that we
have L�@�

i
@ � �a@ra�

i
@, where r is the (torsion-free) co-

variant derivative on @M compatible with the metric hab.
Thus, this term is algebraic in �@. Finally, turning to the
third term, we have

L �@ea
A � �b@rbea

A 	 eb
Ara�

b
@: (2.7)

Thus, we may perform an integration by parts in the
third term and use the arbitrariness of �a@ (and, in particular,
the ability to set �a@ to zero in a neighborhood of ��) to
conclude that the covariant divergence of Tab satisfies4

raTab �
X
i

�S
��i

@
rb�i

@ 	 Ta
Ar

beaA: (2.8)
4Some readers may consider it more elegant to introduce
another derivative operator Da on @M satisfying Daeb

B � 0.
In this case, DaTab is given just by the scalar field term on the
right-hand side of (2.8).
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We are now in a position to construct the counterterm
charges and demonstrate their conservation. To do so,
consider a particular choice of boundary values and an
infinitesimal diffeomorphism  @ corresponding to a sym-
metry of the boundary values. We take  @ to be generated
by the vector field �@ and the associated bulk diffeomor-
phism  to be generated by �. Hence �@ Lie-derives the
boundary fields up to a local gauge transformation

L �@ea
A � RABea

B; L�@�
i
@ �

X
j

Rij�
j
@; (2.9)

where RAB � �RBA and Rij gives the action of the asso-
ciated frame rotation on the boundary scalars�i

@. In fact, as
we will see shortly, it is just as easy to allow �RAB; R

i
j� to

define an arbitrary infinitesimal transformation �ea
A �

RABea
B; ��i

@ �
P
jR

i
j�

j
@ under which the action S is lo-

cally invariant.5

We call such a � an ‘‘asymptotic symmetry compatible
with �.’’ One then defines the associated ‘‘counterterm
subtraction charge’’:

Q��� �
Z
C

Tab�
adsb; (2.11)

where C is a Cauchy surface of @M, and

dsa � �ab1...bn�1
dxb1 � � � dxbn�1
5By locally invariant, we mean that

Z
V

�
RABe

B
a
�

�ea
A 	 R

i
j�

j
@
�
��i

@

�
S � 0 (2.10)

for any V 
 @M. In particular, (2.10) contains no boundary term
on @V.
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is the induced integration element on C. We will refer to C
as a ‘‘cut’’ of @M in order to avoid confusion with Cauchy
surfaces in M. As an example of Q��� in the familiar anti-
de Sitter context, one might take the boundary metric to be
the Einstein static universe with all other boundary fields
vanishing. In this case, one could take � to be an asymp-
totic time translation and the associated Q��� would give
the counterterm subtraction definition of energy. Note also
that we have defined Q��� only when �a preserves any
auxiliary structure (�) needed to define the boundary
fields. However, in typical examples (e.g., AdS) the result
may be applied much more generally: one need only find
the boundary symmetry �@ associated with � and then
choose another extension �0 to the bulk which preserves
� and induces the same action �a@ on the boundary. One
then defines Q��� :� Q��0�.

We wish to prove that Q��� is independent of the choice
of cut C. Let us therefore consider some region V 
 @M
such that the boundary @V within @M consists of two cuts
C1 and C2. Let QC1

��� and QC2
��� denote the values of

Q��� associated with the two cuts, respectively. Then we
have

QC1
��� �QC2

��� �
Z
V
�ra�Tab�@b�: (2.12)

But we may use (2.7) and (2.8) to express (2.12) as
QC1
����QC2

����
Z
V

X
i

�S
��i

@
L�@�

i
@	

Z
V
�Ta

AL�@ea
A�

Z
V

�
RABe

B
a
�

�ea
A	

X
i;j

Rij�
j
@
�
��i

@

�
S�0; (2.13)
where in the second step we have used the fact that �@
generates a symmetry of the boundary fields up to a gauge
rotation, and where in the final step we have used the fact
that S is invariant under such rotations.

Thus, for asymptotic symmetries � compatible with �,
Q��� is indeed independent of the cut C. Note that, as a
result, we can weaken the framework to require only that C
is homotopic to a Cauchy surface. The result (2.13) gen-
eralizes the construction of [8–16,46] to include arbitrary
nontrivial (tensor and spinor) boundary fields.

B. Conformal boundary killing fields and
asymptotically anti-de Sitter boundary conditions

In [8–16] it was shown that many gravitational theories
with asymptotically anti-de Sitter asymptotic behavior
satisfy requirements (1)–(5) of Sec. II A. In addition, [8–
16] also demonstrate another property associated with the
conformal invariance of the dual field theory (under the
AdS/CFT correspondence). Recall that conformal invari-
ance requires the trace of the stress-energy tensor to be
zero. Now, if such a quantum field theory is placed on a
generic curved background the trace of the stress tensor
might be nonvanishing. This trace—the ‘‘anomaly’’ —is
normally given by local curvature terms of the background
metric. As a result, the AdS/CFT correspondence suggests
that the trace � � hab�ab of the boundary stress tensor
defined above should depend only on hab and, in particular,
should be a constant on the space of solutions S. That this
is the case was shown in [8–16] for their boundary con-
ditions, under which �ab agrees with our Tab. Indeed, when
the metric on @M is taken to be the Einstein static universe
(and certain other boundary fields vanish), Refs. [8–16]
show that � vanishes.

We may now follow [8–16] and use this observation to
generalize the discussion of Q��� to the case where � is
associated with a vector field �@ on @M which is only a
conformal killing field of hab. Note that in cases where the
boundary spacetime �@M; hab� is just the conformal bound-
ary of the bulk, any asymptotic symmetry � of the bulk
should induce such a conformal isometry �@ of the bound-
ary metric of @M so that this procedure will lead to a
counterterm charge associated with every conserved quan-
-5



6For the same reasons, we expect the Peierls bracket to be of
use in studying other objects which naturally arise in the AdS/
CFT correspondence.
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tity that one expects from the symmetries of the bulk
system.

In particular, let us suppose that we have a conformal
Killing field with

ra�@b 	rb�@a � L�@hab � 2khab; (2.14)

for some smooth function k on @M, and that

L �@�
i
@ �

X
j

Ki
j�

j
@ 	

X
j

Rij�
j
@: (2.15)

Here the coefficients Ki
j encode the behavior of the �i

@

under conformal transformations and the Rij are as before
in Sec. II A. Equation (2.14) implies that L�@ea

A �

keaA 	 RABe
B
a . We now simply repeat the above calcula-

tion to see how QC��� depends on the cut C. Consider
again Eqs. (2.8) and (2.12), but now use Eq. (2.14) to write
the right-hand side in the form

QC1
��� �QC2

��� �
Z
V

�
�Ta

AL�@e
A
a 	

X
i

�S
��i

@
L�@�

i
@

�

�
Z
V

�
k�T	

X
i;j

Kj
i�j

@
�S
��i

@

�
(2.16)

�
Z
V

�
keAa

�

�eAa
	
X
i;j

Ki
j�

j
@
�
��i

@

�
S; (2.17)

where we have defined T :� Ta
Aea

A � Tabhab, and in the
second line we have used the invariance of S under frame
rotations. Thus, assuming that the integrand on the right
side is a function of the boundary fields alone and not of the
particular solution under consideration (as is the case under
the asymptotic conditions of [8–16]), the change inQ��� is
a function only of the boundary fields and is otherwise
constant over the space of solutions S.

C. The Peierls bracket

Having reviewed (and generalized) the counterterm sub-
straction definition of charges, we now briefly review the
other piece of machinery we will need to derive our main
result: the Peierls bracket.

The Peierls bracket is an algebraic structure defined on
gauge-invariant functions on the space of solutions S
associated with an action principle. As shown in the origi-
nal work [42], this bracket is equivalent to the Poisson
bracket under the natural identification of the phase space
with the space of solutions. One of the powerful features of
the Peierls bracket is that it is manifestly spacetime cova-
riant. Another is that it is defined directly for general gauge
invariants A and B whether or not A and B are associated
with some common time t. Furthermore, A and B need not
be local but can instead be extended over regions of space
and time.

These features make the Peierls bracket ideal for study-
ing the boundary stress tensor, which is well-defined only
104025
on the space of solutions and is not a local function in the
bulk spacetime.6 As a result, it will be straightforward to
give a Peierls version of a Noether argument to show that
the charges Q��� generate the appropriate symmetries
when �@ is a boundary Killing field—or, more generally,
a boundary conformal Killing field as discussed in
Sec. II B. Since this property is required of any charge
defined by Hamiltonian methods, it follows that such
charges can differ from Q��� only by a quantity with
vanishing Peierls bracket. But all such quantities can de-
pend only on the boundary fields and must otherwise be
constants on the space of solutions S.

The Peierls construction considers the effect on one
gauge-invariant function (say, B) on the space of histories
H when the action is deformed by a term proportional to
the another such function (A). In particular, suppose that
the dynamics is determined by an action S. One defines the
advanced (D	A B) and retarded (D�A B) effects of A on B by
comparing the original system with a new system defined
by the action S� � S	 �A, but associated with the same
space of histories. Here � is a real parameter which will
soon be taken to be infinitesimal, and the new action is
associated with a new space S� of deformed solutions.

Under retarded (advanced) boundary conditions for
which the solutions s 2 S and s� 2 S� coincide on ��
(�	) of the support of A, the quantity B0 � B�s� computed
using the undeformed solution s will in general differ from
B�� � B�s�� computed using s� and retarded �	� or ad-
vanced ��� boundary conditions. For small epsilon, the
difference between these quantities defines the retarded
(advanced) effect D�A B (D	A B) of A on B through

D�A B � lim
�!0

1

�
�B�� � B0�; (2.18)

which is a function of the unperturbed solution s. Similarly,
one defines D�B A by reversing the roles of A and B above.
Since A;B are gauge invariant, D�B A is a well-defined (and
again gauge-invariant) function on the space S of solutions
so long as both A and B are first-differentiable on H (a
requirement which may be subtle when the spacetime
supports of A and B extend to �	 or ��).

The Peierls bracket [42] is then defined to be the differ-
ence of the advanced and retarded effects:

fA;Bg � D	A B�D
�
A B: (2.19)

One may show that (2.19) depends only on the restriction
of A;B to the space of solutions S, so that (2.19) defines an
algebra of functions on S, as desired.

The fact that this agrees with the Poisson bracket (sup-
plemented by the equations of motion) was shown in [42],
and generalizes the familiar result that the commutator
-6



COUNTERTERM CHARGES GENERATE BULK SYMMETRIES PHYSICAL REVIEW D 72, 104025 (2005)
function for a free scalar field is given by the difference
between the advanced and retarded Green’s functions. In
fact, it is enlightening to write the Peierls bracket more
generally in terms of such Green’s functions. To do so, we
again make use of our complete set of (bulk) fields �I

(which include the metric and components of bulk tensor
and spinor fields) and the associated advanced and retarded
Green’s functions G�IJ�x; x

0�. Note that we have

D	A B �
Z
dxdx0

�B
��I�x�

G	IJ�x; x
0�

�A
��J�x0�

�
Z
dxdx0

�B

��J�x0�
G�JI�x

0; x�
�A

��J�x�
� D�B A:

(2.20)

Thus, the Peierls bracket may also be written in the man-
ifestly antisymmetric form

fA;Bg � D�B A�D
�
A B: (2.21)

The expressions (2.20) in terms ofG�IJ�x; x
0� are also useful

in order to verify that the Peierls bracket defines a Lie-
Poisson algebra. In particular, the derivation property
fA;BCg � fA;BgC	 fA;CgB follows immediately from
the Leibnitz rule for functional derivatives. The Jacobi
identity also follows by a straightforward calculation,
making use of the fact that functional derivatives of the
action commute (see e.g., [51,52]). If one desires, one may
use related Green’s function techniques to extend the
Peierls bracket to a Lie algebra of gauge-dependent quan-
tities [43].

III. MAIN ARGUMENT

We now use the Peierls bracket to show that the counter-
term subtraction charges Q��� generate the appropriate
symmetries when �@ is a boundary Killing field, or, more
generally, a boundary conformal Killing field under the
conditions of Sec. II B. Since this property is required of
any charge defined by Hamiltonian methods, it follows that
such charges can differ from Q��� only by a quantity with
vanishing Peierls bracket. But any such quantity can be
built only from auxiliary structures and must otherwise be
constant on the space of solutions S. As in Sec. II, we first
address asymptotic symmetries � compatible with � using
the features (1)–(5) of the counterterm subtraction setting
as described in Sec. II A, and then proceed to the case
where � does not preserve � so that the associated �@ acts
only as a conformal Killing field on the boundary.

A. Asymptotic symmetries compatible with �

The essential point of the argument is that the Peierls
bracket allows a simple derivation of Noether’s theorem.
We will be able to proceed when there is a pair of smooth
functions �f; f@� on �M;@M� satisfying requirement (5) of
Sec. II A as well as
(i) f
 � 0 in a neighborhood of the past boundary ��.
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(ii) f
-7
@ � 0 to the past of some cut C0 of @M.

(iii) f
 � 1 in a neighborhood of the future boundary

�	.

(iv) f
@ � 1 to the future of some cut C1 of @M.
This is the simple causality requirement mentioned in the
introduction. It is naturally satisfied whenever @M may be
considered as a boundary of M and is of Lorentz signature.
In that case we may simply take f@ to be defined by limits
of f on @M.

Let us now consider any asymptotic symmetry � com-
patible with � and the associated boundary isometry �@.
Under the action of this symmetry, the bulk and boundary
fields transform as

��I � L��I; �eaA � L�@ea
A � RABea

B;

and ��i
@ � L�@�

i
@ �

X
j

Rij�
j
@; (3.1)

where �RAB; R
i
j� provide an appropriate frame rotation of

the boundary fields.
The key point of our argument is to construct a new

transformation �f;� on the space of fields such that the
associated first order change �f;�S in the action generates
the asymptotic symmetric � under the Peierls bracket. We
will see that the correct choice is given by �f;��I :�
�Lf� � fL���

I. An important property of this definition
is that the change �f;��I is algebraic in �I; i.e., we need
not take spacetime derivatives of the fields �I in order to
compute �f;��I. Furthermore, �f;��I is proportional to
raf, and thus vanishes in a neighborhood of �	 and ��.
This property guarantees that �f;�S is differentiable on the
space H of histories associated with the action S. In
particular, solutions to the equations of motion resulting
from the deformed action S	 ��f;�S are stationary points
of S	 ��f;�S under all variations ��I which preserve the
boundary fields �i

@; ea
A (up to gauge rotations) and vanish

on ��; all boundary terms vanish under arbitrary such
variations.

As an additional consequence of the above, we see that
(on-shell) the quantity �f;�S is gauge invariant: Since the
action S is gauge invariant, the quantity �f;�S can acquire
gauge dependence only through f; �. However, the above
observation and (2.5) imply that on-shell �f;�S depends
only on f@; �@. Since gauge transformations have trivial
action on @M, we conclude that �f;�S is gauge invariant
on-shell. Thus, we may take the Peierls bracket of �f;�S
with any other on-shell observable A.

To do so, let us note that if s 2 S is a stationary point of
the original action S with bulk fields �I and boundary
fields �i

@, eaA, then to first order in � we see that s1 �

�1� ��f;��s is a stationary point of S	 ��f;�S, since to
first order this modified action is just S��I 	 ��f;��I�;
i.e., we see that to first order the bulk fields are merely
shifted by ���f;�. Since � is an asymptotic symmetry



7The form of �f;�S is similar to the Hamilton-Jacobi definition
of energy proposed in [53] in the context of asymptotically flat
space. As a result, a similar argument might also be used to
demonstrate equivalence of such a construction with
Hamiltonian methods in that context.
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compatible with �, property (3) of Sec. II A states that the
boundary fields defined by s1 are also shifted by ���f;�

relative to those of s.
Of course, we desire solutions to the modified equations

of motion whose boundary values give the original bound-
ary fields of s. However, this can be arranged by making
use of another symmetry. Note that, because � is an
asymptotic symmetry, we may use (2.9) to compute the
induced action of �f;� on boundary fields as follows:

�f;��i
@ � �Lf@�@ � f@L�@��

i
@ � Lf@�@�

i � f@Rij�
j
@;

�f;�eaA � �Lf@�@ � f@L�@�ea
A � Lf@�@ea

A � f@RABea
A:

(3.2)

Thus, the shift of the boundary fields is just given by the a
diffeomorphism along the vector field �f@�@ and a com-
pensating frame rotation �Rij; R

A
B�. In fact, as will shortly

be important, the shift �f;��
i
@ of the boundary scalars

vanishes (and the shift �f;�eaA of the boundary frame
fields simplifies dramatically) using (2.9), but for the mo-
ment the form (3.2) is more useful. To see why, recall that
the equations of motion are invariant under both diffeo-
morphisms and frame rotations. As a result, if R is a frame
rotation on the bulk fields which induces the rotation
�Rij; R

A
B� on the boundary, then

s2 � �1	 �Lf� � �fR�s1 � �1	 �fL� � �fR�s (3.3)

with bulk fields

�Ijs2
� �I � ���f;� �Lf���

I � �fRIJ�
J

� �I 	 �fL��I � �fRIJ�
J (3.4)

induces the original boundary fields [by (3.2)]

�i
@js2
� �i

@js; eaAjs2
� eaAjs; (3.5)

and again solves the equations of motion that follow from
S��I 	 ��f;�i�

I�.
We may use this observation to compute the advanced

and retarded changes D��f;�S
A of any gauge-invariant quan-

tity A. Let us first consider the retarded change, and let us
evaluate this change on a solution s as above. We seek a
solution s�� of the perturbed equations of motion which
agrees with s on ��. Since the infinitesimal transformation
f�L� � R� vanishes on ��, we see that we may set s�� �
s2 as defined (3.3) above; i.e. s�� � �1	 �f�L� � R��s.
Thus, the retarded effect on A is just D��f;�S

A � fL�A;

where we have used the fact that A must be invariant under
local frame rotations.

To compute the advanced effect, we seek a solution s	�
of the perturbed equations of motion which agrees with s
on �	. Consider the history s	� � �1� ��L� � R��s�� �
�1	 �f� 1���L� � R��s. Since this differs from s�� by the
action of a symmetry compatible with �, it again solves
the equations of motion (to first order in �) and induces the
104025
required boundary fields (3.5). In addition, since f � 1 on
�	, we see that s	� and s agree on there. Thus, we may use
s	� to compute the advanced change in any gauge-invariant
A:

D	�f;�S
A � �f� 1�L�A: (3.6)

Finally, we arrive at the Peierls bracket

f�f;�S; Ag � D	�f;�S
A�D��f;�S

A � �L�A: (3.7)

Thus, ��f;�S generates a diffeomorphism along the
asymptotic symmetry � as desired.7

Our task is now to relate �f;�S to Q���. But this is
straightforward. From (2.5), we have

�f;�S �
Z
M

�S
��I �f;��I 	

Z
@M

�S
��i

@
�f;��

i
@

	
Z
@M
�Ta

A�f;�eaA 	
Z

��

�I�f;��I: (3.8)

However, �f;��I vanishes on �� and on the boundary
fields we may use (2.7) to find

�f;��i
@ � �Lf@�@ � f@L�@��

i
@ � 0;

�f;�e
A
a � �Lf@�@ � f@L�@�e

A
a � eAb�

b
@raf@:

(3.9)

Thus, on-shell, only the term containing Ta
Araf@ contrib-

utes to (3.8).
Furthermore, since f@ is constant both to the past of C0

and to the future of C1, we may replace the integral over
@M with an integral over the region V between C0 and C1.
Thus, (3.8) takes the form

�f;�S � �
Z
V
�Tab��@�braf

� �
Z
C1

Tab�bdsa 	
Z
V
�fra�Tab��@�b�

� �
Z
C1

Tab�bdsa 	
Z
V
f
�
RABe

B
a
�

�ea
A

	
X
i;j

Rij�
j
@
�
��i

@

�
S

� �QC1
���: (3.10)

In the second line, we have used that � is an asymptotic
symmetry [see Eqs. (2.12) and (2.13)], and that the action is
invariant under frame rotations. In passing from the first to
the second line we have used the fact that f@ � 0 on C0.

Thus, ��f;�S agrees (on-shell) with the charge Q���
evaluated on the cut C1. By the arguments of Sec. II A, this
-8
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equality also holds on any other cut of @M. Consequently,
since by Eq. (3.7) the variation �f;�S generates the action
of the infinitesimal symmetry � on observables, it follows
that the same must be true for the counterterm charges.
Thus,

fQ���; Ag � L�A; (3.11)

as desired.

B. Asymptotic symmetries not compatible with �

In fact, we may apply a similar argument to the case
described in Sec. II B, where an asymptotic symmetry � is
not compatible with � and is thus associated with a
boundary vector field �@ which is only a conformal
Killing field of the chosen boundary fields, see (2.14) and
(2.15). As such cases are not addressed by the axioms
stated in Sec. II A, we state the corresponding requirements
here. We will derive our results when the following addi-
tional conditions hold:
(6) U
nder the action of a diffeomorphism along f� on a
history (i.e., h! �1	 �Lf�h) the boundary fields
8Afte
same r
toticall

104025-9
transform with additional conformal weights:

�Lf�
�i
@ � Lf@�@�

i
@ 	 f@K

i
j�

j;

�Lf�
ea

A � Lf@�@ea
A 	 f@K

A
Bea

B:
(3.12)
(7) F
urthermore, since �@ is a conformal symmetry of
the boundary fields and Ki

j; K
A
B are the associated

conformal weights, the right-hand side of (3.12)
becomes just a frame rotation when f � 1.
The reader may readily check that requirements (6) and (7)
above are fulfilled by the usual setting for counterterm
subtraction schemes in asymptotically AdS spaces.

As a result of requirements (6) and (7), the histories s��
identified in Sec. III A above [see, e.g., (3.3)] again have
boundary values identical to those (�i

@; ea
A) of s. Thus we

may proceed exactly as above to again conclude

f�f;�S; Ag � D	�f;�S
A�D��f;�S

A � �L�A: (3.13)

Furthermore, using property (6) we find that, on-shell,
we may calculate �f;�S:
�f;�S � �
Z
V
�Tab���

b
@r

af � �
Z
C1

Tab�
b
@ds

a 	
Z
V
fra�Tab�

b�

� �
Z
C1

Tab�
b
@ds

a 	
X
i

Z
V
f
�S

��i
@
L�@�

i
@ 	

Z
V
fTA

aL�@e
a
A � �QC1

��� 	
Z
V
f
�
keAa

�

�eAa
	
X
i;j

Ki
j�

j
@
�

��i
@

�
S;

(3.14)
r the appearance of the first version of this work, the
esult was also derived in [34] under fairly general asymp-
y AdS boundary conditions.
where in the last step we have again used property (7) and,
as before, the second term in the final line is constant on S.
Finally, since we saw in Sec. II B that QC��� depends on
the cut C only through a term that is constant on S, it
follows that we have (3.11) for any cut C. Thus, even when
�@ is only a conformal symmetry of the boundary, QC���
can differ from any Hamiltonian generator of the symmetry
� only through a (possibly cut-dependent) term which is a
function only of the boundary fields and which is otherwise
constant over the space S of solutions.

IV. DISCUSSION

We have used general arguments based on the Peierls
bracket to compare the counterterm subtraction charges
Q��� of [8–16] with any Hamiltonian charges H��� when
� is a diffeomorphism which generates a symmetry of an
appropriate system. Specifically, when � induces a sym-
metry �@ of the boundary fields, we have shown that Q���
generates the bulk symmetry associated with � via the
Peierls bracket. As a result, it can differ from H��� only
by a term determined entirely by the boundary fields and
which is otherwise constant on the space of solutions.
Furthermore, since both Q��� and H��� are conserved,
this difference is also independent of the cut of infinity
on which it is evaluated.

Our results generalize a conclusion of [30], which was in
turn suggested by a number of more specific calculations
(e.g. [8,9,26–29]). Reference [30] showed via direct cal-
culation that Q��� �H��� was a function of boundary
fields alone in d � 5 spacetime dimensions and under a
particular set of asymptotic conditions; indeed, [30] gives
an explicit formula for this difference. Reference [30] was
also able to show that H��� agrees with a definition of
energy in that context due to Ashtekar et al. [17,18].
However, from the results of the present paper and the
convention that the Hamiltonian charges H��� vanish in
AdS space, we may conclude generally that H��� �
Q��� �Q����AdS�, where Q����AdS� is the result ob-
tained by evaluating the counterterm charge in pure AdS
space.8 The present results may also be applied in non-
conformal versions of gauge-gravity duality (such as those
described in, e.g., [5]) if an appropriate set of counterterms
can be identified to implement requirements (1)–(5) of
Sec. II. In particular, due to [38] we may apply them
directly to certain spacetimes dual to cascading gauge
theories and, due to [35–37], to domain-wall spacetimes.

In addition, the work above generalizes the counterterm
procedure for constructing conserved charges to the case in
which arbitrary (tensor and spinor) nontrivial boundary
fields may be present in addition to the boundary metric.
The result is simply the replacement of the boundary stress
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tensor with the ‘‘modified boundary stress tensor’’ Tab of
Eq. (2.4), which contains extra terms arising from any
nontrivial boundary fields which are not scalars. This
modified boundary stress tensor is not covariantly con-
served, and even boundary scalar fields contribute to its
divergence. Nevertheless, the form of raTab allows one to
show that Q��� is in fact conserved. Furthermore, the
Peierls bracket argument again shows that H��� �Q���
is constant on the space of solutions.

We also addressed a special case which arises when the
bulk theory is dual to a conformal theory, as in the original
anti-de Sitter context. In such cases, the counterterm action
changes under a conformal transformation, but only by a
function of the boundary fields which is otherwise constant
on the space S of solutions. As a result, one may consider
the case of a vector field �@ which acts only as a conformal
symmetry on the boundary. The result is again that Q���
generates the action of the bulk symmetry along � via the
Peierls bracket and thus that Q��� can differ from any
Hamiltonian charge H��� only by a term built from the
boundary fields (and which is otherwise constant on S).
However, in this case the term can depend (through a
solution-independent term) on the cut C of the boundary
spacetime on which it is evaluated.9

Recall that when @M is determined through conformal
compactification (as in the asymptotically anti-de Sitter
9Note that this dependence vanishes for the special case of
asymptotically AdS spaces when the boundary metric is chosen
to be the Einstein static universe and all other boundary fields
vanish, since in that case � � �ab
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context), any asymptotic symmetry induces a conformal
Killing field on the boundary. Thus, in this case one may
work with a fixed conformal structure � and still construct
all conserved quantities via the counterterm subtraction
method. Furthermore, Hamiltonian generators which van-
ish on AdS space itself are given for all asymptotic sym-
metries � by

H��� � QC��� �QC����AdS�; (4.1)

where we have once again subtracted off the value
QC����AdS� of the counterterm charge evaluated on a
corresponding cut C of @M in pure anti-de Sitter space.
As a result, both H��� and QC��� are consistent with the
covariant phase space methods of [32], which controls only
variations of the Hamiltonian on the space of solutions.
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