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Optics in the Schwarzschild spacetime
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Realistic modeling of radiation transfer in and from variable accretion disks around black holes requires
the solution of the problem: find the constants of motion and equation of motion of a lightlike geodesic
connecting two arbitrary points in space. Here we give the complete solution of this problem in the
Schwarzschild spacetime.
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I. INTRODUCTION

The first light detected from a relativistic region about a
black hole was discovered by the ASCA satellite [1,2]. The
now accepted theoretical model describing the broad x-ray
emission lines is that of an accretion disk around either a
Kerr or a Schwarzschild black hole [3–10]. This discovery
increased the interest for phenomena occurring in the
vicinity of black holes. We now know that other interesting
high energy phenomena, such as x-ray flares [11,12] or
quasiperiodic oscillations [13,14] are occurring in the en-
vironment of black holes. To further the understanding of
such phenomena from the theoretical point of view, it is
important to develop tools to model the phenomena them-
selves as well as to model radiation transfer in and from
these strongly curved regions of spacetime.

Most current accretion disk models are very simple from
the radiation transfer point of view. They consider disks as
geometrically thin and optically thick. Light that reaches a
far observer comes directly (without being scattered) from
a very definite point on the disk. Therefore, line profiles
can be calculated by aiming lightlike goedesic from a point
on the disk to the observer or vice versa, aiming from the
observer to points on the disk. In such ray-tracing proce-
dures geodesic equations are usually solved by direct
numerical integration [15–17]. However, when modeling
transient phenomena produced by small debris around
black holes, or by other transient phenomena in the disk
(moving hot spots, varying external illumination, waves), it
becomes necessary to solve a more difficult radiation trans-
fer problem, the problem of following a single photon
through its more than one scattering and/or more than
one possible path from the source to the eye of the observer
[18,19]. The problem is further complicated by noting that
photon arrival times from the same initial source to the
observer may (and often will) be markedly different for
photons reaching the observer along different possible
paths. It is obvious that a multiple scattering path cannot
be effectively constructed by aiming geodesics between
successive scattering points as the number of successive
iterations required would soon blow up. The solution to the
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radiation transfer problem thus requires one to be able to
follow a light ray from one to the other scattering point
along its path. Thus, one would like to find the quickest
way to determine all constants of motion of a geodesic that
connects the given initial and final point. In this article we
give analytic expressions which completely solve this
problem in the Schwarzschild spacetime. We also turn
this analytic tool into a numerical code and demonstrate
that it is much faster, more accurate and more transparent
than aiming and integrating geodesic equations. This tool
thus opens the possibility to solve complex radiation
transfer problems in curved spacetime using similar
Monte Carlo techniques that are used in solving radiation
problems in flat spacetime.

Our work starts with the results of Chandrasekhar [20]
and Rauch and Blandford [21], who expressed the solu-
tions to geodesic equations in terms of elliptic integrals. By
inverting their expressions into Jacobi elliptic functions
[9], we obtain simple solutions for all three types of orbit
equations that occur in Schwarzschild spacetime. These
solutions no longer contain branch ambiguities. Since
these orbits are essentially planar, their equations depend
only on two nontrivial constants of motion: the angular
momentum and the longitude of the periastron. Ex-
pressing the orbit equation at the initial and final points
on the geodesic, one obtains two nonlinear equations for
the two nontrivial constants of motion. However, since
the longitude of the periastron occurs only linearly as the
argument of elliptic functions, it is possible to use the
elliptic functions addition theorem to eliminate the longi-
tude of the periastron and obtain a single nonlinear equa-
tion for the angular momentum as a function of initial and
final coordinates. Here we derive these equations for all
three types of orbits and discuss their properties and solu-
tions. We also write down all the other constants of motion
in terms of final and initial point coordinates and give
analytic expressions for travel times.

II. CONNECTING TWO POINTS WITH A
LIGHTLIKE GEODESIC

In the Schwarzschild spacetime it is customary to in-
troduce Schwarzschild coordinates t, r, � and ’. In these
coordinates geodesics are governed by the Hamiltonian
-1 © 2005 The American Physical Society
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FIG. 1. Left panel: The orbital plane in equatorial coordinates: n̂ unit normal, " inclination, � longitude of the ascending node, !
longitude of the periastron and � the true anomaly. Right panel: The initial P i � ��i; ’i� and the final P f � ��f; ’f� points.
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which admits 8 constants of motion: the value of the
Hamiltonian (H) and the value of the Lagrangian (L) (the
ratio of the two defining the relation between time and
proper time), the energy E � pt, the angular momentum
(~l), the longitude of the periastron (!) and the time of
periastron passage (for Hamiltonian and Poisson bracket
formalism see Goldstein [22]).

The angular momentum is expressed as ~l � l � n̂, where
n̂ is the unit vector along ~l, which is defined by the
inclination of the orbit (") and the longitude of the ascend-
ing node (�).

Consider a lightlike geodesic connecting the initial point
P i and the final point P f. Five constantsH � 0, L � 0, E,
� and " are determined readily. So one can use the true
anomaly � as a parameter along the geodesic. From the
initial to the final point � increases by

��f � ��� 2�k; (2)

where

�� � arccos�cos�i cos�f � sin�i sin�f cos�’f � ’i��;

(3)

and the winding number k � . . .� 1; 0; 1; . . . tells how
many times a geodesic winds around the black hole.1

The two constants � and " are obtained from angular
coordinates of the initial and final points (see Fig. 1) with
the help of basic spherical trigonometry [23]:
1Note, if ��f < 0, replace ��f ! ���f and n̂! �n̂.
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cos" �
sin�i sin�f sin�’f � ’i�

sin��
; (4)

tan
�

2

�
sin�i cos�f sin’i � cos�i sin�f sin’f

sin" sin��� sin�i cos�f cos’i � cos�i sin�f cos’f
:

(5)

Since the variable � is conjugate to the orbital angular
momentum, it obeys the Poisson bracket relation ��; l� �
1, so that the angles � and ’ are expressed with � as
follows [24] [Eqs. (6)–(16)]:

cos� � � sin" sin���!�; (6)

tan
’��

2
�

cos" sin���!�
sin�� cos���!�

(7)

and2 the differential equation for orbits of lightlike geo-
desics becomes

du
d�
� 	

��������������������������������
a2 � u2�1� u�

q
: (8)

Here u � 2M=r and a � 2ME=l. The solutions to this
equation, called orbit equations, depend only on the pa-
rameter a and are of three types (Fig. 2):
(i) t
2Note

-2
ype A.—scattering orbits with both end points at
infinity; their angular momentum parameter is on
the interval 0< a< 2=3

���
3
p

. Scattering orbits can
never extend below r � 3M;
(ii) t
ype B.—plunging orbits with one end at infinity
and the other behind the horizon, a > 2=3

���
3
p

;

that sin� � �
���������������������
1� cos2�
p

.



FIG. 2. Left: Some orbits of type A with parameters ri � 20M
and acrit � a 2 f0:2; 0:15; 0:1; 0:05; 0:005g. Middle: Orbits of
type B with parameters ri � 20M and a� acrit 2
f2; 0:7; 0:2; 0:05; 0:005g. Right: Orbits of type C with parameters
ri � 2:000 01M and acrit � a 2 f0:01; 0:005; 0:001g. The radius
of the black circle is the Schwarzschild radius.
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(iii) t
ype C.—near orbits with both ends behind the
horizon of the black hole; their angular momentum
parameter is on the interval 0< a< 2=3

���
3
p

. Near
orbits can never reach beyond r � 3M.
For completeness, we list the solutions of the orbit equa-
tion (8) in terms of a few auxiliary parameters.

Type A

Introduce a � �2=3
���
3
p
� sin 2 (0< <�) and the fol-

lowing auxiliary parameters, functions of  only:

u1 �
1

3

�
1� 2 cos

 
3

�
; (9a)

u2 �
1

3

�
1� 2 cos

 � 2�
3

�
; (9b)

u3 �
1

3

�
1� 2 cos

 � 2�
3

�
; (9c)

m �
u2 � u3

u1 � u3
; (9d)

n �
2�����������������

u1 � u3
p ; (9e)

�i such that ui � u2 � �u2 � u3�cos2�i; (9f)

where ui � 2M=ri and similarly uf � 2M=rf. In terms of
these, the type A differential equation for the orbit be-
comes (Fig. 2, left)

u � u2 � �u2 � u3�cn2

�
F��i j m� �

��
n
jm
�
; (10)

with �� � �� �i and ��=n 2 fxmin � xi; �2K�m� �
xmin� � xig, where xmin � F�arccos

���������������������������
u2=�u2 � u3�

p
j m�

and xi � F�arccos
�����������������������������������������
�u2 � ui�=�u2 � u3�

p
jm�. Here F and

K are the incomplete and complete elliptic integrals of
the first kind [25].

Critical A

A special limiting case of solution (10) for  � � (a �
2=3

���
3
p

) and ui < 2=3 (ri > 3M) is

u � �
1

3
� tanh2

�
artanh

�������������������
ui � 1=3

q
�

��
2

�
; (11)
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with �� � �� �i and �� 2 f2 artanh
��������
1=3

p
�

2 artanh
�������������������
ui � 1=3

p
;1g.

Type B

Introduce a � �2=3
���
3
p
� cosh� (0<�<1) and the

auxiliary parameters, functions of � only:

u1 �
1

3

�
1� 2 cosh

2�
3

�
; (12a)

m �
1

2

�
1�

3u1 � 1

2
�������������������������
u1�3u1 � 2�

p
�
; (12b)

n � �u1�3u1 � 2���1=4; (12c)

�i such that ui � u1 �
1

n2

1� cos�i
1� cos�i

: (12d)

The type B differential equation for the orbit is (Fig. 2,
middle)

u � u1 �
1

n2

1� cn�F��i j m� �
��
n jm�

1� cn�F��i j m� �
��
n jm�

; (13)

with �� � �� �i and ��=n 2 fF��BH j m��
F��i j m�; F��1 j m� � F��i j m�g, where �BH �
arccos��1� n2�1� u1��=�1� n2�1� u1��� and �1 �
arccos��1� n2u1�=�1� n

2u1��.

Type C

Introduce a � �2=3
���
3
p
� sin� =2� (0< <�) and the

auxiliary parameters, functions of  only:

u1 �
1

3

�
1� 2 cos

 
3

�
; (14a)

u2 �
1

3

�
1� 2 cos

 � 2�
3

�
; (14b)

u3 �
1

3

�
1� 2 cos

 � 2�
3

�
; (14c)

m �
1

2

�
1�

u1 � �u2 � u3�=2���������������������������������������
�u1 � u3��u1 � u2�

p
�
; (14d)

n � ��u1 � u2��u1 � u3��
�1=4; (14e)

�i such that ui � u1 �
1

n2

1� cos�i
1� cos�i

: (14f)

The type C differential equation for the orbit is (Fig. 2,
right)

u � u1 �
1

n2

1� cn�F��i j m� �
��
n jm�

1� cn�F��i j m� �
��
n jm�

; (15)

with �� � �� �i and ��=n 2 f�F��BH j m� � F��i j
m�; F��BH j m� � F��i j m�g, where �BH � arccos��1�
n2�1� u1��=�1� n2�1� u1���.
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Critical C

A special limiting case of the solution of (15) for  � �
2

(a � 2=3
���
3
p

) and ui > 2=3 (ri < 3M) is

u � �
1

3
� coth2

�
arcoth

�������������������
ui � 1=3

q
�

��
2

�
; (16)

with �� � �� �i and �� 2 f2 arcoth
��������
4=3

p
�

2 arcoth
�������������������
ui � 1=3

p
;1g.

The two constants of motion ! and a can now be
determined in two steps. First we determine the type of
the orbit following reasoning illustrated in Fig. 3 and then
we solve the two equations obtained from the orbit equa-
tion at the initial and the final points [26–29].

We note that the parameter ! appears in a contrived
form as the starting point of the true anomaly only in the
argument of the Jacobi functions, therefore, it can be
eliminated from the two equations by using the Jacobi
elliptic functions addition theorem. Let v � F��i j m� �
FIG. 3 (color online). For a known initial point P i, the two criti
regions. Left panel: initial point at r > 3M. If the final point P f is in r
then all orbits from P i are of type B. If P f is in region 2, then orbi
black hole, and of type B if it goes directly from P i to P f. Right pane
all orbits from P i are of type B. If P f is in region 1, then orbits from P
of type C if the trajectory winds around the black hole, and of type

FIG. 4. Functions cn�x j m� and sn�x j m� along orbits: left panel, ty
at the end points of the orbit and are designated by P� and P� if they
of the black hole. Interval definitions for the end points follow after
the final points of the orbit.
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��=n be the argument of elliptic functions at the final
point of the orbit and z � F��i j m� be the argument of
elliptic functions at the initial point of the orbit. Then one
can use orbit equations to write

type A:

cn2�v j m� �
u2 � uf
u2 � u3

; (17a)

sn2�v j m� �
uf � u3

u2 � u3
; (17b)

dn2�v j m� �
u1 � uf
u1 � u3

; (17c)

cn2�z j m� �
u2 � ui
u2 � u3

; (17d)

sn2�z j m� �
ui � u3

u2 � u3
; (17e)

dn2�z j m� �
u1 � ui
u1 � u3

; (17f)
cal orbits through this point divide the orbital plane into three
egion 3, then all orbits from P i are of type A. If P f is in region 1,
ts leading to P f are of type A if the trajectory winds around the
l: initial point at r < 3M. If the final point P f is in region 3, then

i are of type C. If P f is in region 2, then orbits leading to P f are
B if it goes directly from P i to P f.

pe A; middle panel, type B; right panel, type C. xmin and xmax are
are at spatial infinity, and P h� and P h� if they are at the horizon

Eqs. (10), (13), and (15). xi � z and xf � v are at the initial and
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types B and C:

cn�v j m� �
1� n2�uf � u1�

1� n2�uf � u1�
; (18a)

sn2�v j m� �
4n2�uf � u1�

�1� n2�uf � u1��
2 ; (18b)

dn2�v j m� � 1�
4mn2�uf � u1�

�1� n2�uf � u1��
2 ; (18c)

cn�z j m� �
1� n2�ui � u1�

1� n2�ui � u1�
; (18d)

sn2�z j m� �
4n2�ui � u1�

�1� n2�ui � u1��
2 ; (18e)

dn2�z j m� � 1�
4mn2�ui � u1�

�1� n2�ui � u1��
2 : (18f)

Since v� z � ��f=n one can use the Jacobi elliptic functions addition theorem to obtain

cn �v� z j m� �
cn�v j m�cn�z j m� � sn�v j m�sn�z j m�dn�v j m�dn�z j m�

1�m sn2�v j m�sn2�z j m�
: (19)
This is a nonlinear equation for a (i.e. for  or � with
respect to the type of the orbit). Equations (17a)–(17f) and
(18a)–(18f), except (18a) and (18d) only give squares, so
functions cn and sn are determined only up to the sign; dn
is always positive. In order to determine those signs we plot
in Fig. 4 the functions sn and cn along orbits together with
the interval where the orbit is defined. Figure 4 left panel
shows that for type A orbits, only the function cn changes
sign at the periastron and the function sn is always positive
along the orbit. Thus, the sign of cn is positive if the orbit
104024
did not pass the periaston and negative otherwise. For
orbits of type B (Fig. 4 middle panel) sn is always positive,
while the sign of cn is determined by (18a) and (18d), thus
no sign ambiguity arises. For orbits of type C the sign of cn
is again unambiguous [(18a) and (18d)] while the function
sn changes sign from negative before apastron to positive
after apastron (Fig. 4 right panel). We conclude that the
right-hand side of Eq. (19) has two branches if it contains a
sign ambiguity. The cases are type A ‘‘right1’’ and ‘‘right2’’
and type C ‘‘right1’’ and ‘‘right3’’, where
right 1 �
cn�v j m�cn�z j m� � sn�v j m�sn�z j m�dn�v j m�dn�z j m�

1�m sn2�v j m�sn2�zjm�
; (20)

right 2 �
�cn�v j m�cn�z j m� � sn�v j m�sn�z j m�dn�v j m�dn�z j m�

1�m sn2�v j m�sn2�z j m�
; (21)

right 3 �
cn�v j m�cn�z j m� � sn�v j m�sn�z j m�dn�v j m�dn�z j m�

1�m sn2�v j m�sn2�z j m�
: (22)
3For ��f > 2� there may be more than one solution to the
Eq. (19); clearly in this case the orbit is wound about the black
hole at r � 3M, therefore only the solution with a closest to
2=3

���
3
p

applies.
In the above the sign of cn or sn is positive when calculated
from a square root.

Some examples of determining the value of a are shown
in Figs. 5–9. They show the left-hand side and all the
appropriate branches of the right-hand side of (19) as a
function of or� for different cases of ri, rf and ��f. The
solution of Eq. (19), which is the point where ‘‘right’’
crosses ‘‘left,’’ is found numerically by using the Brent
method [30].3 With the now known parameter a it is
straightforward to calculate the value of ! [Eqs. (10),
(13), and (15)].
-5
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FIG. 5 (color online). Determining the angular momentum parameter for a type A orbit. Left panel: the orbit from P i to P f does not
pass periastron. Right panel: the orbit from P i to P 0f passes periastron. The designations right1 and right2 refer to the branches (20) and
(21) respectively.
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FIG. 6 (color online). Connecting P i and P f with a type B orbit and a type A winding orbit (winding number k � 1); no k � 0
type A orbit exists in this case. Left panel: the orbit from P i to P f of type A. Right panel: the orbit from P i to P f of type B.
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FIG. 7 (color online). Determining the angular momentum parameter for a type B orbit. Left panel: a direct orbit from P i to P f.
Right panel: a winding orbit from P i to P f (winding number k � 1).
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III. CALCULATION OF THE TIME OF FLIGHT

The time of flight for a photon is given by the integral
[20]

tfi � 	2Ma
Z uf

ui

du

u2�1� u�
��������������������������������
a2 � u2�1� u�

p : (23)

The indefinite integral in the above formula can be ex-
pressed in analytic form using elliptic integrals. After
considerable algebraic manipulations we obtain the ana-
104024
lytic forms for the three cases of type A, B and C orbits as
follows.

Type A

Introduce � such that [cf. (9f)]

u � u2 � �u2 � u3�cos2�; (24)

to obtain
t��� �
2an

u2
3

��
1� u3 �

n2
1 �m

2�m� n1��n1 � 1�

�
��n1;� j m� �

u2
3

1� u3
��n2;� j m� �

n1=2

�m� n1��n1 � 1�




�
E�� j m� �

�
1�

m
n1

�
F�� j m� �

n1 sin2�
�������������������������
1�m sin2�

p
2�1� n1 sin2��

��
: (25)

Here E, F and � are the incomplete elliptic integrals of the first, second and third kinds respectively [25]; u1, u2, u3,m and
n are those from (9a)–(9e), and n1, n2 are

n1 � 1�
u2

u3
; (26)

n2 �
u2 � u3

1� u3
: (27)

Types B and C

Introduce � such that [cf. (12d)]

u � u1 �
1

n2

1� cos�
1� cos�

; (28)

to obtain

t��� � 2a
�

�2�n1 � 1�

n2
1 �m� 2mn1

�
n1 sin��k1 cos�� 1�

�������������������������
1�m sin2�

p
k1�1� n1 sin2��

� E�� j m�
�
� �3�1� n2�

�
1�

1

k2

�




�
��n2;� j m� �

k2

2
����������������
n2 �m
p lnjx2j

�
� �1�1� n1�

�
1�

1

k1

��
��n1;� j m� �

k1

2
����������������
n1 �m
p lnjx1j

�

� F�� j m�
�
�2

k2
1

�1� �1� k1�
2�n1 � 1�� �

�1

k1
�
�3

k2

��
; (29)
where

�1 �
n3

n2u1 � 1
; �2 �

n5

�n2u1 � 1�2
;

�3 �
n3

n2�1� u1� � 1
;

(30)

k1 �
1� u1n

2

1� u1n2 ; k2 �
1� �1� u1�n

2

1� �1� u1�n2 ; (31)
n1 �
k2

1

k2
1 � 1

; n2 �
k2

2

k2
2 � 1

; (32)

x1 �

����������������
n1 �m
p

sin��
�������������������������
1�m sin2�

p
����������������
n1 �m
p

sin��
�������������������������
1�m sin2�

p ; (33)

x2 �

����������������
n2 �m
p

sin��
�������������������������
1�m sin2�

p
����������������
n2 �m
p

sin��
�������������������������
1�m sin2�

p : (34)

For type B orbits the parameters u1,m and n are those from
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FIG. 10 (color online). Graph r � r�t� in units of M for all
three types of orbits. The type A orbit starts at infinity at t!
�1, passes the periastron at t � 0 and continues to infinity as
t! 1. The type B orbit starts at the event horizon at t! �1,
crosses the critical r � 3M at t � 0 and continues to infinity as
t! 1. The type C orbit starts at the event horizon at t! �1,
passes the apastron at t � M and again approaches the event
horizon as t! 1. In the above example a � �2=3

���
3
p
� � 10�3

for types A and C orbits and a � �2=3
���
3
p
� � 5
 10�4 for

type B orbit.

4We note that the algorithm ellpi of Numerical Recipes [30]
does not give the same results as MATHEMATICA for � integrals.
We rewrote the function rj according to Carlson’s original paper
[31], and obtained identical results with MATHEMATICA.
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(12a)–(12c), while for type C orbits these parameters are
from (14a)–(14e).

In Fig. 10 we show examples of r�t� for all three types of
orbits. We compared the effectiveness of the analytic
method and the pure numerical method to calculate the
times of flight. It was found that the algorithm based on the
analytic method and implemented with Carlson’s algo-
104024
rithm [31] is always more accurate and 3 to 6 times faster
than fourth-order Runge-Kutta integration with adaptive
stepsize control.4 We also note [29] that it is possible to
calculate the time of flight numerically by expanding the
integrand (23) into a piecewise rapidly convergent series of
analytically integrable functions. Such series easily give
results accurate to 10�8M for subcritical orbits and are
some 6 times faster than the analytic method. The most
effective method to calculate the time of flight would thus
be a combination of the analytic method for the close to
critical orbits and the series solution for the rest.

IV. CONCLUSIONS

In this work we presented the complete solution of the
ray-tracing problem in the Schwarzschild spacetime. All
the algorithms presented here have been tested for accu-
racy and for speed of execution and were found to be more
accurate and considerably faster than commonly used di-
rect integration methods. We hope that algorithms pre-
sented here will be used as a useful tool in solving more
complex ray-tracing problems that will elucidate the phys-
ics governing complicated transient phenomena in the
vicinity of black holes. We would like to remind the
community that a similar ray-tracing problem in the Kerr
spacetime still remains to be solved.
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[9] A. Čadež, C. Fanton, and M. Calvani, New Astron. Rev. 3,
647 (1998).

[10] A. Martocchia, V. Karas, and G. Matt, Mon. Not. R.
Astron. Soc. 312, 817 (2000).
[11] F. K. Baganoff et al., Nature (London) 413, 45
(2001).

[12] A. Goldwurm, E. Brion, P. Goldoni, P. Ferrando,
F. Daigne, A. Decourchelle, R. S. Warwick, and P.
Predehl, Astrophys. J. 584, 751 (2003).

[13] T. E. Strohmayer, Astrophys. J. Lett. 552, L49 (2001).
[14] J. M. Miller, A. C. Fabian, R. Wijnands, C. S. Reynolds,

M. Ehle, M. J. Freyberg, M. van der Klis, W. H. G. Lewin,
C. Sanchez-Fernandez, and A. J. Castro-Tirado,
Astrophys. J. Lett. 570, L69 (2002).

[15] A. Laor, Astrophys. J. 376, 90 (1991).
[16] V. I. Pariev, B. C. Bromley, and W. A. Miller, Astrophys. J.

547, 649 (2001).
[17] C. S. Reynolds and M. C. Begelman, Astrophys. J. 488,

109 (1997).
[18] J. D. Schnittman, eConf C041213:2111 (2004).
[19] J. D. Schnittman and E. Bertschinger, Astrophys. J. 606,

1098 (2004).
[20] S. Chandrasekhar, The Mathematical Theory of Black

Holes (Oxford University Press, New York, 1992).
-9
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