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Hamiltonian boundary term and quasilocal energy flux
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The Hamiltonian for a gravitating region includes a boundary term which determines not only the
quasilocal values but also, via the boundary variation principle, the boundary conditions. Using our
covariant Hamiltonian formalism, we found four particular quasilocal energy-momentum boundary term
expressions; each corresponds to a physically distinct and geometrically clear boundary condition. Here,
from a consideration of the asymptotics, we show how a fundamental Hamiltonian identity naturally leads
to the associated quasilocal energy flux expressions. For electromagnetism one of the four is distin-
guished: the only one which is gauge invariant; it gives the familiar energy density and Poynting flux. For
Einstein’s general relativity two different boundary condition choices correspond to quasilocal expres-
sions which asymptotically give the ADM energy, the Trautman-Bondi energy and, moreover, an
associated energy flux (both outgoing and incoming). Again there is a distinguished expression: the
one which is covariant.

DOI: 10.1103/PhysRevD.72.104020 PACS numbers: 04.20.Jb, 04.65.+e, 98.80.�k
I. INTRODUCTION

The Hamiltonian that generates the dynamical evolution
of any physical system within a (finite or infinite) spatial
region necessarily includes, in addition to an integral over
the spatial volume, an integral over the boundary of the
region. Our concern is with this Hamiltonian boundary
term: we wish to understand both its role and proper form.

The Hamiltonian is, of course, related to energy. Every
physical system carries mass-energy and consequently
inevitably generates gravity, hence gravity plays the major
role in our analysis. We consider only geometric gravity
theories, and here more specifically only Einstein’s general
theory of relativity (GR).

The essential necessity for, and the role of, the
Hamiltonian boundary term for asymptotically flat spaces
in GR was first clearly discussed in a seminal work of
Regge and Teitelboim [1]. They argued that in order for the
Hamiltonian to be functionally differentiable on the phase
space of asymptotically flat spatial metrics, certain bound-
ary integrals over the 2-sphere at spatial infinity must be
included. These turned out to be in fact just the ADM [2]
asymptotic expressions for the conserved total quantities:
energy, momentum, and angular momentum (plus an addi-
tional expression for the center of mass). Subsequently
certain improvements were made in the analysis by Beig
and Ó Murchadha [3]; more recently Szabados has made
some further refinements [4].
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Although the total conserved quantities are well defined
for asymptotically flat spaces, as is well known, there are
no well-defined local densities for these quantities. This
can be understood in terms of the equivalence principle,
which precludes the detection of gravity at a point (see, e.g.
[5] Sec. 20.4). The modern idea is that one should have
quasilocal quantities, i.e., quantities associated with a
closed 2-surface (for a nice review of this topic see [6]).

For finite regions, we found that the value of the
Hamiltonian boundary term can determine the quasilocal
quantities. Using essentially the same principle as used by
Regge-Teitelboim (this principle will play the major role in
our subsequent discussion) we found that the Hamiltonian
boundary term also determines the boundary conditions.
Using this idea along with our covariant Hamiltonian
formalism, for each dynamic field we found four types of
quasilocal energy-momentum boundary term expressions;
each corresponds to a physically distinct and geometrically
clear boundary condition [7–9].

However a consideration of the phase space asymptotics
necessary for a well-defined Hamiltonian naturally leads to
the recognition that the conditions are not met in the
radiating regime. This apparent difficulty provides the
opportunity for our main new result. We show here how
a fundamental Hamiltonian identity naturally leads, for
each Hamiltonian boundary expression, to an associated
quasilocal energy flux expression.

We note that gravitational energy flux (also known as
balance) expressions have a long history, going back to
Trautman [10], Bondi [11], and Sachs [12]. Nevertheless
there still is considerable interest in this topic and some
significant progress has been made recently; see in par-
-1 © 2005 The American Physical Society
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ticular [13–19]. We include here some applications of our
new natural energy flux expressions.

An application of our formalism with its quasilocal
energy and energy flux expressions to the electromagnetic
field, where we can readily interpret the expressions and
boundary conditions, is included to illustrate the ideas in a
familiar setting. For the electromagnetic case one of our
four expressions is distinguished: the only one which is
gauge invariant; it gives the usual energy density and
Poynting flux.

When applied to Einstein’s general relativity two differ-
ent boundary condition choices correspond to quasilocal
expressions which asymptotically give the ADM energy,
the Trautman-Bondi energy and, moreover, an associated
energy flux (both outgoing and incoming). However, once
again there is a distinguished expression: in this case it is
the one which is covariant.

The plan of this work is as follows: In Sec. II we discuss
the first order Lagrangian formalism. In Sec. III we con-
sider local translational invariance. The basic Hamiltonian
formulation is considered in Sec. IV. In Sec. V we consider
refined boundary terms. There follows a discussion of the
phase space and the asymptotics in Sec. VI. Our new flux
expressions are presented in Sec. VII. In Sec. VIII we
consider the application of these ideas to electromagne-
tism. The application to Einstein’s gravity theory is cov-
ered in Sec. IX. A discussion forms the concluding section.

II. THE FIRST ORDER LAGRANGIAN
FORMALISM

Our formalism is intended to be applicable to general
types of fields. Technically we find it convenient to repre-
sent dynamic fields in terms of differential forms. (More
precisely to accommodate all the fields found in nature we
would use a collection of tensor and spinor valued forms
including Dirac spinors and gauge potential one-forms
along with the spacetime orthonormal coframe and con-
nection one-forms.) Here we develop the representative
case of a k-form field ’ (the field may take its values in
some vector space and may thus carry some indices which
are here suppressed; the generalization to include several
fields, possibly of different grades, is straightforward).

We proceed from the action principle. It can be shown
that any action principle can be rewritten in an equivalent
form, which (following e.g. [2,20]) we refer to as first
order; this is the most convenient form for our purposes.
A first order Lagrangian 4-form for a k-form field ’ has
the form

L � d’ ^ p���’; p�: (1)

Its variation has the form

�L � d��’ ^ p� � �’ ^
�L
�’
�
�L
�p
^ �p; (2)

implicitly defining a pair of first order Euler-Lagrange
104020
expressions, which are explicitly given by

�L
�p

:� d’� @p�;
�L
�’

:� �&dp� @’�; (3)

where & :� ��1�k. The integral of L associates an action
with any spacetime region. The variation of this action is
given by the integral of �L. The total differential term in
(2) then leads to an integral over the boundary of the
region. Hamilton’s principle—that the action should be
extreme with �’ vanishing on the boundary—yields the
field equations: the vanishing of the Euler-Lagrange ex-
pressions (3).
III. LOCAL TRANSLATION INVARIANCE

The action should not depend on the particular way
points are labeled. Thus it should be invariant under diffeo-
morphisms, including infinitesimal diffeomorphisms—
which correspond to a displacement along some vector
field N. From a gauge theory perspective such displace-
ments are regarded as a ‘‘local translation.’’ Under a local
translation quantities change according to the Lie deriva-
tive. Hence, for a diffeomorphism invariant action the
relation (2) should be identically satisfied when the
variation operator � is replaced by the Lie derivative
£N ( � diN � iNd on the components of form fields):

diNL � £NL � d�£N’ ^ p� � £N’ ^
�L
�’
�
�L
�p
^ £Np:

(4)

This simply means that L is a 4-form which depends on
position only through the fields ’, p. (For this to be the
case the set of fields in L necessarily includes dynamic
geometric variables, which means gravity.)

From (4) it directly follows that the 3-form

H �N� :� £N’ ^ p� iNL (5)

satisfies the identity

�dH �N� � £N’ ^
�L
�’
�
�L
�p
^ £Np; (6)

showing that it is a conserved ‘‘current’’ on shell (meaning:
when the field equations are satisfied). Substituting (1) into
(5) leads to the explicit expression H �N� � d�iN’ ^
p� � &iN’ ^ dp� &d’ ^ iNp� iN�, from which one
can see that this conserved Noether translation current
can be written as a 3-form linear in the displacement vector
plus a total differential:

H �N� :� N�H� � dB�N�: (7)

Compare the differential of this expression, dH �N� �
dN� ^H � � N

�dH�, with (6); equating the dN� co-
efficient on both sides reveals that
-2
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H � � �i�’ ^
�L
�’
� &

�L
�p
^ i�p: (8)

This identity is a necessary consequence of local diffeo-
morphism invariance (i.e., symmetry for nonconstant N�).
From this relation one can see that H� vanishes on shell;
hence the value of the conserved quantity associated with a
local displacement N and a spatial region � is determined
by a 2-surface integral over the boundary of the region:

E�N;�� :�
Z

�
H �N� �

I
@�

B�N�: (9)

The value is quasilocal. For any choice of N this expres-
sion defines a conserved quasilocal quantity.

What do these values mean? In general we do not have a
clear physical interpretation. However, at least if the ge-
ometry on the boundary is not so far from flat space, for a
suitable timelike (spacelike) quasitranslation displacement
on the boundary the expression defines a quasilocal energy
(momentum), and for a suitable quasirotation(boost) it
defines a quasilocal angular momentum (center of mass).
(Here we do not explore the important question of how to
specifically make these quasidisplacement choices for a
general region in order to obtain good physical quasilocal
values.)
IV. THE HAMILTONIAN FORMULATION

From the first order field Eqs. (3), by contraction with a
‘‘time evolution vector field’’ N and using iNd’ � £N’�
diN’, iNdp � £Np� diNp, we get a pair of Hamil-
tonian-like evolution equations for the ‘‘time derivatives’’:
£N’, £Np. A key identity involving these time derivatives
is revealed by comparing two relations; on the one hand
take the projection of �L (2) along N:

iN�L � iNd��’ ^ p� � iN

�
�’ ^

�L
�’
�
�L
�p
^ �p

�

� £N��’ ^ p� � diN��’ ^ p�

� iN

�
�’ ^

�L
�’
�
�L
�p
^ �p

�
; (10)

on the other hand take the projection of the Lagrangian 4-
form iNL, which from (5) is just £N’ ^ p�H �N�, and
vary:

�iNL � ��£N’ ^ p� � �H �N�

� ��£N’� ^ p� £N’ ^ �p� �H �N�

� £N�’ ^ p� £N’ ^ �p� �H �N�

� £N��’ ^ p� � �’ ^ £Np� £N’ ^ �p

� �H �N�: (11)

Since N is not varied the two relations are identical:
�iNL � iN�L; consequently,
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�H �N� � ��’ ^ £Np� £N’ ^ �p� diN��’ ^ p�

� iN

�
�’ ^

�L
�’
�
�L
�p
^ �p

�
: (12)

The last term vanishes ‘‘on shell.’’ This relation identifies
the Noether translational current H �N� as the Hamil-
tonian 3-form (i.e., density), as the following considera-
tions show. The integral of H �N� over a three-dimensional
region,

H�N;�� :�
Z

�
H �N�; (13)

is the Hamiltonian which displaces this region along N,
since the integral of its variation:

�H�N;�� �
Z

�
�H �N�; (14)

yields, from (12), (on shell) the Hamilton equations:

£N’ �
�H �N�
�p

; £Np � �
�H �N�
�’

; (15)

if the boundary term in the variation of the Hamiltonian
vanishes. In this case that means when �’ vanishes on @�.
Technically the variational derivatives of the Hamiltonian
H�N;�� are only defined for variations satisfying this
boundary condition. In other words this Hamiltonian is
functionally differentiable on the phase space of fields
satisfying this particular boundary condition.
V. REFINED BOUNDARY TERMS

In some important cases the fields of physical interest do
not satisfy the aforementioned boundary condition natu-
rally inherited from the Lagrangian (the main example is
the spacetime metric for an asymptotically flat region). A
suitably modified formulation is needed to deal with this
situation. One alternative is to modify the Lagrangian 4-
form itself by a total differential. As discussed in some
detail in [9], this would modify the boundary condition on
the whole three-dimensional boundary of the spacetime
region, thus inducing the same type of modification on
the spatial boundary at large spatial distances as on the
initial time hypersurface. However we actually want the
freedom to adjust the boundary condition on the two-
dimensional boundary of the spacelike region @� indepen-
dently of the type of initial conditions imposed within �.
For this purpose we focus on the Hamiltonian. We note that
the Hamiltonian (7) has two distinct parts; each plays a
distinct role. The proper density N�H�, although it has
vanishing value on shell, generates the equations of mo-
tion, whereas the boundary term B�N� determines both the
quasilocal value (9) and the boundary condition. Now the
boundary term can be adjusted—without changing the
Hamilton equations or the conservation property (6)—in-
deed we can replace the 2-form B�N� � iN’ ^ p inherited
-3
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from the Lagrangian by any other. Such an adjustment is in
one respect just a special case of the conserved Noether
current ambiguity [i.e. for any 2-form �, J and J0 :� J�
d� are both conserved currents (3-forms) if dJ � 0, even
though they define different conserved values]. However
here, in this Hamiltonian case, any such adjustment modi-
fies— in parallel—not only the value of the quasilocal
quantities but also the spatial boundary conditions. Thus
the boundary term ambiguity is under physical control:
each distinct choice of Hamiltonian boundary quasilocal
expression is associated with a physically distinct bound-
ary condition [8,9,21,22]. We thus find that the Hamil-
tonian density always takes the general form

H B:C:�N� � N�H� � dBB:C:�N�: (16)

The subscript ‘‘B.C.’’ here refers to the particular choice of
built in boundary condition.

In order to accommodate suitable boundary conditions
we found that, in general, one must introduce (at the
minimum actually only on the boundary, but to simplify
the discussion here we presume it to be on any desired
neighborhood of the boundary) certain reference values �p,
�’, which represent the ground state of the field—the
‘‘vacuum’’ (or background field) values (this is necessary,
in particular, for fields whose natural ground state is non-
vanishing, e.g. the spacetime metric). We take our bound-
ary terms to be linear in �’ :� ’� �’ and �p :� p� �p,
so that they (and thus all the quasilocal quantities) vanish if
the fields take on the ground state (i.e. reference) values.
We presume that the reference values (like N) are not
varied: � �’ � 0 and � �p � 0, consequently ��’ � �’,
��p � �p. Note that we presume the reference values
(as well as N) to be defined on the dynamic spacetime in
the region of interest, independently of the dynamic fields;
they are regarded as being fixed prior to (and thus inde-
pendently of) the choice of � and S � @�.

From our investigations [7,8] we found two ‘‘covariant’’
boundary term alternates to B�N� :� iN’ ^ p, namely,

B Dirichlet�N� :� iN’ ^�p� &�’ ^ iN �p; (17)

B Neumann�N� :� iN �’ ^�p� &�’ ^ iNp: (18)

A short calculation [of the form �H B:C: � ��H �
dB� � �dBB:C:] shows that the variation of the associated
Hamiltonian 3-forms (16) have (on shell) the respective
forms

�H Dirichlet�N� � ��’ ^ £Np� £N’ ^ �p

� diN��’ ^�p�; (19)

�H Neumann�N� � ��’ ^ £Np� £N’ ^ �p

� diN��’ ^ �p�; (20)

corresponding to holding fixed certain (after integration
104020
certain projected) covariant sets of components, respec-
tively, the value of the field and the value of its canonically
conjugate momentum; whence our labels.

Moreover, we found two more physical interesting
choices [9]:

B dynamic�N� :� iN �’ ^�p� &�’ ^ iN �p; (21)

B constrained�N� :� iN’ ^�p� &�’ ^ iNp: (22)

The variation of the associated Hamiltonian 3-forms have
(on shell) the indicated forms

�H dynamic�N� � ��’ ^ £Np� £N’ ^ �p

� d�&�’ ^ iN�p� iN�’ ^ �p�; (23)

�H constrained�N� � ��’ ^ £Np� £N’ ^ �p

� d��iN’ ^�p� &�’ ^ �iNp�;

(24)

corresponding to holding fixed certain (after integration
certain projected) components of, respectively, the ‘‘dy-
namic parts’’ (the spatial pullback) of ’, p and the ‘‘con-
strained parts’’ (the ‘‘time’’ projections) iN’, iNp.

In each of these cases the boundary term in the
Hamiltonian variation has a certain symplectic structure
which pairs certain control and response quantities [23].
Within each of our two sets of expressions the pairs are
simply related by an interchange of ‘‘control’’ and ‘‘re-
sponse,’’ formally �! �, �! ��.

Note that one expression stands out: for fields which
allow trivial reference values, �’ � 0 � �p, the boundary
term Bdynamic�N� vanishes. These fields, with this choice of
boundary condition, make no explicit contribution to the
quasilocal boundary term. Thus there is a certain preferred
boundary expression—and thus a preferred boundary con-
dition—for this large class of fields, a class which includes
all the necessary physical fields—aside from dynamic
geometry gravity.

An instructive discussion of boundary conditions asso-
ciated with variational principles appears in Lanczos [24],
Sec. II.15. The variational principle always gives us the
correct number of boundary conditions. However it should
be remarked that it cannot guarantee that the boundary
conditions are the proper ones for the existence and
uniqueness of solutions; that would depend on the particu-
lar quality and type of the equations, which is influenced
especially by the metric signature (our formalism ‘‘for-
mally’’ does not care) and the details of the Lagrangian
‘‘potential’’ ��’;p�. Our general formalism cannot take
such particulars into account.

Our philosophy is that normally one should control on
the boundary the indicated variations. Lanczos also dis-
cusses an interesting alternative: one could instead take
‘‘free’’ variations on the boundary. To have the boundary
-4
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term in the variation vanish with free variations of the
control variables one must then require that the associated
response vanishes; this yields what is referred to as the
natural boundary condition. For our expressions it would
simply mean that the response fields would take, on the
boundary, the prespecified ‘‘reference’’ values. Hence, as
far as imposing boundary conditions is concerned, one can
achieve the same result by these two different approaches:
(i) control the variable to the desired boundary value, or
(ii) take free variations with the appropriate reference fields
chosen to have the desired boundary values. Note, how-
ever, that there are differences in the resultant quasilocal
values. In particular a free variation for H Dirichlet requires
from (19) that p � �p. Consequently the value of the
Hamiltonian is determined by a reduced form of the bound-
ary expression (17):�&�’ ^ iNp. Similarly, free variation
for H Neumann leads to ’ � �’ and the reduced boundary
term iN’ ^�p. On the other hand, for H dynamic, free
variations lead to the vanishing of iN�’ and iN�p, which
yields no formal reduction of Bdynamic, while free variation
for H constrained leads to �p � 0 � �’, consequently
Bconstrained vanishes. Hence we find a curious fact: for
free variations there is a boundary expression which is
distinguished by having a vanishing value; it is the expres-
sion which is complementary to the one which vanishes for
trivial reference values.

Lanczos has discussed, via a detailed example, how one
could do more complicated things, where certain variables
are ‘‘controlled’’ and others are varied ‘‘freely.’’ In all
cases the boundary variation principle yields the correct
number of boundary conditions. For our expressions there
are many possible combinations of free and controlled
variations. Using the ‘‘natural boundary conditions’’ asso-
ciated with ‘‘free variation’’ is an interesting option which
merits further exploration. Based on our present under-
standing, however, for most applications we favor purely
controlled variations.

VI. THE PHASE SPACE AND ASYMPTOTICS

For finite regions (which is our primary interest) these
boundary terms in the variation of the Hamiltonian tell us
exactly what needs to be held fixed (not constant but rather
controlled, i.e. the function on the boundary is predeter-
mined by some outside agent). For asymptotically flat
regions, however, it is not sufficient to just say we want
the field to vanish at infinity. Rather one should take into
account the asymptotic falloff rates. Asymptotically we
want to allow the variations and responses to be like the
differences between generic solutions. The various bound-
ary terms we have constructed will all enable the Hamil-
tonian to be well defined on the phase space of fields with
asymptotic behavior for all typical physical fields. Detailed
investigations have been done, in particular, for Einstein’s
gravity theory, general relativity beginning with the pio-
neering work of Regge and Teitelboim [1]. This work was
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later improved by Beig and Ó Murchadha [3] and more
recently further refined by Szabados [4]. Here we give a
simplified summary of certain relevant conclusions of
these works.

It turns out that one should impose different falloff rates
for the terms with different parity. For the fields it is
sufficient to take the respective asymptotic falloffs and
parities to be

�’ � O�1 �O
�
2 ; �p � O�2 �O

�
3 ; (25)

where rMO�M can be finite as r! 1 and � indicates the
parity. Here, for all types of tensors and forms, we define
the parity to mean the parity of the components in an
asymptotically Cartesian reference frame dx�. Now the
Cartesian components of the 2-surface area element have
odd parity, consequently even parity 2-forms automatically
have vanishing 2-surface integral.

For asymptotically flat spaces the displacement should
asymptotically be a Killing vector, i.e. an infinitesimal
Poincaré displacement. More precisely one can allow

N� � ��0 � �
�
1 �

� � ��0 � �
�
1 �

�
�x

�; (26)

where ��0 is a constant translation parameter and ���0 �

�	��
0 is a constant asymptotic infinitesimal Lorentz
boost/rotation parameter; the even parity part of the per-
turbations in these parameters can have the indicated 1=r
falloff, but any odd parity perturbation to � should fall
off faster. Note that the ��1 correction, because of its
coordinate coefficient, means that it can be regarded as
an odd parity perturbation of �. Thus we can, without
any change in the conserved total values or vanishing
of the boundary term in the Hamiltonian variation,
allow supertranslations—i.e., asymptotically nonconstant
( � angular dependent) terms of finite magnitude—as
long as they are odd parity. Even parity supertranslations,
on the other hand, would change the value of the quasilocal
quantities and also would yield in general a nonvanishing
boundary term in the Hamiltonian variation. If one really
wanted them one could allow even parity supertranslations,
but only at the expense of requiring boundary conditions
on the fields more strict than (25).

With the asymptotics (25) and (26), it is straightforward
to verify, as we just stated, that all four of our Hamiltonians
are differentiable on the specified phase space—since all
the boundary terms in the variations of the Hamiltonians
vanish asymptotically; moreover the quasilocal expres-
sions all give the same (since they differ by terms of the
formN�’�pwhich vanish asymptotically) finite constant
values (independent of the perturbation ��1 and supertrans-
lation ��1 x) for the energy momentum and angular mo-
mentum/center of mass—even for fields, like the metric or
frame, with �’ � 1.

Note that the indicated asymptotic behavior is sufficient
but hardly necessary. In practice only the specific projected
component combinations that actually show up in the
-5
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boundary integrand need be so restricted (moreover one
need only require this behavior up to a closed form).
However it is not possible to give a general covariant
formula for such details; for such refinements one must
examine how each component for a particular field in a
specific theory actually occurs in the expression.

We also note that one could even turn things around and
take the finiteness of the quasilocal expressions and the
vanishing of the boundary term in the variation of
the Hamiltonian as defining a norm that would determine
the largest possible phase space. We do not pursue this idea
here.

At spatial infinity the aforementioned asymptotics are
physically reasonable. Let us now consider what can be
expected if the boundary of our 2-surface @� approaches
null infinity. One can imagine it following the character-
istic propagation surfaces of outgoing radiation. Long-
range radiation fields (e.g. electromagnetism) have slower
falloffs, like �p � d’ � O1. Then it may seem that we
will have a serious problem, since the boundary terms in
the variation of our various Hamiltonians will not vanish,
so the Hamiltonian is no longer functionally differentiable.
This seeming calamity is actually providential—as was
recognized long ago (see e.g. the remark on page 160 in
[25]) but not investigated until more recently—it is direct-
ing us to additional physics contained within the formal-
ism, namely, energy flux expressions.

VII. FLUX EXPRESSIONS

Given any vector field M � d=d� one could calculate
(on shell) the associated change in any quasilocal quantity
directly from the boundary expression:

d
d�

EB:C:�N;�� �
Z

�
£MH B:C:�N� �

I
@�

£MBB:C:�N�:

(27)

In this fashion one could calculate from such a ‘‘flux’’
expression, for example, the change in the quasilocal linear
momentum under a rotation or the time rate of change of
the angular momentum. In particular this approach can be
specialized to calculate the ‘‘time rate of change’’ of the
‘‘energy’’ associated with the ‘‘time displacement’’ N �
d=dt itself

d
dt
EB:C:�N;�� �

Z
�

£NH B:C:�N� �
I
@�

£NBB:C:�N�:

(28)

The 2-surface integral then defines an ‘‘energy flux.’’
(Note: we use the labels time and energy here for conve-
nience in our description; however, the actual meaning is
the change along N in the conserved quantity associated
with N; e.g. we could consider a rotation: N � @=@�.) Of
course there is another natural way to calculate the ‘‘time
rate of change’’ of any conserved quantity, namely, one
simply rearranges the conserved current formula, such as
104020
@�j
� � 0 to @tj

0 � �@kj
k, and then integrates over a

spatial region; the spatial divergence via the divergence
theorem yields a boundary 2-surface flux integral. Such
expressions are often referred to as ‘‘balance equations.’’
Expressed in terms of a closed three-form they follow just
from integrating £Nj � diNj. In particular for energy this
leads (on shell) to £NH B:C:�N� � diNH B:C:�N� �
diNdBB:C:�N� � d£NBB:C:�N�. Thus this alternative ap-
proach also leads to (28).

For the flux of energy (and only for the flux of energy,
i.e. the change of E�N� along N, not for the time rate of
change of any other quantity like linear or angular momen-
tum, etc.) there is another way of calculating—the analog
of the classical mechanics calculation (for conservative
Hamiltonian systems) of

�H � _qk�pk � _pk�q
k ���! _E :� _H � 0 (29)

under the replacement �! d=dt, where the remarkable
cancellation is a consequence of the particular (symplectic)
form of the Hamilton equations. Specializing the relations
(19), (20), (24), and (25) with �! £N (here we are assum-
ing that £N �’, £N �p vanish; this could be a strong restriction
on the reference or on N; examples appear in later sec-
tions), we note that the three-form parts vanish identically
(again this is associated with the symplectic form of the
Hamilton equations), hence the respective boundary flux
expressions are the integrals of

£NH Dirichlet�N� � diN�£N’ ^�p�; (30)

£NH Neumann�N� � diN���’ ^ £Np�; (31)

£NH dynamic�N� � d�&£N’ ^ iN�p� iN�’ ^ £Np�;

(32)

£NH constraint�N� � d�iN£N’ ^�p� &�’ ^ iN£Np�:

(33)

These expressions hold even if H� does not vanish (i.e,
when we have global but not local translation symmetry).
Note that they are significantly different in appearance
from those obtained using (28) along with (17), (18),
(21), and (22):

£NH Dirichlet�N� � d£N�iN’ ^�p� &�’ ^ iN �p�; (34)

£NH Neumann�N� � d£N�iN �’ ^�p� &�’ ^ iNp�; (35)

£NH dynamic�N� � d£N�iN �’ ^�p� &�’ ^ iN �p�; (36)

£NH constraint�N� � d£N�iN’ ^�p� &�’ ^ iNp�; (37)

which hold only as long as H� vanishes. Via a straight-
forward but nontrivial calculation using the field Eqs. (15)
it can, of course, be explicitly verified that the two respec-
tive forms are actually equivalent—when H� vanishes.
-6
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VIII. APPLICATION TO ELECTROMAGNETISM

To illustrate these ideas first in a familiar setting let us
examine (vacuum) electromagnetism. One could consider
this as a source field for gravity, but it is more instructive,
and still sufficient for our needs here, to more simply just
consider vacuum electromagnetism in Minkowski space.
In that case the formalism developed above, with the
important exception of the ‘‘on shell’’ vanishing of H�,
is still applicable. The first order Lagrangian four-form for
the (source free) U(1) gauge field one-form A is

L EM � dA ^H �
1

2�0

?H ^H; (38)

yielding the pair of first order equations

dH � 0; dA�
1

�0

?H � 0: (39)

These are just the vacuum Maxwell equations with ?H �
�0F :� �0dA; hence H � ��0

?F, and d?F � 0. (Here
��1

0 is the vacuum impedance.) With N � @t and the
decomposition A � ���;Ak� we find that iNF � iNdA �
£NA� diNA corresponds to F0k � _Ak � @k� � �Ek. The
magnetic field strength is Fij :� @iAj � @jAi :� �ijkB

k.
Hence H0i � ��0

?F0i � ��0Bi, Hij � ��0
?Fij �

��0�ijkE
k. The natural reference choice is �A � 0 � �H.

The Hamiltonian three-form is

H EM
B:C:�N� � �iNAdH � dA ^ iNH � iN

�
1

2�0

?H ^H
�

� dBB:C:: (40)

In conventional tensor index notation the volume density
part is

H EM � �0	��@kE
k � 1

2�@iAj � @jAi�F
ij � 1

2E
kEk

� 1
4F

ijFij
: (41)

After eliminating the 2nd class constraint, Fij � @iAj �
@jAi, it corresponds to the familiar �0	

1
2 �E

2 � B2� �

�@kEk
; the scalar potential acts as a Lagrange multiplier
to enforce the Gauss constraint @kEk � 0.

For the four considered boundary choices we have

B EM
Dir � iNAH � �0�E

kdSk; (42)

B EM
Neu � A ^ iNH � ��0AiBj�

ijkdSk; (43)

B EM
dyn � 0; (44)

B EM
con � iNAH� A ^ iNH � �0��E

k � AiBj�
ijk�dSk:

(45)

The Hamiltonian variations have the respective forms
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�H EM
Dir �N� � field equation terms

� d��iNAH � �A ^ iNH�; (46)

�H EM
Neu�N� � field equation terms

� d��iNA�H � A ^ �iNH�; (47)

�H EM
dyn�N� � field equation terms

� d��iNA�H � �A ^ iNH�; (48)

�H EM
con�N� � field equation terms

� d��iNAH � A ^ �iNH�: (49)

Here our interest is not in the field equations but in the total
differential term which, upon integration, becomes a
boundary term indicating the boundary condition.
Briefly: the choice H EM

Dir corresponds to fixing the scalar
potential and the components of the vector potential par-
allel to the 2-surface (the gauge-independent part of the
latter fixes the normal component B? of the magnetic
field). H EM

Neu enables the fixing of certain projected com-
ponents of F, namely, E? and a part of Bjj. The choice
H EM

dyn is used for fixing E? and B?, while H EM
con is used for

fixing the scalar potential and a part of Bjj.
The physical meaning of such boundary conditions are

well known especially in the electrostatics case. Fixing E?
on the boundary corresponds to fixing the surface charge
density. Here is an instructive physical application: use a
battery to first charge up a capacitor which contains a
dielectric which can be inserted/removed, then disconnect
the battery and measure the work needed to remove/insert
the dielectric (in the process the potential will vary but
the charge is fixed—no current or power will flow into/out
of the system—the system is adiabatically insulated).
Alternately leave the battery connected and measure the
work needed to displace the dielectric—then the potential
is fixed although the charge will now vary, so in this latter
case current and hence power flows into or out of the
system. The respective boundary terms in the variation of
the Hamiltonian are ���EkdSk and ��EkdSk. The point
we wish to emphasize is that both boundary condition
choices are physically meaningful; they correspond to
real situations actually encountered in practice. Neverthe-
less there is a preferred choice.

One expression stands out: the H EM
dyn choice is the only

one in which the value of the Hamiltonian is gauge invari-
ant. Moreover, in addition to the neat property of enjoying
a vanishing boundary term, it has an extra virtue of con-
siderable physical importance: namely, the Hamiltonian
density is nonnegative. Consequently the associated energy
has a lower bound and the system has a natural vacuum or
ground state: zero energy for vanishing fields. The value of
the Hamiltonian HEM

dyn can be interpreted as the internal
-7
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energy, whereas the other expressions include some addi-
tional energy on the boundary of the system associated
with maintaining the boundary condition.

The respective energy flux expressions from (30)–(33)
are

£NH
EM
Dir � d�iNdiNA^H� diNA^ iNH� iNF^ iNH�

� �0d	�@iA0Bj�
1
2@tA0�ijkEk�EiBj�dxi ^ dxj
;

(50)

£NH
EM
Neu � d�A ^ iNdiNH � iNA ^ diNH�

� �0d	�A0@iBj � Ai@tBj�dx
i ^ dxj
; (51)

£NH
EM
dyn � �d�iNF ^ iNH� � �0d��EiBjdxi ^ dxj�;

(52)

£NH
EM
con � d�iNdiNA ^H � A ^ iNdiNH�

� �0d	��
1
2@tA0�ijkE

k � Ai@tBj�dx
i ^ dxj
:

(53)

(Note we cannot calculate the correct energy flux in this
case by expressions like (28) and (34)–(37) unless we
include an additional nonvanishing contribution from
H �.) All of these Hamiltonians and their associated en-
ergies are really describing the same physical laws (the
differences in the right-hand sides just correspond to dif-
ferences in the left-hand sides); however, all except H EM

dyn

are boundary condition choices which are gauge dependent
descriptions. Clearly the H EM

dyn choice, associated with
fixing the normal components E? and B? on the boundary,
is preferred; it is the one suitable for most physical appli-
cations. It gives the usual energy density and Poynting flux.
IX. APPLICATION TO EINSTEIN’S GRAVITY
THEORY

Einstein’s gravity theory, general relativity, can be for-
mulated in several ways. For our purposes the most con-
venient is to take the orthonormal coframe #� � #�k dx

k

and the connection one-form coefficients !�
	 � ��	kdx

k

as our geometric potentials. Moreover we take the connec-
tion to be a priori metric compatible: Dg�	 :� dg�	 �
!


�g
	 �!


	g�
 � 0: Restricted to orthonormal frames

where the metric coefficients are constant, this condition
reduces to the algebraic constraint !�	 � !	�	
.

We consider the vacuum (source free) case for simplicity
(the inclusion of sources is straightforward). GR can be
obtained from the first order Lagrangian four-form

LGR � ��	 ^ ��	 �D#� ^ ��

� V�	 ^
�
��	 �

1

2
��	

�
; (54)
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where ��
	 :� d!�

	 �!
�

 ^!



	 is the curvature two-

form, D#� :� d#� �!�
� ^ #

� is the torsion two-form,
and we have made use of the convenient dual form basis
��	... :�? �#� ^ #	 ^ � � ��. The two-forms ��	, V�	,
and ��	 are antisymmetric. We take  :� 8�G=c4 � 8�.

In this Lagrangian the frame and connection conjugate
momenta ��, ��	 and the auxiliary field V�	 all function
like Lagrange multiplier fields; their variation imposes,
respectively, the torsion vanishing condition D#� � 0,
the multiplier value V�	 � ��	, and the conjugate mo-
mentum value ��	 � �2�

�1��	. The connection one-
form variation gives (in vacuum)

D��	 � #		 ^ ��
 � 0: (55)

Since D��	 / D��	 � D#� ^ ��	� � 0 we get #		 ^
��
 � 0, from which it follows that �� � 0 (in vacuum).
The frame variation gives

D�� �
1

2
V�	 ^ ��	� � 0: (56)

Substituting the already determined values for �� and V�	

yields ��	 ^ ��	� � 0, the vanishing of the Einstein
tensor three-form, i.e. the vacuum Einstein equation.

For most physical fields we can get by with a trivial
reference. However in the case of GR we certainly need the
refinements of both adjusting the Hamiltonian boundary
term ‘‘by hand’’—as was first clearly argued by Regge and
Teitelboim [1]—and introducing a reference. With just the
boundary term in the Hamiltonian naturally inherited from
the Lagrangian, B�N� � iN!�	 ^ ��	, the boundary term
in the variation of the Hamiltonian has the form iN��!

�	 ^

��	�, which does not vanish for asymptotically flat fal-
loffs. A simple reason for introducing the reference values,
at least for the connection, is to render covariant the
manifestly noncovariant ‘‘natural’’ Hamiltonian boundary
term. (By the way, the need for reference values for GR
was not apparent in the ADM [2] and Regge and
Teitelboim formulations; there it was hidden in the choice
of asymptotically Cartesian coordinates. The explicit need
for a reference metric in the asymptotic Hamiltonian
boundary term was, to our knowledge, first clearly appar-
ent in the work of Beig and Ó Murchadha [3].)

In the vacuum case (or more generally as long as our
boundary is in the vacuum region) the frame conjugate
momentum field �� � 0, so only the connection and its
conjugate momentum make explicit contributions to our
gravitational quasilocal expressions. (When sources are
included we can always choose the boundary conditions
so that the source fields have vanishing quasilocal bound-
ary term, however via the gravitational field equations the
sources, of course, indirectly influence the values of the
gravitational field variables on the boundary and thereby
do contribute to the quasilocal values.)
-8
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Now one of our dynamic gravitational variables is not a
tensor field, so there are certain terms in our quasilocal
expressions which include the noncovariant factors
iN!�	 or iN �!�	. As discussed in more detail in [8,9],
the physical contribution due to these terms is obtained
by replacing them by D		N�
 or �D		N�
. Taking these
considerations into account, along with the identification
��	 � �2��1��	, we obtain our quasilocal GR Hamil-
tonian boundary term expressions for gravitating systems
(in vacuum regions):

B GR
# �N� :�

1

2
��!�	 ^ iN��	 � �D		N�
���	�; (57)

B GR
! �N� :�

1

2
��!�	 ^ iN ���	 �D

		N�
���	�; (58)

B GR
dyn�N� :�

1

2
��!�	 ^ iN ���	 � �D		N�
���	�; (59)

B GR
con�N� :�

1

2
��!�	 ^ iN��	 �D		N�
���	�: (60)

As we already mentioned these quasilocal expressions will
certainly yield finite values when integrated over an
asymptotic 2-sphere for asymptotic Killing displacements
of the form (26), at least when the variables satisfy the
asymptotic parity and falloff conditions

�# � O�1 �O
�
2 ; �! � O�2 �O

�
3 : (61)

(At null infinity some parts of the connection actually have
slower falloff yet; as we shall see, the quasilocal integrals
are all still finite.)

The variations of the associated Hamiltonians have the
respective forms

�H GR
# �N� � field equation terms

�
1

2
d��iN�!�	���	

��!�	 ^ �iN��	�; (62)

�H GR
! �N� � field equation terms�

1

2
d��iN!�	���	

� �!�	 ^ iN���	�; (63)

�H GR
dyn�N� � field equation terms

�
1

2
d��iN�!�	���	

� �!�	 ^ iN���	�; (64)

�H GR
con�N� � field equation terms

�
1

2
d��iN!

�	���	 � �!�	 ^ �iN��	�:

(65)
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Here our interest is not in the field equations but in the total
differential term which, upon integration, becomes a
boundary term indicating the respective boundary condi-
tions. Briefly: H GR

# requires fixing (after integration: cer-
tain projected components of) the orthonormal coframe,
while H GR

! requires fixing (certain projected components
of) the connection. Whereas H GR

dyn is associated with fix-
ing the spatial projections of the frame and connection, and
H GR

con is associated with fixing the time components of the
frame and connection. The boundary terms in these
Hamiltonian variations vanish asymptotically (spatially)
with the aforementioned falloff and parity conditions.
Asymptotically at spatial infinity the quasilocal quantities
obtained from all four of our expressions are compatible
with the analysis of Beig and Ó Murchadha [3], or more
precisely with the refinement thereof of Szabados [4].

The associated energy flux expressions, calculated ac-
cording to the respective prescriptions (30)–(33), (presum-
ing that £N �# � 0 � £N �!, i.e. N is a Killing field of the
reference geometry) take the form

£NH
GR
# �N� �

1

2
d��iN�!�	£N��	

� �!�	 ^ £NiN��	�; (66)

£NH
GR
! �N� �

1

2
d�£NiN!

�	���	

� £N!
�	 ^ iN���	�; (67)

£NH
GR
dyn�N� �

1

2
d��iN�!�	£N��	

� £N!
�	 ^ iN���	�; (68)

£NH
GR
con�N� �

1

2
d�£NiN!

�	���	��!�	 ^ £NiN��	�:

(69)

Only one, £NH
GR
# (66), is free from noncovariant factors.

Of course one should check the actual values given by
these expressions. We have reexpressed (57) and (66) in the
asymptotically null regime using the NP spin coefficient
formalism and obtained good results [26]. Moreover we are
presently working on adapting our expressions to confor-
mal infinity; the results of that investigation will be re-
ported in due course. Meanwhile, similar to the cal-
culations in [27], we have tested all of these energy and
energy flux expressions at null infinity on the full Bondi-
Sachs [12] form of the metric using REDUCE and EXCALC.
In particular, for the value of the expression BGR

# (which
had been calculated earlier [27]) we obtain results essen-
tially identical to those reported in [16] obtained using
SHEEP to evaluate the Freud holonomic expression (which
is the expression Trautman used in his original work [10]).
This is not at all surprising, since this particular orthonor-
-9
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mal frame expression, for any frame satisfying the asymp-
totic ‘‘no rotation’’ gauge condition #	�k
 � O2, is asymp-
totically equivalent to both the Freud superpotential [8,9]
and the expression of Katz and coworkers [14]; the latter
also gives good results at null infinity.

Our three other boundary expressions give similar but
not identical results. Both for brevity and to more clearly
show the main similarities and differences, we here present
only the essential details for the simpler, axisymmetric
Bondi metric [11]. We take the co-frame to be of the form

#t � e	��du� e	��dr; #r � e	��dr;

#� � re
�d�� r�2Udu�; #’ � re�
 sin�d’;

(70)

where e2� � 1� 2m�u; ��=r�O2, 
 � c�u; ��=r�O2,
	 � �c2=4r2 �O4, and U � �@�c� 2c cot��O1. For
the reference we take � � 
 � 	 � U � 0. For N � @u
we find for the asymptotically contributing part of the
energy expressions

B GR
# � BGR

con �
1

2
	4m sin�� 2@��U sin��
d� ^ d’;

(71)

B GR
! � BGR

dyn

�
1

2
	4�m� ccu� sin�� 2@��U sin��
d� ^ d’:

(72)

Upon integration over the sphere the terms with @��U sin��
make a vanishing contribution due to the regularity con-
ditions on c, @�c at the poles (note: similar terms appear in
the 2-surface integrands in [16,27]). Then the two expres-
sions in (71) give the standard Bondi mass aspect, while the
other two do not.

The asymptotically contributing part of the associated
quasilocal flux values were found to be

£@uH
GR
# � £@uH

GR
con �

1

2
d	�4c2

u sin�d� ^ d’
; (73)

£@uH
GR
! � £@uH

GR
dyn �

1

2
d	4ccuu sin�d� ^ d’
: (74)

Thus two expressions (73) directly give the standard Bondi
flux loss. The other two expressions are actually describing
exactly the same physics albeit for a different energy
expression, as can be easily seen from comparing the
time derivative of the expression (71) equated to (73)
with the time derivative of the expression (72) equated to
(74). Note that one can equally well compute an incoming
flux from past null infinity by assuming a dependence on
the advanced time v ’ t� r in place of the retarded time
u ’ t� r.
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From these calculations we can see that the functions 	
and U do not play a major role in this limit. This observa-
tion justifies the following simpler calculation, which still
includes enough of the essential qualities while showing
that our expressions capture both the incoming and out-
going quasilocal flux. Let us evaluate the energy and
energy flux expressions for the following simplified
asymptotic form of the orthonormal co-frame:

#t � e�dt; #r � e��dr; #� � e
rd�;

#’ � e�
r sin�d’;
(75)

where � � ��t; r� � O�1=r�, 
 � 
�t; r� � O�1=r�. For
the reference we take � � 0 � 
. The connection one-
form components are

!tr � �0e2�dt� _�e�2�dr;

!t� � r _
e���
d�;

!t’ � �r _
e���
 sin�d’;

!r� � ��1� r
0�e���
d�;

!r’ � ��1� r
0�e���
 sin�d’;

!�’ � �e�2
 cos�d’:

(76)

For our expressions with N � @t the DN terms make no
asymptotic contribution. The key factors are

�!r� � 	1� �1� r
0�e��

d�;

�!r’ � 	1� �1� r
0�e��

 sin�d’:
(77)

From these we find the asymptotically contributing part of
the quasilocal energy boundary expressions:

B GR
# � BGR

con �
1

2
4m sin�d� ^ d’; (78)

B GR
! � BGR

dyn �
1

2
4	m� r2

0
 sin�d� ^ d’

�
1

2
4	m� r2
�
v � 
u�
 sin�d� ^ d’; (79)

where, as usual,m :� �r=2��1� e2�� and u :� t� r, v :�
t� r. Upon integration over the 2-sphere r � const we
find that two boundary conditions, corresponding to the
boundary terms BGR

� and BGR
con, give the Bondi mass.

The associated quasilocal flux values are found to be

£NH
GR
# � £NH

GR
con �

1

2
d	4r2 _

0 sin�d� ^ d’


�
1

2
d	4r2�
2

v � 

2
u� sin�d� ^ d’
; (80)
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£NH
GR
! � £NH

GR
dyn �

1

2
d	�4r2
 _
0 sin�d� ^ d’


�
1

2
d	�4r2
�@2

v
� @2
u
� sin�d� ^ d’
:

(81)

Integrating (78)–(81) over a large 2-sphere at constant r,
we find that all control modes are consistent with a Bondi
news type energy flux loss and gain from both outgoing
and incoming radiation:

_m � r2 _

0 � r2�
2
v � 
2

u�: (82)

However only the Hamiltonians H GR
� and H GR

con give this
relation directly. For most applications H GR

� would be the
preferred choice, because the associated flux relation (66)
is free of noncovariant factors.
X. DISCUSSION

The Hamiltonian for a gravitating system in a finite or
infinite region necessarily includes a boundary term. We
have inquired into the significance and best form of this
boundary term. We found that it determines not only the
quasilocal values but also, via the boundary variation
principle, the boundary conditions necessary for a well-
defined Hamiltonian. We noted that it is always possible
(and necessary, at least for gravity) to include in it non-
dynamic reference values for the dynamic variables. Using
our covariant Hamiltonian formalism and an identity asso-
ciated with the variation of the Hamiltonian, we have
identified, for each dynamic field, four special quasilocal
energy-momentum boundary term expressions; each cor-
responds to a physically distinct and geometrically clear
boundary condition. We showed how a fundamental
Hamiltonian variation identity naturally forces us, for ra-
diating asymptotics, to relax the well-defined Hamiltonian
requirement and thereby obtained the associated quasilocal
energy flux expressions. When the formalism is applied to
electromagnetism one of the four is distinguished by
gauge invariance (it gives the familiar energy density and
Poynting flux). When the formalism is applied to Einstein’s
general relativity, two different boundary condition
choices correspond to quasilocal expressions which
asymptotically give the ADM energy, the Trautman-
Bondi energy and, moreover, an associated energy flux
(both outgoing and incoming), but once again there is a
distinguished expression: in this case it is the one which is
covariant.

Here we make a few further remarks. First we mention
that our ideas regarding variational principles, symplectic
structure, and the role of boundary terms have been much
influenced by several sources, especially Tulczyjew and
Kijowski [23,28] and his co-workers. Although we consid-
ered radiation using the Hamiltonian, there are many as-
pects associated with the Hamiltonian in the radiating
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regime that we did not discuss; these issues are nicely
treated in [17]. The uniqueness of the Trautman-Bondi
mass is established in [16].

We, like many others, took a Hamiltonian approach.
While some of our expressions are similar to those that
appear in other approaches, e.g. the Noether charge ap-
proach [29], our formalism includes certain features that
are unusual. Features which distinguish our formalism
include:
(i) W
-11
e have made extensive use of differential
forms—because of their convenience for integra-
tion over domains with boundaries, the spacetime
decomposition, as well as the representation of
geometric and gauge fields.
(ii) W
e started from a first order Lagrangian—mainly
because it facilitates the passage from the
Lagrangian to the Hamiltonian but also because
of its linearity re coupling via connections.
(iii) W
e used the (co)frame and connection as indepen-
dent variables.
(iv) T
he Hamiltonian formalism we have developed is
4-covariant.
Our aim has been to find 4D covariant two-form and
three-form expressions which can be integrated over any
suitable desired regions; essentially we want to find a good
Hamiltonian density for the region of interest. In this
approach the particular 3-surface � and its boundary @�
are quite incidental. Accordingly, our reference values and
displacement are independent of these surfaces. Note also
that we do not decompose our expressions into intrinsic
and extrinsic parts with respect to such surfaces, as was
done both traditionally and in many modern works, e.g.
[30,31] wherein some of the themes considered here have
been treated with the aid of such decompositions.

Aside from some important clarifications of the formal-
ism, the main new ingredients here involve our variational
identity, the relaxation of the boundary variational princi-
ple, and the flux expressions associated with our four
quasilocal expressions, along with the fact that in each
application one expression is distinguished (by being
gauge invariant for the relevant type of gauge covari-
ance—U�1� or Lorentz in our electromagnetic and gravi-
tational examples, respectively). Although in our
discussion we referred to energy and energy flux, what
we really considered is the value of the Hamiltonian for a
prescribed displacement N and the associated flux expres-
sion that gives the rate of change of this value along N. Our
formal results may have other useful applications besides
energy.

Localization of energy-momentum has been an out-
standing problem from the very beginning of GR.
Traditional methods, both Noether spacetime translation
symmetry and decomposition of the field equations, have
only led to a variety of reference frame dependent expres-
sions (generally referred to as pseudotensors) for the
energy-momentum density. Thus in addition to the ambi-
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guity of which expression should be preferred, there was
also the ambiguity of the choice of reference frame. The
boundary variation principle along with the Hamiltonian
formalism tamed these inherent ambiguities, giving them a
clear physical and geometric interpretation: the choice of
expression is related to the choice of boundary conditions
and the choice of reference frame is associated with the
choice of ground state [9,21,22]. Within the covariant
Hamiltonian formalism using this principle we had identi-
fied certain special ‘‘covariant-symplectic’’ Hamiltonian
boundary term quasilocal expressions [7–9]. Here, based
on a fundamental Hamiltonian identity, we have identified
the associated energy flux expressions. Moreover we found
that, for both source fields and gravity, among the four, one
particular quasilocal Hamiltonian boundary term and its
associated flux expression was distinguished.

An additional virtue enjoyed by the respective distin-
guished boundary terms (44) and (57) is that the Hamil-
tonian for this quasilocal choice has positive energy, not
only for electromagnetism (as we discussed above), but
also for gravity. More precisely (for acceptable choices of
the variables) the gravitational Hamiltonian with the dis-
tinguished boundary term (57) is nonnegative, at least
when � is maximal or nearly maximal. Here we just
make mention of two lines of argument that lead to this
104020
conclusion. One can obtain this result by adapting to finite
regions the global positivity proof [32] using the special
orthonormal frame gauge conditions [33]; one can instead
use an adaptation of the Shi and Tam proof [34], which
guarantees the positivity (for mean convex 2-surfaces) of
the Brown-York [35] quasilocal expression (the latter, as
shown in [8], agrees with (57) for certain choices). We are
presently working on a detailed account of these two argu-
ments. Of course it would be nice to have a stronger and
more general energy-momentum positivity proof for our
distinguished covariant-symplectic quasilocal GR Hamil-
tonian boundary term.
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