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We demonstrate explicit counterexamples to the correlated stability conjecture (CSC), which claims
that the horizon of a black brane is unstable precisely if that horizon has a thermodynamic instability,
meaning that its matrix of susceptibilities has a negative eigenvalue. These examples involve phase
transitions near the horizon. Ways to restrict or revise the CSC are suggested. One of our examples shows
that N � 1� gauge theory has a second-order chiral symmetry breaking phase transition at a temperature
well above the confinement scale.
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I. INTRODUCTION

In [1,2] it was observed that the event horizons surround-
ing black strings and p-branes are often unstable toward
linear perturbations with some sinusoidal dependence on a
spatial direction parallel to the brane. According to general
theorems, entropy must increase as such an instability
develops. Indeed, entropy increase was used in [1,2] to
motivate the existence of the instability, but the entropy
argument in that case was that a final state consisting of
separated black holes must have larger entropy than an
initial state of a nonextremal uniform string. It has sub-
sequently become a difficult question how and whether one
can actually evolve in finite asymptotic time from one
state to the other. This question was first raised in [3],
and recent reviews [4,5] provide a summary of what is
presently known as well as a guide to the (already exten-
sive) literature.

In [6,7] it was suggested that the existence of a pertur-
bative Gregory-Laflamme (GL) instability for a horizon
which is infinite and translationally invariant in some
spatial direction should be associated with a local thermo-
dynamic instability. For uncharged black strings or branes,
this simply means that a GL instability should occur pre-
cisely when the specific heat is negative. Analytic argu-
ments in support of this link were advanced in [8]. These
arguments are convincing in the case of pure gravity and
for a limited class of charged black branes: see [9] for a
recent extension. A more complicated case is when the
black brane carries some charges or angular momenta
which are capable of being spatially redistributed: see
[10] for a discussion of how Reall’s argument might gen-
eralize. An example is a black string in five or more
dimensions which carries electric charge under a U�1�
gauge field A�. In such a case, local thermodynamic
stability is a criterion that one applies to the Hessian matrix
of second derivatives of the entropy with respect to the
mass and all the conserved charges. If this matrix has a
positive eigenvalue, then there is a local thermodynamic
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instability. It should then be possible to locally redistribute
mass density and/or conserved charge density in such a
way as to increase entropy without changing the total value
of the conserved charges. It makes sense therefore to
conjecture that a GL instability occurs precisely when
there is a local thermodynamic instability. This is the
correlated stability conjecture (CSC) of [6,7]. The conjec-
ture includes as a hypothesis that the horizon is infinite
and translationally invariant in some spatial direction be-
cause only then should we entirely trust thermodynamic
arguments.

Following [8], there has been debate over whether the
CSC should be generally valid. It seems impossible for
there to be a violation in the direction of having a GL
instability in the presence of stable thermodynamics, be-
cause then the horizon area would decrease as one goes
forward in time. Violations in the other direction do not
spoil any broad properties of general relativity, but (to our
knowledge) none have come to light as yet.

In this paper, we find violations of the CSC in the
direction where the arguments of the previous paragraph
indicate they are least likely—but entropy does not de-
crease. At the linearized level, the perturbatively unstable
mode involves only a scalar field. This scalar acts as an
order parameter of a phase transition that occurs near the
black hole horizon. The violation of the CSC is associated
with trying to keep the black hole in the disordered phase
below the critical temperature at which spontaneous order-
ing is entropically favored. Entropy is expected to increase
as the instability departs from the linear regime, and a
definite endpoint of the evolution can be guessed: it is
simply the ordered phase of the black hole horizon, possi-
bly with some domain walls or other defects within the
brane world volume.

The instability we find is a normalizable disturbance of
the horizon which grows exponentially in time. Because it
involves only a scalar field, it may seem rather different
from the gravitational modes investigated in [1]. But there
-1 © 2005 The American Physical Society
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are other examples [6,7] where there is a horizon instability
involving only matter fields. (It can even be shown in these
cases that one can interpolate between an instability in-
volving only the metric and an instability involving only
matter fields.) The main difference between the standard
Gregory-Laflamme instability and the instability we study
here is the dispersion relation below the critical wave
number where the frequency ! becomes imaginary. In
[1,2], the gravitational instabilities were found to have a
characteristic dispersion relation j=!j � kc

10 sin�kkc . This
analytic expression is only a rough fit to the numerical
results of [1,2]. The feature to note is that =!! 0 as k!
0. We may understand this heuristically as a consequence
of conservation of energy: the k � 0 mode cannot be
excited at all because it would change the total mass of
the black string. For the instabilities we will describe, j=!j
is a monotonically decreasing function of k up to some kc
where it vanishes. The instability is not associated with a
conserved quantity, so there is no reason for =! to vanish
as k! 0.

The instability we will describe is somewhat reminiscent
of the gyrating strings proposal of [11]. Discussions of this
proposed violation of the CSC have focused on nonunique-
ness of black brane solutions carrying specified conserved
quantum numbers. This is in the spirit of a near-horizon
phase transition [12]. What makes a violation of the CSC
possible is that knowing the conserved charges of a black
brane is not enough to uniquely determine the classical
solution. Local thermodynamic stability has to do only
with the conserved quantities, but a dynamical horizon
instability is a property of the entire solution.

Although the CSC as stated in [6,7] seems to us now to
be violated by the examples of the present paper, it may be
possible to save it by adding an extra hypothesis, namely,
that the uniform brane solution is unique once all con-
served quantities have been specified.

The organization of the rest of this paper is as follows. In
Sec. II we consider a class of examples based on
magnetically-charged branes with an unusual �2F2 cou-
pling of a scalar field � to a gauge field strength F. In
Sec. III, we explore an example in AdS5 with two scalars,
one of which describes a renormalization group (RG) flow,
while the other describes the breaking of a spontaneous
symmetry. In Sec. IV, we show that the N � 1� deforma-
tion of N � 4 SYM exhibits a finite-temperature phase
transition, and that a metastable branch with no gaugino
condensate has a horizon instability in the same class as the
examples discussed in Sec. III.

II. MAGNETICALLY-CHARGED BRANES

Consider the action

S �
Z
dDx

���
g
p

�
R�

1

2
�@��2 � f���F2

D�p�2 � V���
�
;

(1)
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where V�0� � V0�0� � 0, f�0� � 1, and f0�0� � 0. There
is a magnetically-charged p-brane solution in which � � 0
identically:
ds2 � H�2=�p�1���hdt2 � d~x2� �H2=�D�p�3�

�

�
dr2

h
� r2d�2

D�p�2

�
;

H � 1�
rD�p�3

0 sinh2�

rD�p�3 ;

h � 1�
rD�p�3

0

rD�p�3 ;

FD�p�2 �

���������������������������������������������
2�D� 2��D� p� 3�

p� 1

s

� rD�p�3
0 cosh� sinh� volSD�p�2

(2)
where volSD�p�2 is the volume form on the unit sphere
SD�p�2. Special cases of the solutions (2) include the
magnetically-charged Reissner-Nordstrom black hole
(D � 4, p � 0), the M2-brane (D � 11, p � 2), and the
M5-brane (D � 11, p � 5). We will assume 0 	 p 	
D� 4 to avoid certain pathologies, like spacetimes which
are not asymptotically flat.

To check for the sign of specific heat, it is easiest to first
compute the temperature of the black brane solution in
terms of � and r0:
T �
�D� p� 3�

4�r0
�cosh��2�

�
�D� p� 3�

�r02��2

�
1�

�����������������������������
1�

Q2

r2�D�p�3�
0

vuut �
�
; (3)
where � � ��D� 2�=�D� p� 3��p� 1� and in the last
equality we have eliminated the parameter � for Q which
is proportional to the conserved charge

R
FD�p�2. It is

straightforward to check that the specific heat, which is
inversely proportional to and has the same sign as dT=dr0,
is positive for these solutions for the charge to mass ratio
Q=r�D�p�3�

0 larger than some O�1� lower bound. There is
no conserved charge that is capable of being spatially
redistributed, so positive specific heat means that there is
local thermodynamic stability. In such a situation, the CSC
predicts no dynamical instability of the horizon.

Consider however the equation of motion for �, line-
arized around (2):
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�� f00�0�F2
D�p�2 � V

00�0��� � 0;�
H2=�p�1�

�
!2

h
� ~k2

�
�

1

rD�p�2H2=�D�p�3�
@r�r

D�p�2h@r� �m
2
eff

�
�!; ~k � 0;

m2
eff � V00�0� � f00�0�

2�D� 2��D� p� 3�

p� 1
r2�D�p�3�

0

H�2�D�p�2�=�D�p�3�

r2�D�p�2�
cosh2�sinh2�;

(4)
where in the second line we have specialized to a separated
s-wave ansatz: � � e�i!t�i ~k� ~x�!; ~k�r�. If V 00�0�< 0, then
empty space is unstable toward development of a VEV for
�. This instability is also visible in the stress tensor as a
violation of the dominant energy condition. Let us there-
fore assume V 00�0�  0. If we choose f00�0� sufficiently
negative, then (4) admits normalizable solutions with
imaginary !. This is a GL instability. Provided f���> 0
for all �, the dominant energy condition is not violated.
Thus our main conclusion: violations of the CSC can be
arranged by choosing suitable couplings of a scalar field.

To verify the claims in the previous paragraph about the
dominant energy condition, let us examine the stress tensor
explicitly:

T�� � T����� � T
�F�
��;

T����� � @��@���
1

2
g���@��

2 � g��V���;

T�F��� � f���
�

1

�D� p� 3�!
F��2����D�p�2

F
�2����D�p�2
�

�
1

2�D� p� 2�!
g��F2

�1����D�p�2

�
:

(5)

The dominant energy condition is that when �� is timelike,
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T���
���  0 (heuristically: energy density is positive)

and T�� �� is timelike or null (heuristically: the flow of
energy is timelike or null). It is well known that T����� obeys
dominant energy provided V���  0. Assume also that
f���  0. Then T�F��� is a non-negative multiple of its
form in the special case where f��� � 1. This special
case is a free massless theory with a positive definite
Hamiltonian density, and it is intuitively clear that the
flow of energy is timelike or null for any such theory. A
formal demonstration that T�F��� �� is timelike or null for
timelike �� is slightly technical and will not be presented
here.

What drives the existence of a normalizable eigenfunc-
tion �!; ~k with negative !2 is that m2

eff becomes large and
negative near the horizon when f00�0� is sufficiently nega-
tive, holding all other quantities (including ~k2) fixed.
Heuristically � becomes tachyonic near the horizon, so it
should condense. To verify this more rigorously, we may
transform (4) into Schrödinger form. We assume r0 > 0.
The extremal case is somewhat different on account of the
nature of horizon boundary conditions, but the same quali-
tative claim about condensation of � in the presence of
sufficiently negative f00�0� should persist at extremality.

The radial equation in (4) can be cast in the form
�
!2 �

J1h

rD�p�2 @r�r
D�p�2h@r� � h
J2V

00�0� � ~k2
� K1f

00�0��
�
�!; ~k � 0; (6)

where the functions Ji are explicitly given by:

J1 � H�2�D�2�=�D�p�3��p�1�; J2 � H�2=�p�1�;

K1 �
2�D� 2��D� p� 3�

p� 1
r2�D�p�3�

0

H2�p2�4p�d�p�2��5�=�D�p�3��p�1�

r2�D�p�2�
cosh2�sinh2�:

(7)
The functions Ji, considered on the range r0 	 r <1, are
analytic, bounded above and below by positive numbers,
with a limit of 1 as r! 1. The function K1, considered on
the same range, is analytic, everywhere positive, bounded
above, and with a finite nonzero limit at the horizon.
Evidently, either class of functions may be added, multi-
plied, and raised to real powers without going outside that
class of functions. Define
u �
Z r d~r

P
; P � h

�����
J1

p
; ~� �

�!; ~k
F

;

F � r��D�p�2�=2
�����
J1

4
p

;

(8)

where the lower limit on the integration defining u is set so
that u� r! 0 as r! 1. Note that u! �1 at the hori-
zon, because h has a simple zero there as a function of r.
The radial equation becomes
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�@2
u � V�u��~� � !2 ~�;

V � h
J2V
00�0� � ~k2

� K1f
00�0�� � �@u logF�2 � @2

u logF:

(9)

The extra terms �@u logF�2 � @2
u logF introduced into V by

the transformation of variables are uniformly bounded.
They tend to 0 exponentially fast as u! �1, and so
does V�u� itself. And they tend to 0 as u! 1 as well,
but V has a positive nonzero limit there, namely V 00�0� �
~k2. Moreover, V�u� is analytic, and each of its derivatives is
uniformly bounded over the real line.

Most importantly, by making f00�0� sufficiently negative,
V�u� can be made as negative as one pleases over any
specified finite range of u, without altering its smoothness
or asymptotic properties at�1. It is then a standard fact of
quantum mechanics that an L2-normalizable bound state
appears in the spectrum for sufficiently negative f00�0�.
Indeed, any number of such bound states, each correspond-
ing to a different negative value of !2, can be introduced
into the spectrum by sending f00�0� more and more nega-
tive. The eigenfunction for a negative !2 bound state
decays exponentially as u! �1. The existence of such
a bound state to the Schrödinger problem (9) implies the
existence of an exponentially growing perturbation of �
which is finite outside the horizon, regular at the horizon,
and exponentially small at infinity: a GL instability.

Using (9) one may also argue in general that if all
parameters except ~k2 are held fixed, and ~k2 is increased
sufficiently, there is no GL instability. It is generally under-
stood that when a GL instability exists for small ~k2, it
persists up to a critical value k2

c, and at k2
c there is a static,

normalizable perturbation of the horizon. Demonstrating
this from (9) involves a minor technical complication: for
! � 0, there is not an L2-normalizable eigenfunction
~��u�, but instead an eigenfunction which approaches a
constant as u! �1, is uniformly bounded, and decays
exponentially as u! 1. The corresponding �0; ~k is finite at
the horizon (so clearly regular there), finite outside the
horizon, and exponentially small at infinity—hence
normalizable.1
1We have not given a precise definition of normalizability of a
perturbation in the scalar field �, but several could be used
interchangeably in the current context. Most physically, the norm
could be taken as the energy density in the perturbation inte-
grated over a slice of constant t outside the horizon.
Alternatively, �!; ~k�r�, considered as a function on a slice of
constant t outside the horizon, could be required to be in all Lp

spaces for p > 1. The ‘‘minor technical complication’’ amounts
to showing that a function ~��u� which is not L2-normalizable
nevertheless translates into a perturbation �0; ~k�r� which is nor-
malizable in either of the senses just described. An additional
feature generally required of a perturbation in order for it to be a
physically meaningful classical instability is that there should be
no outgoing energy flux at the horizon. This is true of solutions
with negative !2 because �!;k�r� ! 0 at the horizon, and it is
true of the ! � 0 solution because _� � 0.
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Unlike other examples of GL instabilities, in this case it
is fairly clear that there are possible static endpoints of the
evolution with uniformly controlled curvatures. In particu-
lar, there are static, spatially uniform solutions with �
nonzero but vanishing asymptotically as r! 1. This non-
zero profile of � is an example of hair for the black brane,
because it is not determined by any conserved quantity.
Static hairy solutions were studied in quantitative detail for
the case p � 0, D � 4 in [12], and the qualitative features
should be the same in other cases. In particular, it is not
necessary for V��� or f��� to have extrema at nonzero � in
order for static hairy solutions to exist. If V00�0�> 0, then
for given magnetic charge, hairy solutions exist only for r0

sufficiently small. The hair develops smoothly as r0 crosses
a critical value rc: slightly below this critical value, ��r� in
the hairy solution is uniformly small outside the horizon.
The hairy solutions, when they exist, have greater entropy
than the solutions (2). It is in this respect that the current
example of a GL instability is especially reminiscent of
gyrating branes [11]: the driving intuition in that case was
that for a certain range of parameters, there was a more
entropically favorable way to carry certain quantum num-
bers than the standard stationary black string solution.

If there is a Z2 symmetry of the classical action under
�! ��, then it should also be possible in principle to
construct static domain wall solutions where a black brane
has nonzero � which is negative on one side of the domain
wall (say, as x1 ! �1) and positive on the other (say, as
x1 ! 1). In fact, a variety of more or less intricate solitons
can be contrived, depending on the topological structure of
the space of solutions with spatially uniform horizons and a
given set of conserved charges.

It is clear that the GL instability and hairy black brane
solutions under discussion relate to second-order phase
transitions on the world volume of the brane. The dictio-
nary between the gravitational description and the world-
volume theory is clearest when the spacetime is asymptoti-
cally anti-de Sitter rather than asymptotically flat. We
therefore turn to this case in the next section.

III. AN EXAMPLE IN AdS5

The horizon instability discussed in the previous section
is driven by the �2F2 coupling. This sort of coupling can
arise in low-energy effective actions of compactified string
theory, but it is not particularly familiar to us from other
contexts. It is therefore interesting to look for violations of
the CSC in systems that are well studied for other reasons.
A class of examples in AdS5 was suggested in [12]. The
action is

S �
Z
d5x

���
g
p

�
R�

1

2
�@��2 �

1

2
�@��2 � V��;��

�
;

V��;�� � �
12

L2 �
1

2
m2
��

2 �
1

2
m2
��

2 � g�2�2;

g < 0: (10)
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This action is still ‘‘made up,’’ but in Sec. IV we will see
that an interesting two-dimensional slice of the scalar
manifold of d � 5, N � 8 gauged supergravity gives an
action of essentially this form.

We are interested in black brane solutions in the
Poincaré slice of AdS5. The metric is

ds2 � e2A�r�
�h�r�dt2 � d~x2� �
dr2

h�r�
: (11)

It is assumed that � has a nonzero profile corresponding to
a deformation of the CFT Lagrangian. �, on the other hand,
may be zero or nonzero, but its asymptotics near the
boundary of AdS5 are required to indicate a VEV of the
dual operator in the CFT rather than a deformation by it. It
was demonstrated in [12] for a particular choice ofm�,m�,
and g that there is a continuous transition from a ‘‘disor-
dered phase’’ where � � 0 (so that hO�i � 0) to an ‘‘or-
dered’’ phase where � � 0 (so that hO�i � 0). If we
denote the value of � at the horizon by �0, then the
transition happens for a particular value �c of �0: for
�0 <�c one is in the disordered phase, and for �0 >�c
one is in the ordered phase.

The action (10) has a Z2 � Z2 symmetry, associated
with �! �� and �! ��. The first Z2 is broken ex-
plicitly by the boundary conditions on� near the boundary
of AdS5. The second Z2 is preserved in the ordered phase
and broken in the disordered phase.

The Lagrangian of the dual field theory is

L � LCFT ��
4���

� O�; (12)

where �� is an energy scale and �� � 2�
����������������������
4�m2

�L
2

q
is

the dimension of O� (assumed to be less than 4). LCFT is
the Lagrangian of the undeformed conformal field theory.
In Sec. IV we will encounter a specific example where the
CFT is N � 4 super-Yang-Mills theory and O� is a
fermion mass term—up to certain subtleties to be men-
tioned below. The Hawking temperature of the black hole
horizon translates into a finite temperature for the field
theory. It may be assumed that

A�r� !
r
l
;

h�r� ! 1

��r� ! X1e����4�r=L � X2e���r=L;

��r� ! Y2e
���r=L

(13)

as r! 1.2 X1 is proportional to �
4���

� , and it may be set
equal to unity by making an appropriate dilation of ~x and t.
2The asymptotics for ��r� can be more complex, because the
e����4�r=L behavior may be modified by subleading exponentials
which are nevertheless larger than e���r=L. This will not be a
concern for present purposes.
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Black brane solutions of the form(11) with the asymp-
totics (13) may be parametrized by �0, or alternatively in
dual field theory language, by T=��. The precise relation
between these two functions can be established through
numerics. In particular, the critical value �c is associated
with a critical temperature Tc at which the phase transition
occurs.

Our goals in the remainder of this section are

(1) to
-5
demonstrate that there is a Gregory-Laflamme
instability for black branes with �0 >�c;
(2) to
 extract two critical exponents of the phase
transition.
In addressing point 1 we will be satisfied to show that, for
black brane backgrounds with�0 >�c and � � 0, there is
a normalizable, static mode in the linearized equation of
motion for � with a nonzero wave number kc. To under-
stand point 2 we will solve the linearized equation for �
and extract hO��x�O�0�i. The full equation of motion for �
is

�� �
@V
@�

; (14)

and with a separated ansatz � � ei ~k� ~x ~��r� one obtains

e�4A�r�
�
�k2e2A�r� �

d
dr

�
h�r�e4A�r� d

dr

��
~��r�

� 
m2
�L2 � 2g�2�r��~��r�: (15)

Near the horizon (r � 0), one of the solutions to (15)
diverges logarithmically with r, while the finite solution
asymptotes to a constant:

~��r� ! ~�h

�
1�

k2 �m2
�L

2 � 2g�2
0

h0�0�
r
�
: (16)

Far away from the black hole, ~��r� dies off as

~��r� ! Y1�k�e����4�r=L � Y2�k�e���r=L: (17)

Because the equation for ~��r� is linear, Y1�k� and Y2�k� are
not individually meaningful. But their ratio,

G�k� � Y2�k�=Y1�k�; (18)

is well defined, and up to a k-independent constant, it is the
scaling part of the correlator hO�� ~k�O��� ~k�i evaluated in
the thermal state. (This correlator also may include ana-
lytic terms in k, corresponding to contact terms. These are
excluded by construction in G�k�.)

Figs. 1 and 2 show G�k� for

g � �10; �� � 2:2; �� � 2:4; (19)

on either side of the phase transition. On the disordered
side, the singularity at a finite wave number kc signals the
existence of a GL instability. As k! kc, Y1�k� ! 0 while
Y2�k� remains finite. So at k � kc, the static mode � �
ei ~k� ~x ~��r� is normalizable.
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FIG. 3. Plot showing nonzero critical values of kc for �0 >�c
(the ordered phase). k� is the value of k at which G�k� � 0.
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FIG. 1. Propagator for �0 � 0:95�c, where �c � 0:428. The
lack of a singularity indicates the absence of a normalizable
mode.
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As one approaches the phase transition, the static mode’s
wave number kc should go to zero: this is the standard way
in which a GL instability appears or disappears [13]. In
Fig. 3 we show that indeed this happens for the choice g �
�10, �� � 2:2, and �� � 2:4. It is convenient to plot the
ratio kc=k�, where k� is the wave number at which the
scaling part of G�k� vanishes. As �! �c from above, k�
has a finite limit, while

kc
k�
�

�
Tc � T
Tc

�
�

� � 0:479: (20)

Given the accuracy of the fits, this result for the exponent �
is consistent with � � 1=2, which was also found (approxi-
mately) for the GL instability of nonextremal D3-branes,
M2-branes, and M5-branes in [13].

Another critical exponent can be defined as follows: let
O��x� � T

R	
0 dtEO��tE; x�. Then for x� 1=T, one ex-

pects a power-law behavior
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FIG. 2. Propagator for �0 � 1:05�c. The singularity indicates
a normalizable, stationary mode, and the existence of a GL
instability for k < kc.
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hO��x�O��0�i �
1

x2��

: (21)

The expectation value in (21) is taken in the thermal state
right at the critical point (�0 � �c), and the dimension ��

is distinct from the dimension ��. Note that the correlator
in (21) is the Fourier transform in only the three spatial
directions ~x of hO�� ~k�O��� ~k�i: we work with zero
Matsubara frequency throughout. Carrying out the
Fourier transform, one obtains

hO�� ~k�O��� ~k�i � k
2���3; (22)

again for T � Tc.
In testing the power-law prediction (22) and obtaining

the critical exponent, it is convenient for numerics to depart
slightly from T � Tc and examine a scaling region of k. In
Fig. 4 we show an example with �0 slightly greater than
�c. The scaling region is cut off in the infrared by kc,
below which there is a GL instability. And it is cut off in the
ultraviolet by k�, above which there is a gradual transition
to a different power law, controlled by the dimension ��
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FIG. 4. Inverse propagator for ��0 ��c�=�0 � 10�6.
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FIG. 5 (color online). The thick blue lines show the values
��0; �0� of the scalars at the horizons we were able to produce
numerically. Dark blue indicates stable solutions. Light blue
indicates solutions with a GL instability. The thin green trajec-
tories are the holographic RG flows (25). They are found most
simply as the gradient flows of a superpotential W, whose
contours are shown in red. The aspect ratio of this figure is not
1:1, so it is not readily apparent that the green trajectories are
orthogonal to the red contours. The C � 0 trajectory is asymp-
totic to the black curve, which is part of the locus where the
gradient of W is parallel to the gradient of V. The C< 0
trajectories are shown in solid green, and the C> 0 trajectories
are shown in dashed green.
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pertaining to the vacuum state. The numerical results for
the slope are consistent with �� � 1=2.

A notable feature of the present discussion is that we see
scaling behavior for x� 1=T without manifest conformal
invariance in a similar limit. Conformal invariance in the
supergravity background would be associated with recov-
ering a four-dimensional anti-de Sitter space by making a
Kaluza-Klein reduction in the Euclidean time direction—a
procedure that amounts to restricting attention to zero
Matsubara frequency. But such a reduction leads instead
to a singular background where the scalar that controls the
size of the circle in the Euclidean time direction diverges.

IV. A FINITE-TEMPERATURE PHASE
TRANSITION IN N � 1� SUPER-YANG-MILLS

THEORY

So far, all of the examples of systems which violate the
CSC have relied on Lagrangians without a string-theoretic
origin. In this section we will explore an example drawn
from type IIB string theory on AdS5 � S

5 —or, more
precisely, from its consistent truncation to d � 5, N �
8 gauged supergravity. The dual field theory is the so-
called N � 1� deformation of N � 4 super-Yang-Mills
theory. The relevant deformation gives equal masses to
three of the four adjoint fermion fields. The scalar � dual
to this dimension 3 deformation is nonzero because of the
asymptotic boundary conditions at the boundary of AdS5.
There is another SU�3�-invariant, dimension 3 operator: it
includes a bilinear of the fourth adjoint fermion, which is
the N � 1 partner of the gauge boson. The scalar � dual
to this operator has asymptotic boundary conditions that
allow it to be zero or nonzero. If it is nonzero, the VEV of
the dual operator O� can be read off from it. This VEV
breaks a chiral symmetry. The relevant part of the d � 5,
N � 8 supergravity Lagrangian is [14]

S �
Z
d5x

���
g
p

�
R�

1

2
�@��2 �

1

2
�@��2 � V��;��

�
;

V��;�� � �
3

2

�
cosh2 ����

3
p � 4 cosh

����
3
p cosh�

� cosh2�� 4
�
: (23)

In short, the situation is very much as in the examples of
Sec. III. And the outcome is similar, too: if the horizon is
sufficiently close to the boundary of AdS5 —correspond-
ing to a small value of �0 at the horizon—then � and
hence hO�imust vanish. But if �0 >�c � 4:41, the back-
ground with zero � has a Gregory-Laflamme instability.
There is a second-order transition at �0 � �c to back-
grounds with � � 0. The two-point function of O� shows
the same 1=k2 behavior in an infrared scaling region. These
conclusions still hold if we replace the transcendental
function V��;�� by a polynomial approximation to it of
the form considered in Sec. III:
104019
L2V � �12�
3

2
��2 � �2� �

�2�2

2
: (24)

In the language of Sec. III, g � �1=2. With the modified
potential (24), the critical horizon value of �0 is �c �
2:96.

In [14], holographic RG flows were considered of the
form

ds2 � e2A�r���dt2 � d~x2� � dr2; � � ��r�;

� � ��r�; � �
���
3
p

log
1� e�r

1� e�r
;

� � log
1� e�3r�C

1� e�3r�C :

(25)

These geometries are singular in the infrared for all values
ofC. It is hard to know which of them is physical. In [15], it
was suggested that the ones withC> 0 are unphysical, that
the C � 0 trajectory is probably physical, and that the
-7
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C< 0 trajectories might also be physical. The reason to
think this is that the C> 0 trajectories cannot be limits of
backgrounds with regular horizons, while the C � 0 solu-
tion is in a special class that was conjectured in [15] to be
precisely the limits of backgrounds with regular horizons.
Our numerical results are consistent with these conjec-
tures: for given �0 >�c, only one background with posi-
tive �0 was found, and the points ��0; �0� are not far from
the C � 0 trajectory—see Fig. 5. Only a limited range of
�0 was explored, so we cannot be sure that the C � 0
trajectory is the limit of black hole solutions. For larger�0,
numerical noise prevented reliable results.

It may be that the solutions with regular horizons that we
have found are the only stable ones in the temperature
range under consideration, even if we go beyond d � 5,
N � 8 gauged supergravity. Other solutions would cor-
respond to turning on scalars in AdS5 which have positive
m2. Standard no-hair arguments suggest that this is impos-
sible: only one of the two solutions to the linearized
equations for such scalars is normalizable at infinity, and
horizon boundary conditions generically prevent this nor-
malizable mode from being turned on. Also, the total scalar
potential must be more negative than �12=L2 at the hori-
zon [15], which suggests that large deformation by positive
mass scalars is impossible.

In sum, the second-order chiral symmetry breaking
phase transition exhibited in this section gives a tantalizing
first glimpse of the finite-temperature behavior of N � 1�

super-Yang-Mills theory. Much more is known about its
zero-temperature phases [16,17] and their ten-dimensional
description in terms of five-branes [18]. The fact that the
chiral symmetry breaking transition happens when there is
a regular horizon with an entropy scaling as N2 shows that
this transition is well above the confinement scale. This is
somewhat reminiscent of the model of [19] where uncon-
fined quarks interact with a chiral condensate.
3We thank B. Kol for his permission to explain this proposal
here.
V. CONCLUSIONS

Although the correlated stability conjecture (CSC) of
[6,7] has served as a useful guide to the Gregory-Laflamme
(GL) instability in various settings, we have argued that it
fails to correctly predict horizon instabilities that are un-
related to conserved quantities. Instead, these instabilities
are associated (in the examples we have described) with
second-order phase transitions in which the unstable hori-
zon represents the disordered phase cooled below the
critical temperature at which ordering should take place.
The ordered phase is represented by a new (and presum-
ably stable) uniform black brane solution.

The nature of these counter-examples leads us to con-
jecture that the CSC works provided that there is a unique
background with a spatially uniform horizon and specified
conserved charges. We know of no counter-examples to
this restricted version of the conjecture.
104019
A simple refinement of the CSC has been suggested to us
by B. Kol:3 thermodynamic stability should be redefined
by enlarging the Hessian matrix to include derivatives of
the entropy with respect to quantities that characterize the
asymptotics of scalar fields. (In the examples given, the
asymptotics of � are characterized by a single real parame-
ter: Y2 in the example of Sec. III, if one sets X1 � 1: see
(13).) Local thermodynamic stability then amounts to the
absence of a positive eigenvalue for this enlarged Hessian
matrix, and the revised version of the CSC is that GL
instabilities occur precisely when local thermodynamic
stability is lost, provided the brane has infinite volume
and translation invariance in some spatial direction. It
seems very likely that this refinement of the CSC survives
all tests to date.

While we have not shown explicitly that there is a
violation of the CSC (as originally phrased in [6,7]) in an
asymptotically flat background of a well-defined string
theory, the there should be no difficulty in principle in
extending the example of Sec. IV to an asymptotically
flat background: one simply has to ‘‘reattach’’ flat space
to the asymptotically AdS5 � S5 throat region. The result-
ing background and its unstable perturbation should still
possess a global SU�3� symmetry, which may make it
easier to find them explicitly.

For second-order phase transitions in AdS5, we found in
an infrared scaling region, where spatial separations are
much greater than 1=T, that the dimension of the operator
O� (whose VEV is the order parameter) is 1=2. Over the
rather wide set of parameter choices that we checked, this
result is independent of the dimension of O� at the ultra-
violet fixed point, as well as the dimension of O� and the
coupling constant g. We believe this result can be under-
stood as a consequence of large N: when normalized to
have anO�1� two-point function, the higher point functions
of O� are suppressed by factors of N. So the state created
by O� in the three-dimensional effective theory describing
physics in the infrared scaling region is, up to 1=N correc-
tions, a free scalar, and the dimension of a free scalar in
three dimensions is 1=2.
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