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Cosmological particle production and the precision of the WKB approximation
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Particle production by slow-changing gravitational fields is usually described using quantum field
theory in curved spacetime. Calculations require a definition of the vacuum state, which can be given
using the adiabatic (WKB) approximation. I investigate the best attainable precision of the resulting
approximate definition of the particle number. The standard WKB ansatz yields a divergent asymptotic
series in the adiabatic parameter. I derive a novel formula for the optimal number of terms in that series
and demonstrate that the error of the optimally truncated WKB series is exponentially small. This
precision is still insufficient to describe particle production from vacuum, which is typically also
exponentially small. An adequately precise approximation can be found by improving the WKB ansatz
through perturbation theory. I show quantitatively that the fundamentally unavoidable imprecision in the
definition of particle number in a time-dependent background is equal to the particle production expected
to occur during that epoch. The results are illustrated by analytic and numerical examples.
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1I shall show in Sec. II D that the WKB series generally
diverges. Although this statement appears to be common knowl-
edge, I was unable to find a derivation in the literature. A closely
related result is the Borel summability of asymptotic series for
adiabatic invariants [14]; see also Ref. [15].
I. INTRODUCTION

Particle production by gravity in a slowly expanding
universe can be described using quantum field theory in
curved spacetime (QFTCS) [1–7]. Awell-known feature of
QFTCS is the absence of an absolute definition of vacuum
and particles for quantum fields in arbitrary curved back-
grounds (see e.g. [8]). The number of particles detected by
an observer depends on the observer’s motion, and there
are no preferred observers in a general spacetime. If the
universe is sufficiently spatially flat and expands suffi-
ciently slowly so that the four-curvature scale is much
larger than the wavelength of a field mode, there is a
natural (if approximate) definition of the vacuum state
for that mode: the adiabatic vacuum with respect to a given
fiducial time t0. This is the vacuum state seen by ‘‘approxi-
mately inertial’’ observers at t � t0. However, an adiabatic
vacuum state defined at t � t0 is generally an excited state
with respect to the vacuum defined at another time t1 � t0.
Such field excitations are interpreted as particles produced
by gravity. Since there is no single physically preferred
vacuum state, we speak of an apparent particle production.
The ‘‘real’’ particle content of a given quantum state of the
field cannot be unambiguously established without refer-
ring to a particular physical experiment where the vacuum
state is observed or prepared.

For instance, the most straightforward definition of the
vacuum state (the ‘‘instantaneous diagonalization’’ of the
Hamiltonian) yields an infinite apparent particle produc-
tion in some generic cases [9], while the adiabatic vacuum
exhibits finite particle densities in the same cases. It has
been also proposed [10] that the vacuum state should be
chosen to minimize the apparent particle number observed
at a time t0. This prescription is physically reasonable and
yields a quantum state close to an adiabatic vacuum, but
the resulting state will in general depend on the choice of
t0. A natural and unambiguous definition of the vacuum
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state is available only in regimes where gravity becomes
negligible. So the concept of particles can be used in
curved spacetimes only in an approximate sense which
becomes more precise in slow-changing, almost flat ge-
ometries, and also for high-energy particles. The central
theme of this paper is to explicitly analyze the precision of
this approximation.

The prescription of the adiabatic vacuum is based on the
WKB approximation and has been particularly useful in
the context of QFTCS (see e.g. [10–12]). It is well-known
that the WKB approximation is applicable to equations
such as

d2x

dt2
�!2�t�x � 0; (1)

where !�t�> 0 is a time-dependent frequency function.
The approximate solutions can be found in the form of an
asymptotic series in the adiabatic parameter T�1, where T
is the characteristic variation timescale of the function
!�t�, which is assumed to be slow-changing [13]. Using
the n-th order WKB approximation, one can define adia-
batic vacuum states of order n [12]. The difference be-
tween n-th order adiabatic vacua defined at different
fiducial times is characterized by apparent particle occu-
pation numbers, which are of order T�1�n; this is then the
imprecision in the resulting definition of particle numbers.
A brief overview of the calculation of cosmological parti-
cle production using the adiabatic vacuum prescription is
given in Sec. II B.

It is known that the WKB approximation involves a
divergent asymptotic series1 and thus cannot be used be-
-1 © 2005 The American Physical Society
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2See, however, Ref. [20] for some attempts to simplify the
WKB terms by eliminating total derivatives, Ref. [21] for an
approach to make high-order WKB calculations numerically
more manageable, and Ref. [22] for an approximate resumma-
tion using Airy functions.
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yond a certain order nmax. Therefore, particle occupation
numbers computed with respect to an adiabatic vacuum are
defined only with a certain fundamentally limited accu-
racy. If one uses the adiabatic vacuum of the optimal order
nmax, one obtains particle occupation numbers up to an
uncertainty of order T�1�nmax , and this accuracy cannot be
improved any further.

Since typical particle numbers produced in vacuum by
smooth geometries are exponentially small [2], namely, of
order exp��!T�, it is a priori unclear whether even the
best attainable precision �T�1�nmax is adequate for the
description of particle production. The exponentially small
particle numbers can be calculated if one applies perturba-
tion theory techniques to the WKB ansatz; various such
techniques are outlined in Sec. III. I shall summarily refer
to these techniques as the perturbatively improved WKB.

Although the WKB expansion, being a power series in
T�1, necessarily misses any exponentially small terms, the
quantity T�nmax can be of order exp��!T� if nmax is
sufficiently large, say of order T. The main result of the
present work is an explicit estimate of the optimal order
nmax and of the resulting optimal precision of the WKB
series. The current literature does not appear to offer such
direct estimates. It is difficult to analyze the WKB series
since there is no closed-form expression for the n-th term
of that series. To circumvent this difficulty, I use a particu-
lar perturbatively improved WKB technique—the so-
called Bremmer series (see Sec. III B). I show in Sec. IV
that nmax � O�!T� and the error of the optimally truncated
series is exponentially small. More precisely, for Eq. (1)
with analytic functions !�t�, the optimal order nmax of the
WKB approximation at t � t0 is found as

nmax � min
ti

��������
Z ti

t0
!�t�dt

��������; (2)

where the complex numbers ti, i � 1; 2; . . . are all the zeros
and the poles of !�t� in the complex t plane, and the
integrals are performed along the paths from t0 to ti that
give the smallest value to the above integrals. The error of
the optimally truncated WKB series is of order

n�1=2
max exp��2nmax�: (3)

I also show that the smallest attainable uncertainty in the
definition of particle numbers during a time-dependent
epoch is of the order of the particle production expected
to occur within that epoch. These issues are discussed in
Sec. IV C. I illustrate these estimates by analytic and
numerical examples in Sec. V.

II. ADIABATIC APPROXIMATION IN QFTCS

A. The WKB approximation

The WKB approximation, also known in the mathemati-
cal literature as the phase integral method and the
Liouville-Green approximation [16,17], applies to equa-
tions of the form (1), rewritten as
104011
"2 d
2x

dt2
�!2�t�x � 0; (4)

where " is a formal parameter (we shall set " � 1 at the
end of all calculations). The frequency !�t� is assumed to
be a sufficiently slow-varying function of time, so that the
adiabaticity condition

"
��������d!dt

��������� !2 (5)

holds for all values of time t to be considered. We shall
additionally assume throughout this paper that !2�t�> 0
for all relevant t, and that !�t� is an analytic function. The
well-known WKB ansatz is

xWKB�t� �
C���������
!�t�

p exp
�
�
i
"

Z t
!�t0�dt0

�
: (6)

The error of this approximation is of order "2 if !�t� is a
sufficiently well-behaved function [16,17]. One can gen-
eralize the ansatz (6) to an n-th order approximation (see
e.g. [13,18,19]),

x�n�WKB�t� �
C������������
Wn�t�

p exp
�
�
i
"

Z t
Wn�t

0�dt0
�
; (7)

where the auxiliary function Wn�t; "� is an approximate
solution of

1

2

W00

W
�

3

4

W02

W2 �
!2 �W2

"2 ; (8)

which is found as a power series in "2,
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� . . . (9)

The approximation x�n�WKB�t� is accurate up to error terms of
order O�"2n�1�, so the series (9), whether convergent or
not, is an asymptotic expansion at "! 0 [13]. The con-
secutive terms of the series (9) can be found iteratively, for
instance, by expanding the right-hand side of the relation

Wn�1 �O�"
2n�4� �

�����������������������������������������������������
!2 � "2

�
1

2

W00n
Wn
�

3

4

W02n
W2
n

�s
(10)

in powers of "2 up to order O�"2n�2�. It is clear that
Wn�t; "� is a rational function of !�t� and its derivatives
up to the order 2n. No closed-form expression appears to
be available for the n-th term Sn�t� of the series (9).2
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The WKB expansion can be equivalently parametrized
by the characteristic timescale T of the variation of !�t�.
After rescaling the time variable by t � T�, the WKB
series becomes a power series in T�1. However, we shall
not use this parametrization.

B. Quantum fields in expanding universe

In this section I briefly review the computational proce-
dure for determining the (apparent) particle occupation
numbers in QFTCS, following [7]. To be specific, I con-
sider a minimally coupled massive scalar field ��x� in a
Friedmann-Robertson-Walker universe with flat spatial
sections and the line element d�2 � a2���dx2, where
a��� is the scale factor assumed to be a known function
of time �. It is convenient to pass to the conformal time
t 	

R
� a�1���d� (which is denoted by t for consistency

with the previous notation) and to rescale the field � as
��x� � a�1��x�. The auxiliary field ��x� is quantized
using a mode expansion of the form

�̂�t;x� �
Z d3k

�2��3=2

1���
2
p �âkeik
xvk�t� �H:c:�; (11)

where âk are the annihilation operators, vk�t� are mode
functions for the wavenumber k, and ‘‘H:c:’’ denotes the
Hermitian conjugate terms. The mode functions vk�t� are
complex-valued solutions of the equation

v00k �
�
k2 �m2 �

a00

a

�
vk 	 v00k �

!2
k�t�

"2 vk � 0; (12)

subject to the normalization condition

Im �vkv�0k � � 1; (13)

where m is the mass of the field � and the prime 0 denotes
derivatives with respect to t. (In a flat spacetime, we would
have !k�t� � const and vk � e�i!kt=".) Because of
Eq. (13), the creation and annihilation operators satisfy
the standard commutation relations, �âk; â

y
k0  �

��k� k0�. The vacuum state j0i of the field is defined as
usual by

â kj0i � 0 for all k: (14)

Thus defined, the vacuum state depends on the choice of
the mode functions vk�t�. Because of the freedom to multi-
ply each mode by a constant phase factor, solutions of
Eqs. (12) and (13) may be effectively parametrized by
the (complex-valued) ratio v0k=vk at a fixed time t � t0.
Different choices of this ratio yield mode functions vk�t�
describing different vacuum states.

We shall now focus on the behavior of one field mode
with a fixed k and hence drop the subscript k. The next step
is to apply the WKB approximation to Eq. (12). The n-th
order WKB approximation to the mode function is
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vWKB�t� �

���
"
p������������
Wn�t�

p exp
�
�
i
"

Z t
Wn�t

0�dt0
�
; (15)

where the factor
���
"
p

ensures that the normalization condi-
tion (13) holds. Using the function vWKB�t�, one defines the
adiabatic vacuum of order n at a fiducial time t � t0 by
requiring that the mode function v�t� should match the
WKB expression at t � t0, namely

v0�t0�
v�t0�

�
v0WKB�t0�
vWKB�t0�

: (16)

Let us denote the resulting mode function by v0�t�. (More
generally, one may require that the matching in Eq. (16)
should hold only up to terms of order "2n�2, i.e. up to the
precision of the n-th order WKB approximant, but we shall
not make use of this additional freedom.)

The adiabatic vacuum prescription can be applied at a
different fiducial time t � t1, yielding another mode func-
tion v1�t�. These two mode functions are related by a
Bogolyubov transformation

v0�t� � �v1�t� � �v
�
1�t�: (17)

It is well-known that the t � t0 vacuum appears to have the
number density j�j2 of particles with respect to the t � t1
vacuum. Once the functions v0�t� and v1�t� are found, the
Bogolyubov coefficient � can be computed as

� �
v00�t�v1�t� � v0�t�v01�t�

2i
: (18)

The right-hand side of Eq. (18) is a time-independent
Wronskian and thus can be evaluated at arbitrary t, say at
t � t1. Since the values of v1�t1� and v01�t1� are known
from Eq. (16) after replacing t0 by t1, it remains to compute
v0�t1� and v00�t1�. The latter computation requires solving
Eq. (12) through the interval �t0; t1 with initial conditions
(16). Note that the n-th order WKB approximation to v0�t�
identically satisfies the condition (16) for all t and thus
cannot be used to determine the particle number at t � t1.
The mode function v0�t� must be computed either by a
more accurate analytic method or numerically. In princi-
ple, a higher-order WKB approximant could be used if its
precision were adequate, but this is not always the case, as
we shall show in the next subsection. (The value of �
obtained from a higher-order WKB approximant would
be of order "2n�2 while the correct answer is usually
exponentially small.)

C. Superadiabatic regimes

Let us consider the case where!�t� � const except for a
finite time interval, for instance ! 	 !0 for t � t0 and
! 	 !1 for t � t1 (the values t0 and t1 may be finite or
infinite). A possible such function !�t� is plotted in Fig. 1.
In that case, the vacuum states are naturally and uniquely
defined for t � t0 (the ‘‘in’’ vacuum) and for t � t1 (the
‘‘out’’ vacuum). We shall refer to this situation as an ‘‘in-
-3
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FIG. 1. A frequency function !�t� with two superadiabatic
regimes at t � t0 and t � t1.
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out’’ transition, and to the regimes t � t0 and t � t1 as
superadiabatic regimes.

More precisely, a superadiabatic regime at t � t0 means
that the adiabaticity condition (5) becomes an equality,

lim
t!t0

_!

!2 � 0; (19)

and that analogous conditions hold for higher derivatives of
!�t�. In other words, all derivatives of !�t� vanish in a
superadiabatic regime. The WKB series is truncated, so
that we have

Wn�t� �
�
!0 for t � t0;
!1 for t � t1;

(20)

because Wn�t� is a local function of !�t� and its derivatives
at a point t, as seen from Eq. (9). Thus, within one super-
adiabatic regime, the adiabatic vacuum states of all orders
coincide and yield a natural definition of the vacuum state
and an unambiguous notion of particles. For instance, the
result of an ‘‘in-out’’ transition is a well-defined set of
particle numbers (the particle density of the in-vacuum
with respect to the out-vacuum). Physically this means
that gravity becomes unimportant in a superadiabatic re-
gime, and all inertial detectors exactly agree on the particle
content of any quantum state of the field. Outside of a
superadiabatic regime, adiabatic vacuum states are still
well-defined, but there can be only an approximate agree-
ment between adiabatic vacua of different orders or defined
at different fiducial times.

If the quantum field is in the in-vacuum state, the particle
numbers observed at t > t1 can be unambiguously pre-
dicted using Eq. (18). However, if we used the WKB
approximation to compute the function v0�t� at t � t1,
we would find v0�t� / ei!1t=", the Wronskian involved in
Eq. (18) would vanish, and we would obtain an incorrect
result � 	 0. It is well-known that the particle number is
generically nonzero, except for certain special cases when
the particle production exactly vanishes.

We conclude that the WKB ansatz approximates the
mode function v0�t� insufficiently accurately for calcula-
tions of particle numbers. I shall outline some known
methods of improving the WKB approximation in Sec. III.
104011
D. Divergence of the WKB series

If the function !�t� is analytic (or at least C1) in t, we
may attempt to sum the series (9) by evaluating the limit
n! 1 at a fixed t. However, the series (9) generally will
not converge as n! 1. Although the initial terms may
decrease, eventually after a large enough n the terms Sn
will grow without bound. Thus the series (9) can be inter-
preted only as an asymptotic series, except for certain
special choices of !�t�. Below we shall obtain more pre-
cise estimates of the growth of terms in that series, and
presently we demonstrate the generic divergence of the
WKB series using qualitative arguments.

Let us consider a frequency function !�t� that allows an
‘‘in-out’’ transition between t � t0 and t � t1, with super-
adiabatic regimes at t � t0 and t � t1. Suppose that the
series (9) converges for some " � "0 and for all t within
the relevant range �t0; t1. Then this series will converge
absolutely for smaller j"j< "0, yielding a well-defined
function

W1�t; "� 	
X1
k�0

"2kSk�t�: (21)

By construction, the function W1�t; "� is analytic in " at
" � 0. We shall now show that W1 is an exact solution of
Eq. (8). Since the partial sums Wn were obtained by
expanding the recurrence relation (10) to a finite order in
", we may substitute W1 instead of Wn in the right-hand
side of Eq. (10) and find that

Wn �O�"
2n�2� �

�����������������������������������������������������
!2 � "2

�
1

2

W001
W1
�

3

4

W021
W2
1

�s
(22)

holds for all n. Therefore, the relation

W1 �

�����������������������������������������������������
!2 � "2

�
1

2

W001
W1
�

3

4

W021
W2
1

�s
(23)

holds as an identity between power series in " after both
sides are fully expanded. However, the right-hand side of
Eq. (23) can be also viewed as a power series in " in which
only the square root has been expanded, namely

W1 � !�
1

2!
"2

�
1

2

W001
W1
�

3

4

W021
W2
1

�
� . . . (24)

Since the left-hand side of Eq. (23) is an absolutely con-
vergent series, and the terms of such a series can be
reordered to form the right-hand side of Eq. (24), both
series specify the same analytic function of ". Hence, the
series on the right-hand side of Eq. (24) converges and thus
the function W1�t; "� is an exact solution of Eq. (23).

It follows that the ‘‘infinite-order’’ WKB mode function

v1�t� �

���
"
p�������������
W1�t�

p exp
�
�
i
"

Z t
W1�t

0�dt0
�

(25)

is an exact solution of Eq. (4). Then, from the definition of
-4
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the adiabatic vacuum state, we see that the mode function
v1�t� represents the adiabatic vacuum of every order and
for all fiducial times t at once. In this uniquely identified
adiabatic vacuum state, the particle number is exactly zero
at all times and thus there is no (apparent) particle produc-
tion at any time. This outcome contradicts the fact that
particle production in vacuum is present in the generic
case. Therefore in general the ‘‘infinite-order’’ WKB so-
lution v1�t� cannot exist.3

Another way to arrive at the same conclusion is to
consider the particle number j��t; "�2j in the second super-
adiabatic regime (t � t1) as a function of ". We can express
j��t; "�j2 through the function W1�t; "�; for example, us-
ing a zeroth-order adiabatic vacuum, we find

j��t; "�j2 �
"

4!W1

�
�!�W1�

2

"2 �

�
!0

2!
�
W01
2W1

�
2
�
:

(26)

Note that the rapidly oscillating phase is absent from j�j2

and that W1�t; " � 0� � !�t� for all t. Thus j��t; "�j2 is
nonsingular (and equal to zero) at " � 0. On the other
hand, the particle number is known4 to decay faster than
any power of " if the function!�t� is analytic or smooth (of
class C1). Thus the particle number in the second super-
adiabatic regime, j��t1; "�j2, is an analytic function of "
which decays faster than any power of " at " � 0. Such a
function must be identically equal to zero. It follows that
the particle number j��t1; "�j2 would be identically zero
for all j"j< "max, given the convergence assumption (21).
We know, however, that generic choices of !�t� involving
an ‘‘in-out’’ transition will exhibit nonvanishing particle
production5 even for very small ". We conclude that the
WKB series cannot converge for all t within the interval
�t0; t1, except for special choices of!�t�where the particle
production is absent. (Note that the WKB series converges
to !�t� for t within a superadiabatic regime since all
derivatives of !�t� vanish there, but nevertheless it does
not yield a solution x�t� valid for all other t. We shall later
show that in general the WKB series cannot converge even
3Of course, an exact solution W1�t� of Eq. (23) exists, but it
cannot be exactly represented by the WKB series (9) because
such W1�t� must be quickly oscillating and cannot be a slow-
changing function of t, as implicitly assumed by the expansion
(9).

4Kulsrud [18] has shown that the change in the adiabatic
invariant is of order "p�2 if !�t� has p continuous derivatives.
One can also demonstrate an exponential-like behavior j�j /
exp��C="� for analytic !�t�, under some technical conditions
[23]. See also Ref. [24] for a derivation of an exact invariant
which coincides with the adiabatic invariant in the leading order
in ".

5Exceptions are provided by cases where all terms Sn�t� of the
WKB series vanish after some n (see e.g. [25], chapter 2, for an
explicit example), and also by functions !�t� corresponding to
Schrödinger equations with exactly zero scattering [26].
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for some special values of t outside of superadiabatic
regimes.)

Finally, let us illustrate the growth of terms Sk in the
series (9) by performing an estimate of only the highest-
order time derivatives of !�t� entering the expressions Sk.
This estimate is merely qualitative because in fact the
contributions of lower-order derivatives cannot be ne-
glected; we shall obtain more precise results in Sec. IV.

Rewriting the recurrence relation (10) as

Wn�1 �

���������������������������������������������
!2 � "2

�������
Wn

p �
1�������
Wn
p

�
00

s
; (27)

we find after some algebra that the term Sn contains the
highest-order derivative of !�t� always in the following
combination,

Sn�t� �
��1�n"2n

4n!2n

d2n

dt2n
1���������
!�t�

p � �lower� order�; (28)

where we have suppressed terms containing lower-order
derivatives of !. Now we need to estimate the growth of
derivatives of 1=

����
!
p

. For a generic analytic function f�z�
having some poles in the complex z plane, the growth of
derivatives at z � z0 can be estimated as

dnf�z�
dzn

��������z�z0

�
n!

�z1 � z0�
n�1 ; (29)

where z1 is the pole of f�z� nearest to z � z0 (see
Appendix A for a derivation of this formula). In our case,
poles of 1=

����
!
p

correspond to zeros of !�t�, i.e. turning
points in the complex t plane. Let us suppose that the
nearest zero of !�t� is at t � t1. Under the assumption
that the value of Sn is of order of the first term in Eq. (28),
we find

jSn�t�j �
�

"
2!�t�

�
2n �2n�!

jt� t1j2n�1 : (30)

It is now straightforward to see that the terms Sn may
decrease for small n but eventually begin to grow after
n� � "�1!�t�jt� t1j. The term Sn� is of order�

"
2!�t�

�
2n� �2n��!

jt� t1j
2n��1 �

1�����
n�
p exp��2n��: (31)

The above values are roughly correct order-of-magnitude
estimates for the optimal number of terms in the WKB
series and for the optimal precision, as we show below.
III. PERTURBATIVE IMPROVEMENT OF WKB

The precision of the WKB approximation can be im-
proved by applying a time-dependent perturbation theory
to the WKB ansatz. Equivalent and closely related pertur-
bative methods were used e.g. in [4,11] for particle pro-
duction calculations and in the mathematical literature
[16,17] for precision estimates of the WKB ansatz. A
-5
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related technique called ‘‘quasilinearization’’ [27] was
applied in e.g. [28,29] to obtain improved approximations
to bound states of the Schrödinger equation (although the
convergence of the method was investigated only numeri-
cally). I shall now give a brief overview of these methods.

A. Methods based on the Riccati equation

The simplest version of the perturbative improvement
technique is intended to determine a small correction to an
approximate positive-frequency solution of Eq. (1),

x��t� � C exp
�
�i

Z t

0
!�t0�dt0

�
; (32)

in the form

x�t� � x��t� exp
�Z t

0
y�t0�dt0

�
: (33)

Thus one introduces a new (complex-valued) dependent
variable y�t� via

y�t� 	
_x
x
� i!�t�: (34)

The equation for y�t� is easily derived and is a Riccati
equation,

_y� 2i!y � i _!� y2: (35)

By assumption, x�t� differs little from x��t�, and so one
expects that the value of y�t� is small and that the y2 term in
Eq. (35) can be treated as a perturbation. Disregarding the
y2 term and using the natural initial condition y�0� � 0,
one finds the approximate solution

y�1��t� � i
Z t

0
_!�t0� exp

�
2i
Z t

t0
!�t00�dt00

�
dt0: (36)

This first approximation y1�t� is already sufficient to com-
pute the leading contribution to the exponentially small
particle occupation number in the context of an ‘‘in-out’’
transition. The resulting (approximate) value of � is found
after some algebra as

��1��t1� �
v0�t1�
2i

������
!1
p y�1��t1�: (37)

For analytic functions!�t�, the value of��1��t1� is typically
exponentially small due to rapid oscillations of the inte-
grand in Eq. (36).

A variation of this perturbative improvement technique
was developed and used in Ref. [30]. There the new
dependent variable for Eq. (1) was defined by

��t� 	
_x� i!x
_x� i!x

: (38)

The function ��t� satisfies the equation

_� � 2i!� � �
_!

2!
�1� �2�; (39)
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and can be interpreted as the instantaneous squeezing
parameter describing the squeezed state of one mode of
the quantum field at time t relative to the instantaneous
vacuum state at that time. The particle number is found
from

j��t�j2 �
j��t�j2

1� j��t�j2
: (40)

The leading-order solution ��1� of Eq. (39) with the initial
condition ��0� � 0 is obtained by disregarding �2,

��1��t� � �
Z t

0

_!�t0�dt0

2!�t0�
exp

�
2i
Z t

t0
!�t00�dt00

�
: (41)

Further approximations ��n��t� are found from the recur-
rence relation

��n�1��t� � �
Z t

0

_!dt0

2!
�1� �2

�n��t
0� exp

�
2i
Z t

t0
!�t00�dt00

�
:

(42)

It was shown in Ref. [30] that the sequence ��1�, ��2�; . . .
converges to the solution of Eq. (39) as long as j��n��t�j<
1. An advantage of using the variable ��t� instead of y�t� is
that the values of � are always bounded as long as !�t� �

0, which helps in the analysis. (It is straightforward to
verify that Eq. (13) together with Im! � 0; ! � 0 yield
the bound j�j< 1.)

The method of quasilinearization [27] uses the ansatz

x�2��t� � C exp
�Z t

0
�y�2��t� � y�1��t� � i!�dt0

�
; (43)

which leads to the easily solvable equation

_y �2� � 2�i!� y�1��y�2� � �y2
�1�; (44)

where the term quadratic in y�2� has been neglected and y�1�
is given by Eq. (36). Further corrections y�3�; y�4�; . . . and
the corresponding solutions x�3�; x�4�; . . . are determined in
the same manner. Analytic and numerical studies [28]
show that the accuracy of the solution x�n��t� improves
quadratically with n, the error being of order "2n .
However, precise conditions for the convergence of this
method do not seem to have been investigated.

The methods outlined so far are conceptually simple but
lead to nonlinear equations which complicates their analy-
sis. We shall therefore use an equivalent but somewhat
more long-winded perturbative technique based on a sys-
tem of two linear equations. The advantage will be that we
shall obtain approximations to the solution x�t� in the form
of a series (called the Bremmer series).

B. The Bremmer series

In this section I mostly follow Refs. [31,32]. The usual
WKB approximation to solutions of Eq. (4) is

x�t� � AX��t� � BX��t�; (45)
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6The condition (55) would be violated, for instance, in the
presence of parametric resonance with tmax � 1.
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where A;B are constants and

X��t� 	
1���������
!�t�

p exp
�
�
i
"

Z t

t0
!�t0�dt0

�
(46)

are the two WKB branches (here, t0 is an arbitrary initial
point). To improve this approximation, one looks for solu-
tions x�t� in the form

x�t� � p�t�X��t� � q�t�X��t�; (47)

where the coefficients p�t�; q�t� are now time-dependent.
By introducing two unknown functions p�t�; q�t� instead of
one unknown x�t�, we have added a degree of freedom
which is canceled by imposing the additional relation

_x�t� �
i
"
!�t���p�t�X��t� � q�t�X��t�: (48)

This relation signifies that the derivative of x�t� can be
computed from Eqs. (46) and (47) by formally treating
p�t�, q�t�, and !�t� as constants. It is then straightforward
to derive the following simple equations for p�t� and q�t�,

_p �
1

2

_!
!
X�
X�

q; _q �
1

2

_!
!
X�
X�

p: (49)

In the context of QFTCS, one is usually looking for
small corrections to the positive-frequency WKB solution
x�t� � X��t�. Therefore we assume the initial conditions
p�t0� � 1, q�t0� � 0, and rewrite Eqs. (49) as the following
integral equations,

p�t� � 1�
1

2

Z t

t0

_!
!
X�
X�

qdt; q�t� �
1

2

Z t

t0

_!
!
X�
X�

pdt:

(50)

These equations can be solved iteratively, starting from the
initial approximation p�t� 	 1, q�t� 	 0. The result is
conveniently written as a series involving an auxiliary
sequence un�t�,

p�t� � 1�
X1
n�1

u2n�t�; q�t� �
X1
n�1

u2n�1�t�; (51)

where the functions un�t�, n � 0, are defined recursively
starting from u0�t� 	 1 as

u2n�t� �
1

2

Z t

t0

_!
!
X�
X�

u2n�1dt; n � 1; (52)

u2n�1�t� �
1

2

Z t

t0

_!
!
X�
X�

u2ndt; n � 0: (53)

The resulting infinite series for the solution x�t�,

x�t� � X� �
X1
n�1

�u2n�1X� � u2nX��; (54)

is called the Bremmer series. A physical motivation behind
this derivation is given in [33] and references therein.
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C. Convergence of the Bremmer series

The Bremmer series converges to the exact solution x�t�
absolutely and uniformly for t0 < t < tmax (where tmax may
be infinite) under the rather weak restriction6

Z tmax

t0

�������� _!
!

��������dt <1: (55)

The convergence can be demonstrated by the following
argument [31,32,34]. The sequence un�t� is majorized by
the auxiliary sequence Un�t� defined by

Un�1�t� �
Z t

t0
j

_!
2!
jUndt; U0�t� 	 1; (56)

namely jun�t�j � Un�t� for all n; t. Convergence of the
majorizing series

P
1
n�0 Un�t� is therefore sufficient for

the absolute convergence of the Bremmer series. In turn,
the series

P
1
n�0 Un�t� 	 U�t� can be summed explicitly by

deriving a differential equation for U�t�,

_U�t� �
�������� _!

2!

��������U�t�; U�t0� � 1: (57)

The solution is

U�t� � exp
�Z t

t0

�������� _!
2!

��������dt
�
: (58)

Thus the Bremmer series converges as long as the integral
in Eq. (58) is finite, which yields the condition (55). The
convergence is uniform in t because an upper boundZ tmax

t0

�������� _!
2!

��������dt <M (59)

entails

jun�t�j � Un�t�<
1

n!
Mn; t0 < t < tmax; (60)

and so the number of terms n may be chosen in advance to
guarantee a desired precision for all t < tmax. Namely, it is
straightforwardly seen that a relative precision e�P will be
achieved by computing n � O�P= lnP� terms.
IV. PRECISION OF THE WKB APPROXIMATION

A. The adiabatic expansion

The WKB series (9) entails an adiabatic expansion of the
WKB solution

xWKB�t� �
1������������
Wn�t�

p exp
�
�
i
"

Z t

t0
Wn�t

0�dt0
�

(61)

in powers of the adiabatic parameter ",
-7
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xWKB�t� � X��t�
�

1�
i"
4

Z t

t0

�
�!

!2 �
3

2

_!2

!3

�
dt0

�
"2

8

�
�!

!2 �
3

2

_!2

!3

�
� . . .

�
; (62)

where X��t� is defined by Eq. (46). The series in brackets
above contains terms produced by expanding the denomi-
nator 1=

�������
Wn
p

as well as by expanding the exponential.
Therefore we expect that the series in Eq. (62) is again a
divergent asymptotic series. We shall now analyze this
series to determine the optimal number of terms and the
best attainable precision.

The main idea of this analysis is to represent the exact
solution x�t� by the (convergent) Bremmer series and to
compare the latter with the WKB series (62). However, the
structure of the Bremmer series differs from that of the
WKB series in two aspects. Firstly, the Bremmer series
involves both positive- and negative-frequency branches
while the WKB ansatz (62) contains only the positive-
frequency branch. Secondly, the Bremmer series is not a
power series in ", but instead it involves oscillating inte-
grals containing "�1 under exponentials. Thus we need to
obtain an asymptotic expansion of the Bremmer series
ansatz (47) in powers of ", of the form

p�t�X� � q�t�X� � X�
X1
k�0

Ak"
k � X�

X1
k�0

Bk"
k; (63)

where Ak and Bk are some time-dependent coefficients.
The positive-frequency part (X�

P
kAk"

k) of the above
expansion will coincide with the expansion (62) because
the asymptotic expansion in power series is unique [35].
Note that the split between positive- and negative-
frequency branches in the expansion in the right-hand
side of Eq. (63) is well-defined [14], but neverthelessP
kAk"

k is not an expansion of p�t�, and neither isP
kBk"

k an expansion of q�t�. We shall now derive an
asymptotic expansion of the form (63) from Eqs. (52)
and (53). It will turn out that only the positive-frequency
branch survives in the asymptotic expansion, i.e. Bk 	 0,
which makes the correspondence with the WKB series
immediate.

Let us pass from the time variable t to the dimensionless
‘‘phase’’ variable 	,

t! 	�t� 	
Z t

t0
!�t0�dt0: (64)

This is a well-defined transformation as long as !�t�
remains real and nonzero in the relevant range of t, and
in that case !�t� remains an analytic function of 	.
Eqs. (52) and (53) are then rewritten as

u2n�	� �
Z 	

0
e2i	0="��	0�u2n�1�	0�d	0; n � 1; (65)
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u2n�1�	� �
Z 	

0
e�2i	0="��	0�u2n�	

0�d	0; n � 0;

(66)

where for convenience we have introduced the dimension-
less function

��	� 	
1

2!2

d!
dt

��������t!	
: (67)

Note that "��	� � 1 under the adiabaticity condition (5).
Starting from Eqs. (65) and (66) with u0�	� 	 1, we

shall first obtain expansions for u1�	� and u2�	�, which will
make further calculations more transparent. To expand
u1�	� in powers of ", we repeatedly apply integration by
parts to Eq. (66) with n � 0 and find

u1�	� � �
�
e�2i	0=


�
"�
2i
�
"2�0

�2i�2
�
"3�00

�2i�3
� . . .

����������	0�	

	0�0
;

(68)

where the prime denotes derivatives with respect to 	. We
further assume that the point 	 � 0 (t � t0) is located
within a superadiabatic regime where ��	� and all its
derivatives vanish. Then Eq. (68) simplifies to

u1�	� � �
"
2i
e�2i	="

X1
k�0

"k

�2i�k
dk��	�

d	k
: (69)

The expansion for u2�	� is found from Eq. (65) as

u2�	� � �
"
2i

X1
k�0

"k

�2i�k
Z 	

0
��	0�

dk��	0�

d	0k
d	0; (70)

note the absence of the quickly oscillating exponential.
Hence, the initial terms of the expansion (63) are

X��1�u2��X�u1�X�

�
1�

i"
4

Z � �!

!3�
3

2

_!2

!4

�
dt� . . .

�
;

(71)

which reproduces the initial terms of Eq. (62). The
negative-frequency branch is absent due to the factor
exp��2i	="� in u1. It is easy to see that further terms un
of the Bremmer series have expansions of the same form;
namely, the odd-numbered terms u2n�1 contain the oscil-
lating factor while the even-numbered terms u2n do not.
For convenience, we separate these factors explicitly and
define the auxiliary functions �n�	� and �n�	� by

u2n�1�	� 	
�
�
"
2i

�
n
e�2i	="�n�	�; n � 1; (72)

u2n�	� 	
�
�
"
2i

�
n
�n�	�; n � 0: (73)

The functions �n;�n are (formal) series in " that satisfy the
following recurrence relations,
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�n�1�	� �
X1
k�0

�
"
2i

�
k dk

d	k
���	��n�	�; n � 0; (74)

�n�	��
Z 	

0
��	0��n�	0�d	0; n�1; �0	1: (75)

In terms of these functions, the asymptotic expansion of the
Bremmer series can be expressed as

p�	�X��	� � q�	�X��	� 	 X��	�
X1
k�0

Ak"
k

� X��	�
X1
k�0

�
�
"
2i

�
k
��k ��k�;

(76)

where we have formally defined �0 	 0. Since the right-
hand side of Eq. (76) will coincide with the WKB series
(62) after �k and�k are fully expanded in powers of ", it is
sufficient to analyze the convergence of these latter ex-
pansions. Note that the n-th order WKB approximation
corresponds to retaining the terms of the series (76) up to
k � 2n.
B. Precision of the asymptotic expansion

The goal of this section is to derive the optimal trunca-
tion of the asymptotic series (76). We begin by analyzing
just the first two terms of that expansion, namely

�u0 � u2�X� � u1X� � X�

�
1�

"
2i
��1 ��1�

�
: (77)

Subsequently we shall examine the convergence of the
terms �k;�k with k > 1.

We find from Eqs. (69) and (70) that the quantities �1

and �1 are expressed by the series

�1�	� �
X1
k�0

"k

�2i�k
dk��	�

d	k
; (78)

�1�	� �
X1
k�0

"k

�2i�k
Z 	

0
��	0�

dk��	0�

d	0k
d	0: (79)

These series are typically divergent because derivatives
dk�=d	k of an analytic function ��	� grow as k! with k!
1. The growth of such derivatives is determined by the
location of the singularities of ��	� in the complex 	 plane
(see Appendix A for more details). For instance, if the
singularity of ��	� nearest to the point 	 is a simple pole at
	1 with residue�c1, then for large k there is an asymptotic
estimate

dk��	�

d	k
�

c1k!

�	1 � 	�k�1
: (80)

In the present case, the function ��	� defined by Eq. (67)
has simple poles at the locations 	1; 	2; . . . corresponding
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to zeros t1; t2; . . . of !�t�, namely

	j �
Z tj

t0
!�t�dt; j � 1; 2; . . . ; !�tj� � 0: (81)

A pole of!�t� corresponds to 	 � 1 and typically will not
be the nearest singularity of ��	�. If !�t� has a zero of -th
order at t � tj, i.e. !�t� � �t� tj�, the corresponding
residue of the simple pole of ��	� will be

�cj �
1

2


� 1

: (82)

Assuming that 	1 is the nearest pole of ��	�, it is
straightforward to find that the terms of the series (69)
will start growing after

k > k��	; "� 	 2"�1j	1 � 	j � 2"�1

��������Z t1

t
!�t0�dt0

��������:
(83)

If there is any ambiguity in the choice of the complex
integration contours in Eqs. (81) and (83), the contours
should be such as to yield the smallest value of j	1 � 	j
since we require 	1 to be the nearest singularity to 	.

The best attainable precision �u1 is of order of the
smallest retained term, which can be estimated using
Eq. (80) and Stirling’s formula, k! �

���������
2�k
p

e�kkk, as

�u1 �

�
"
2

�
k��1

��������d
k���	�

d	k�

��������� jc1j

�������
2�
k�

s
e�k� : (84)

We shall show below that higher terms uk, k � 3, of the
Bremmer series have better convergence behavior and their
error is dominated by that given in Eq. (84). Thus the
formulas (83) and (84) are the central result of the present
paper. The order n of the WKB approximation, as defined
in Sec. II A, is related to the order k of the corresponding
Bremmer series by

nmax �
1

2
k��t; "� � "�1

��������Z t1

t
!�t0�dt0

��������: (85)

Hence, the optimal order of the WKB approximation and
the optimal precision are given by Eqs. (2) and (3), where
we have set " 	 1. The prefactor c1 is of order unity and
will be relatively unimportant for our considerations.

Let us now analyze the convergence of the series (70).
After repeated integration by parts, we haveZ

���k�d	 � ���k�1� � �0��k�2� � . . . ; (86)

and the first term dominates for large k. Thus we find the
following estimate for large k,Z 	

0
���k�d	0 � ��	���k�1��	� � ��	�

c1�k� 1�!

�	1 � 	�
k : (87)

Hence, the asymptotic series (70) starts to diverge after k >
1� k��	; "�, i.e. one term later than the series for u1, and
-9
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the best attainable precision �u2 is

�u2 �

�
"
2

�
k��2

��	�
��������d

k���	�

d	k�

��������� "��	�
2

c1

�������
2�
k�

s
e�k� :

(88)

Note that �u2 � �"�=2��u1, while "�� 1 due to the
adiabaticity condition, hence �u2 � �u1. We find that
the precision of the partial asymptotic series �1 ��1 is
limited by the error in �1, which is estimated by Eq. (84).

It remains to analyze the behavior of the higher-order
terms in the expansion (76). It follows from Eq. (74) that
the series for �n is always a sum of several series of the
form

X1
k�0

�
"
2i

�
k dk

d	k
f�	�; (89)

where f�	� is some analytic function expressed through
��	� and its derivatives. The functions f�	� will have
singularities at the same points in the complex 	 plane as
the function ��	�. Thus each series of the form (89) will
have essentially the same convergence properties as the
series for �1�	� analyzed above; namely, the series will
start diverging after k� terms and have an exponentially
small error term. However, in the expansion (76) the series
�n is multiplied by "n. Thus, the series for u2n�1, where
n > 1, always converges better (i.e. it starts to diverge at a
later term) than the series (69) for u1, and the lowest error
in u2n�1 is always smaller than that of u1. The same
considerations can be seen to apply to the series for �n,
n > 1, and hence for the terms u2n, n > 1, of the Bremmer
series. Therefore, the optimal truncation of the expansion
(76) is the same as the optimal truncation of the series
�1�	�, as given by Eq. (83), and the lowest error is domi-
nated by the error in �1, as estimated by Eq. (84). This
argument concludes the derivation of Eqs. (2) and (3).

C. Particle production and the definition of vacuum

We have seen that the WKB series diverges unless there
is exactly no particle production. Furthermore, we shall
now show that the ambiguity in the definition of vacuum is
quantitatively related to the presence of particle
production.

Let us consider an ‘‘in-out’’ transition between two
superadiabatic epochs and assume that there is nonzero
particle creation, as there will be in the generic case.
Intuitively one expects that most of the particles are created
during the epoch where gravity is most significant (the
‘‘active’’ epoch). However, the adiabatic vacuum during
the active epoch is defined only up to the precision of the
WKB approximation which is fundamentally limited. The
precision is improved as we move away from the active
epoch, but so does the expected rate of particle production.
We shall now derive some estimates that illustrate this
connection.
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As we have seen, the optimal precision of the WKB
approximation is of the order exp��2nmax�, where nmax

depends on the time at which the WKB approximation is
applied. We shall use the variable 	 defined by Eq. (64) as
the time variable. If the active epoch corresponds to values
around 	 � 	0, then, according to Eq. (85),

nmax�	0� � 
�1j	0 � 	1j; (90)

where 	1 is the pole of ��	� closest to 	 � 	0 in the
complex 	 plane, and the function ��	� is defined by
Eq. (67). Now consider the total particle number produced
during the active epoch. As reviewed in Sec. III, the lead-
ing contribution to this particle number is exponentially
small in the adiabatic parameter and can be computed from
a perturbatively improved WKB approximation. For in-
stance, using Eqs. (40) and (41) yields

��
Z �1
�1

e�2i	="��	�d	: (91)

Since by assumption the function ��	� is analytic, the
integral involved in Eq. (91) can be transformed into a
contour integral in the lower half-plane. The latter integral
contains contributions from all poles 	j of ��	�, weighted
by e�2i	j=". The dominant contribution comes from the
pole which is closest to the real line, say 	1.
Heuristically, this pole will be also the closest to the active
epoch around 	 � 	0. Hence

�� exp��2"�1Im�	0 � 	1��; (92)

which is of the same order as exp��2nmax�	0��. The pre-
cision of the WKB approximation away from 	 � 	0 will
be better than exp��2nmax�	0��, however, the particle pro-
duction will also decrease. We conclude that the uncer-
tainty inherent in the definition of particles during an
‘‘active epoch’’ is quantitatively the same as the intensity
of particle production at that time.
V. EXAMPLES

In this section we shall investigate the precision of the
WKB approximation for particular functions !�t�. We use
the formalism developed in the previous sections and set
" � 1.

The first example is

!�t� � !0

�
1� A tanh

t
T

�
; (93)

where !0; A and T are constants. There are two super-
adiabatic regimes at t! �1. Let us compute the optimal
order nmax for the WKB approximation x�n�WKB�t0� at some
intermediate time t0. The function !�t� has zeros at

t � t� � i�kT; k 2 Z; t� 	
i�
2
T �

T
2

ln
1� A
1� A

:

(94)
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FIG. 2. Magnitudes of first 10 terms Sn, n � 1; :::; 10, of the
WKB series for !�t� given by Eq. (93) and different values of t0.
The values Sn are normalized to S0 and shown in logarithmic
scale. The curves are labeled 1–8 according to the consecutive
values of t0 in Table I. Crosses indicate the error estimates;
abscissas of crosses are set to the predicted values of nmax�t0�.
The crosses are close to the lowest-error terms on the corre-
sponding curves, indicating a good agreement between the
predicted and the numerically obtained values.

TABLE I. Numerical values of the predicted optimal trunca-
tion order nmax and error estimates Snmax

(see Fig. 2). The
predicted values of nmax are not integer since they are computed
from Eq. (95).

t0 �2:0 �1:5 �1:0 �0:5 0:0 0:5 1:0 1:5
nmax 1:5 1.2 1.0 1.2 2.0 3.7 6.0 8.4
Snmax

S0
0.06 0.12 0.17 0.08 0.007 10�4 10�6 6 
 10�9
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The closest zeros to a real point t0 will be �t�. Then the
optimal order of the WKB series is found as

nmax �

��������Z t�

t0
!�t�dt

��������� !0

��������t� � t0 � AT ln
cosht�T
cosht0T

��������;
(95)

which grows linearly with t0 for t0 ! �1, namely

nmax � !0jt0j�1� A� � !�t0�jt0j; t0 ! �1: (96)

The smallest term of the series is estimated as

Snmax
�

����������
�
nmax

s
exp��2nmax�: (97)

The worst precision is found near t0 � 0 where we have
(for A� 1)

nmax � !0

��������t� � AT lncosh
t�
T

��������� �!0T
2

: (98)

For the purposes of numerical calculation, we chose
!0 � 3, A � 2, and T � 3=2. The magnitudes of the first
10 terms S1; . . . ; S10 of the WKB series (9) are plotted in
Fig. 2, together with the error estimates (see Table I for
numerical values). It is clear from the plot that the terms Sn
indeed start to grow after about n � nmax, and that the error
estimate agrees with the numerically obtained smallest
terms of the series.

For comparison, let us approximately compute the par-
ticle occupation number after the ‘‘in-out’’ transition from
t � �1 to t � �1. The leading-order contribution to the
particle number is proportional to the term u1 of the
Bremmer series. It follows from Eq. (53) that

lim
t!�1

u1�t� �
Z �1
�1

dt
_!

2!
exp

�
�2i

Z t

0
!�t0�dt0

�
: (99)

The integral can be evaluated as a sum of residues of the
integrand over its complex poles at

t � t� � i�kT; k � 0; 1; 2; . . . : (100)

Only the simple poles in the lower half-plane need to be
accounted for. (The function !�t� also has poles at t �
�i�=2� i�k�T, which do not contribute to the integral.)
After some algebra, the result is found to be

lim
t!�1

u1�t� �
�

2 sinh��!0T�1� A�
: (101)

Thus the particle number is of the same order as the worst
precision of the WKB series, � exp��2nmax�, where nmax

is estimated by Eq. (98) for A� 1. This confirms the
general conclusions of Sec. IV C.

The second example is

!�t� � !0

�
1�

t4

T4

�
: (102)

The four complex roots of !�t� are
104011
tk � T exp
�
i�
4
�
i�k

2

�
; k � 0; 1; 2; 3: (103)

The optimal truncation order is estimated as the smallest of
the following four numbers,

nmax � min
k

��������
Z tk

t0
!�t�dt

��������
� !0min

k

��������tk � t0 � �tk � t0�
5

5T4

��������: (104)
-11



1e−10

1e−09

1e−08

1e−07

1e−06

1e−05

.1e−3

.1e−2

.1e−1

.1

1.

.1e2

.1e3

.1e4

.1e5

2 4 6 8 10

1
2

3

4

5

6

7

8

|S n |/ S 0

n

FIG. 3. Analogous plot as in Fig. 2 for the function !�t� given
by Eq. (102). The curves are labeled 1-8 according to the
consecutive values of t0 in Table II.
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FIG. 4. Roots of the function !�t� given by Eq. (105); here t is
measured in units of T. The roots form sequences that accumu-
late around t � �T and curve away from t � 0 if jAj< 1.
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For t0 > 0, the value of nmax is determined by the closest
roots �T exp�i�=4�. For instance, at t0 � 0 we have
nmax �

6
5!0T, while for large t0 � T we get nmax �

1
5!0t

5
0T
�4. The rapid growth of the allowed number of

terms for t0 ! 1 indicates a superadiabatic regime.
For the numerical calculation, we chose !0 � 1 and

T � 2. The results are shown in Fig. 3 and Table II.
The final example involves the function

!�t� �

8><>:!0

�
1� A exp

�
� T2

T2�t2

��
; jtj< T;

!�t� � !0; jtj � T;
(105)

which exhibits superadiabatic regimes at t � �T and t �
T. We shall assume that jAj � 1. The function !�t� has
zeros at

tk � �T

���������������������������������������������
1�

1

i�� lnA� 2i�k

s
; k 2 Z; (106)
TABLE II. Numerical values of the predicted optimal trunca-
tion order and error for Fig. 3.

t0 0.0 0:5 1:0 1:5 2:0 2:5 3:0 3:5
nmax 1.6 1.3 1.1 1.2 1.7 2.8 5.0 9.0
Snmax

S0
0.06 0.1 0.16 0.10 0.02 10�3 5 
 10�6 10�9

1e−10

FIG. 5. Analogous plot as in Fig. 2 for the function !�t� given
by Eq. (105). The curves are labeled 1–7 according to the
consecutive values of t0 in Table III. Relatively poor agreement
between crosses (the estimated values of nmax) and the numeri-
cally obtained values is due to the presence of essential singu-
larities in !�t�.
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TABLE III. Numerical values of the optimal truncation order
and error for Fig. 5.

t0 0.0 2:0 4:0 5:0 6:0 7:0 7:5
nmax 8.2 6.1 4.0 3.0 2.0 1.0 0.5
Snmax

S0
5 
 10�8 3 
 10�6 2 
 10�4 0.002 0.02 0:24 0.9
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which form sequences converging to the essential singu-
larities at t � �T (see Fig. 4). Thus the nearest singularity
to a point t0 on the real line is effectively the point t � T.
Then the estimate (2) gives

nmax �

��������Z T

t0
!�t�dt

��������� !0�T � t0�; 0 � t0 � T:

(107)

However, this estimate was derived only for functions with
simple isolated zeros, while in the present case there exist
infinitely many zeros in any neighborhood of t � �T. So
we do not expect a close agreement with the numerically
obtained values of nmax.

For the numerical calculation, we chose !0 � 1, T � 8,
and A � 0:1. The results are given in Fig. 5 and Table III.
The computed values show that a few first terms of the
WKB series can be used near t0 � T; the estimate nmax �
0 is invalid in that regime.
VI. SUMMARY

In this paper I have reviewed some aspects of the adia-
batic approximation and its application to cosmological
particle creation, and presented new results. It is well-
known that there exists a fundamental limit on the accuracy
of the notion of particles in curved spacetimes, due to
Heisenberg uncertainty relations [2]. A quantitative inves-
tigation of this accuracy is the main focus of the present
paper. I showed that the best attainable precision in the
definition of particles is exponentially small and of the
same order as the typical particle production expected
during the same epoch. The conclusion is that the ambi-
guity inherent in the definition of particles is precisely due
to the possibility of particle production.

The main technical issue was to obtain an explicit esti-
mate of the highest attainable precision of the WKB ap-
proximation. I have demonstrated that the WKB
approximation involves a divergent series and derived a
novel formula (2) for the optimal truncation order nmax of
that series. I also estimated the error of the optimally
truncated WKB series [Eq. (3)]. The error is exponentially
small since typical values of nmax will be large if the
adiabaticity condition (5) holds. Physically, the value of
nmax is determined by the number of oscillation periods
during the time of appreciable change in the frequency
!�t�. Finally, I have presented analytic and numerical
examples illustrating the validity of these estimates.
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APPENDIX: GROWTH OF DERIVATIVES OF
ANALYTIC FUNCTIONS

Here I derive some formulas used in Secs. II D and IV.
By definition, an analytic function w�	� can be repre-

sented by a Taylor series at a regular point 	0,

w�	0 � z� �
X1
n�0

zn

n!
w�n��	0�; (A1)

and it is well-known that this series converges absolutely
within a circle jz� 	0j<R1, where R1 is the distance
between the point 	0 and the nearest singularity of w�	�
in the complex 	 plane. Suppose for simplicity that the
function w�	� has simple poles at 	 � 	j with residues
�cj, and that 	1 is the pole nearest to 	0. Then we may
express w�	� as

w�	� �
c1

	1 � 	
� w2�	�; (A2)

where the auxiliary function w2�	� is analytic within a
larger circle jz� 	0j<R2, R2 >R1. The n-th derivative
of w�	� is therefore

w�n��	0� �
n!c1

�	1 � 	0�
n�1 � w

�n�
2 �	0�: (A3)

The same reasoning may be applied to the function w2�	�
and the result is the following asymptotic estimate for the
growth of derivatives,

w�n��	0� � n!
�

c1

�	1 � 	0�
n�1 �

c2

�	2 � 	0�
n�1 � . . .

�

�
n!

Rn�1
1

c1�1�O��R2=R1�
n�: (A4)

The estimate (A4) is straightforwardly generalized to the
case when w�	� has poles of higher-order, e.g.

w�	� �
b1

�	1 � 	�2
�

c1

	1 � 	
� w2�	�;

in which case we have

w�n��	0� �
n!

Rn1

�
�n� 1�

b1

R1
� c1

�
�1�O��R1=R2�

n�:

Similar estimates can be easily obtained for the case when
w�	� has more than one pole at the same distance from the
initial point 	0.
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