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Reducing reflections from mesh refinement interfaces in numerical relativity
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Full interpretation of data from gravitational wave observations will require accurate numerical
simulations of source systems, particularly binary black hole mergers. A leading approach to improving
accuracy in numerical relativity simulations of black hole systems is through fixed or adaptive mesh
refinement techniques. We describe a manifestation of numerical interface truncation error which appears
as significant, artificial reflections from refinement boundaries in a broad class of mesh refinement
implementations, potentially compromising the effectiveness of mesh refinement techniques for some
numerical relativity applications (if left untreated). We elucidate this numerical effect by presenting a
model problem which exhibits the phenomenon, but which is simple enough that its numerical error can
be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing
error generated across low and high resolution regions, and that associated difficulties in demonstrating
convergence at modest resolutions are caused by the presence of dramatic speed differences among
propagation modes typical of 3� 1 relativity. Last, to further verify our understanding of this problem, we
present a class of finite differencing stencils of the same order of accuracy as the desired order of
convergence, termed mesh-adapted differencing (MAD), which eliminate this pathology in both our
model problem and in numerical relativity examples.
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1We note here distinction between the abstract property of
convergence which implies that beyond some unknown arbi-
trarily high resolution the error will decrease predictably, and our
notion here of demonstrable convergence which must be realized
in the results at the specified finite resolutions.
I. INTRODUCTION

Recent years have seen a dramatic rise in opportunities
for observing strong-field gravitational dynamics. New
observations of dense black-hole-like objects, at stellar,
intermediate, and supermassive scales are increasingly
frequent. Anticipated gravitational wave observations by
ground-based and space-based detectors are expected to
capture information about these objects at moments of the
strongest gravitational interactions [1,2]. Interpretation of
data from any such observations will depend on theoretical
modeling of the strong-field interactions of dense black-
hole–like objects in the process of generating gravitational
radiation. General relativity is the standard model for
describing gravitational interactions and wave generation.
However, the predictions of general relativity for such
cases are not yet fully understood, and will depend on
3D numerical relativity computer simulations [3].

While numerical relativity has progressed markedly in
recent years [4], significant improvements in the fidelity of
models for events such as binary black hole coalescence
will be essential for the full interpretation of upcoming
observations. There are many facets to the problem of
improving such simulations, including optimally formulat-
ing Einstein’s equations [5–8], properly handling bounda-
ries, handling black hole singularities, controlling
constraint violations, and making judicious gauge choices
[9]. There are also basic numerical issues concerning how
to, with finite resources, perform such high-fidelity 3D
simulations with strong short-wavelength gravitational
features near the sources, and weak but critical long-
wavelength gravitational (radiation) features emerging in
a large domain. Approaches to this latter class of issues
include developing higher-order accurate finite differenc-
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ing methods [10], spectral methods [11], mesh refinement
techniques [12–14] and other forms of numerical patching
techniques [15,16].

We focus here on resolving a limitation which has arisen
in our work on numerical relativity simulations of binary
black hole systems with mesh refinement, but which may
have analogues in other numerical patching treatments as
well. Mesh refinement techniques divide the computational
domain into regions with separate computational grids
which can be of higher resolution in some regions than
others. Such approaches involve mesh-structure interfaces
across which the details of the finite differencing treatment
suddenly change. Inevitably, these interfaces contribute to
computational error, manifesting such effects as ‘‘reflec-
tions’’ off the interfaces. Considerable attention is given to
implementing ‘‘clean’’ interfaces, which generate small
error, compared to error generated in the bulk regions. At
minimum, this requires interface-induced error to demon-
strably converge at least as rapidly as the bulk error. For
practical control of numerical error, simulations at some
finite resolution must manifest demonstrable convergence,
meaning that, as the resolution is increased from that point,
the size of the error will decrease at some expected rate.1

For some classes of black hole evolutions, with nonvanish-
ing shift advection terms, we have typically observed large
error propagating from mesh interfaces which is not de-
monstrably convergent at achievable resolutions.
-1 © 2005 The American Physical Society
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Understanding and resolving this problem forms the
focus of this paper. For specificity we will focus on
second-order calculations, although our analysis will di-
rectly generalize to higher-order treatments. While our
analysis will show that demonstrable second-order conver-
gence would be achievable through the use of higher-order
spatial finite differencing, such higher-order differencing
can be problematical in strong field regions. We demon-
strate an alternative solution, mesh-adapted differencing
(MAD), which provides demonstrable convergence at
modest resolutions without formally increasing the con-
vergence order of the spatial differencing.
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FIG. 1 (color online). Convergence plot for the Hamiltonian
constraint error H at time t � 4M. There is a single puncture
black hole centered at the origin, and refinement boundaries at
jxij � 1M, 2M, and 4M. The finest grid spacing hf for each
simulation is indicated in the figure, and the highest resolution is
multiplied by a factor of 4 while the lowest resolution is divided
by a factor of 4. For second-order errors the curves should
superpose in the limit h! 0.
II. INTERFACE PERFORMANCE

The pertinent features of our numerical scheme are as
follows. We are solving the 3� 1 BSSN formulation of
Einstein’s equations [5,12,17,18]. Our gauge condition is
numerically determined, typically with some variation of
the 1� log slicing and hyperbolic Gamma-driver shift
evolution equations [9]. We integrate in time with the
iterative Crank-Nicholson method [19]. All spatial deriva-
tives are computed by second-order accurate, centered
differencing, save for advection derivatives, for which we
use second-order accurate upwinded differencing.

We are particularly interested in simulating gravitational
radiation generated in black hole collisions. To resolve the
black hole sources adequately, while pushing the computa-
tional grid boundary sufficiently far away, we use fixed
mesh refinement, as implemented by a software package
for this purpose called PARAMESH [20]. With this imple-
mentation, the resolutions of two adjacent refinement re-
gions always differ by a factor of 2; i.e. the grid spacing of
the coarser region is double what it is in the finer region.
‘‘Ghostzones’’ or ‘‘guard cells,’’ typically two layers, are
required to provide buffering between refinement levels.
These guard cells are filled in by interpolation.

Whether the simulation performs adequately in the pres-
ence of refinement interfaces is a question of particular
concern to us. Inevitably, refinement boundaries are
sources of numerical errors, although these reflections are
often satisfactorily convergent and negligible. An excep-
tion has plagued us in the case of a nonnegligible shift, �i,
at refinement boundaries. In this case we observe a reflec-
tion pulse that propagates at a velocity of ��i.

An example can be seen in the case of single
Schwarzschild black hole (in isotropic Schwarzschild co-
ordinates) centered in a nested-box arrangement of refine-
ment regions. The Hamiltonian constraint provides a
measure of the error in the runs and is plotted in Fig. 1.
These ‘‘reflected’’ error waves, or ‘‘bumps,’’ notably prop-
agating toward the black hole (at x � 0) from each inter-
face, are strongest when the refinement interface is nearest
to the black hole (where �i is largest). We have also
noticed that the reflections seem to originate coincidently
with the passing of an initial gauge pulse through the
104010
interface. Such gauge pulses are typical in black hole
simulations with ‘‘1� log’’ type lapse conditions, and
propagate in this case at

���
2
p

times the speed of light
asymptotically. In Fig. 1 we test for demonstrable conver-
gence of the bumps by comparing the error in the
Hamiltonian constraint at three resolutions, a low resolu-
tion run of hf � M=16, a moderate resolution run of hf �
M=32, and a run with uniformly doubled resolution, hf �
M=64, where hf refers to the resolution of the finest grid.
The curves have been rescaled so that they should super-
pose if the errors are second-order convergent and the grid
spacing is sufficiently small. Disturbingly, the figure fails
to demonstrate that these errors converge at reasonable grid
resolutions, M=32 and M=64. Whether these reflection
errors would demonstrably converge at sufficiently high
resolution is difficult to determine in our black hole appli-
cations of limited achievable grid size.

In any case, the practical effect is that it is a challenge to
effectively control these errors which may dominate the
error around refinement boundaries in the strong field
region. Interestingly, however, we have not observed any
adverse effect, such as poor convergence, imprinted by
these bumps on such phenomena as gravitational radiation
measured far from a binary black hole system [13].
However, other physical quantities of interest, such as the
event horizon, seem likely to be more sensitive to these
near-field errors.

III. LINEARIZED BSSN

To understand the source of the �-speed error exhibited
in the last section, we begin by considering a linearized
-2
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BSSN system with 1� log slicing and hyperbolic Gamma-
driver shift. The system of equations is
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where a � �� 1, �i1 � �i � �i0 (with �i0 assumed spa-
tially uniform for simplicity), and hij � ~�ij � �ij.

For a problem that varies only in one dimension, with no
initial transverse components, if we assume plane-wave
solutions (generalizable by Fourier analysis), then the
above system of equations can be written in the form

@tjui � ikMjui (9)
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with â, B̂, �̂1, �̂, K̂, ĥ, Â, and �̂ the amplitudes of a, Bx,
�x1, �, K, hxx, ~Axx, and ~�x respectively, and
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The eigenvalues are 0, ��0, ��0 � 1, ��0 � 1,
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. If j�i is the eigenvector
associated with eigenvalue �, and h�j is defined such thatP
�j�ih�j � I, then

M �
X
�

�j�ih�j: (12)

By substituting Eq. (12) into Eq. (9) the system of evolu-
tion equations can be decomposed into a series of advec-
tion terms, each associated with a characteristic velocity
equal to one of the eigenvalues. Note that, assuming �0 

1, the �-speed mode is much slower than any of the other
nonzero-speed modes. As we are particularly concerned
with this mode, it is instructive to write the evolution
equation thus:
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This equation indicates that disturbances originating in
� and ~�i can propagate in � and hij at � speed and,
further, that this is the only means of �-speed propagation
allowed by this system. Thus � is uniquely significant in
both generating and propagating �-speed modes. Note that
Eq. (13) resembles the _� evolution equation in the BSSN
system.
IV. A MODEL PROBLEM

Motivated by the discussion of the last section, a simple
model for the generation and propagation of the �-speed
modes is a one-dimensional advection problem with an
additional driving term,

_’�x; t� � �@x’�x; t� � f�x; t�: (14)

In our numerical simulations, it appears that the reflected
bumps may be triggered by a rapidly propagating gauge
pulse which propagates outward early in the simulations.
For our model problem, which we will term ‘‘Bumpy’’
because of its most salient feature, we will drive the
advection equation with a pulse propagating at speed v,
significantly faster than the advection speed �. We thus let
f�x; t� � f�x� vt� where v is larger than � and both are
assumed positive. This model equation is simple enough to
be solved directly,
-3



JOHN G. BAKER AND JAMES R. VAN METER PHYSICAL REVIEW D 72, 104010 (2005)
’�x; t� �
Z t

0
f�x� �t� t0��; t0�dt0

�
�1

v� �
�F�x� vt� � F�x� �t��; (15)

where @xF�x� � f�x�. For definiteness we can take the
driving term to be a Gaussian pulse, f�x� � exp��x2�,
implying F�x� � �

��
�

p
��=2�erf�x�. For a localized pulse,

such as this, the F�x� �t� term in the exact solution will
be negligible in the region of interest, near x � x0.

To test if this model problem is sufficient, we have
numerically evolved Eq. (14) using a 1D finite difference
code with a resolution dx � h for x < x0 and dx � 2h for
x > x0, realizing a refinement boundary at x � x0 � 50.
We evolved over the domain 0< x< 100 with periodic
boundary conditions, using three-point upwind finite dif-
ference stencil and a mesh refinement scheme similar to
that in our numerical simulations with PARAMESH. In Fig. 2
we show the errors in our evolution variable ’ in the
vicinity of the refinement interface for runs with several
resolutions, h � 5=32, 5=64, 5=128 and 5=256. In each
case there is clearly a reflection error bump propagating to
the left, away from the refinement interface, which we find
propagates at speed �. As before the errors have been
rescaled so that that second-order converging error should
superpose in the limit of small grid spacing. Comparing the
three lower resolution runs, we do not see good superpo-
sition, and the peaks appear to demonstrably converge at
roughly first order. The comparative appearance of these
errors is similar to that seen for black hole simulations in
Fig. 1. However, running at higher resolution, which is
readily allowed by this 1D model, we find that the reflected
error is indeed second-order convergent, as is suggested by
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FIG. 2 (color online). Convergence plot for the error in ’.
There is a refinement boundary at x � 50. The coarse grid
spacing h of each simulation is indicated in the figure, and
each curve has been multiplied by a respective factor as appro-
priate to demonstrate second-order convergence. The conver-
gence is demonstrable only for resolutions of h & 5=128.
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comparing the two higher resolution runs in Fig. 2. This
convergence is manifest only at relatively high resolution
(high relative to the wavelength—and higher than can be
easily achieved with respect to a gravitational wavelength
in a binary black hole run). Further experimentation has
indicated that these results are not strongly affected by
variations in the time-integration method or by changing
among mesh refinement interfacing schemes which are
consistent with the overall second-order finite differencing
accuracy.
V. A FINITE DIFFERENCE ANALYSIS

In this section we attempt to understand the numerical
behavior of the Bumpy problem Eq. (14) by constructing
here an analytic model for the numerical error in our
simulations. Noting that the time discretization, and the
details of the interpolation scheme used in applying refine-
ment conditions seem not to be directly linked to the
problematic error features we see, we model the error
with as few assumptions as possible about these details.
We treat the numerical errors continuously in time, and we
consider the effects of spatial finite differencing in terms of
a continuous field ’�x; t; h� representing the numerical
solution at (fine-grid) resolution dx � h. We then expand
’ in orders of h,

’�x; t; h� � ’e�x; t� � h
2’2�x; t� �O�h3�: (16)

Where ’e�x; t� is understood to be the exact solution
Eq. (15). We consider the effect of our finite differencing
scheme by replacing the spatial derivative appearing in
Eq. (14) with a suitable finite difference operator ~Dh. Thus,

_’�x; t; h� � � ~Dh’�x; t; h� � f�x; t�: (17)

As above, we include a refinement jump in the grid at x �
x0, represented here by applying a coarser version of the
finite difference stencil in the x > x0 part of the spatial
domain. This will be consistent with any refinement inter-
face algorithm which applies the same finite difference
stencil in both the coarse and fine regions, and applies a
interpolative guard-cell filling algorithm at the interfaces
which leads to finite differences at the interface which are
consistently second-order accurate. On a uniform grid the
second-order error term of a finite first derivative is gen-
erally proportional to the third derivative of the field,

Dh’�x; t; h� � @x’�x; t; h� � e2h
2@3

x’�x; t; h� �O�h3�:

For the specific upwind differencing operator used in
Sec. IV, the stencil of which is,

Dh �
1

h

�
�

3

2
� 2Eh �

1

2
E2h

�
; (18)

where E is the spatial translation operator defined such that
Ehf�x� � f�x� h�, the constant error coefficient turns out
to be e2 � �1=3. Including the refinement jump, we have
-4
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FIG. 3 (color online). Numerical error in ’, immediately after
a pulse incident on the refinement interface at x � 50 has passed
through, generating a pulse of transmitted error and a contracted
pulse of reflected error. The error is second-order convergent and
in agreement with the analytic prediction of the numerical error,
as indicated.
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~Dh’ � Dh’���x� x0��D2h �Dh�’

� @x’� �1� 3��x� x0��e2h2@3
x’�O�h3�: (19)

Substituting into Eq. (17), and rearranging, yields

h2 _’2�x; t; h� � �� _’e�x; t� � �@x’e�x; t� � f�x; t��

� h2��@x’2�x; t; h� � e2�1� 3��x� x0��

	 @3
x’e�x; t�� �O�h3�: (20)

Then noting that the first term vanishes, and taking the
limit h! 0, we derive

_’2�x; t� � �@x’2�x; t�

� �e2�1� 3��x� x0��@3
x’e�x; t�; (21)

where we have used the notation ’2�x; t� � ’2�x; t; 0�.
This is our model for the generation and propagation of
finite differencing error in the numerical model problem in
Sec. IV.

Since Eq. (21) is of the same form as Eq. (14) we can
solve it in like fashion. We leave out the negligible F�x�
�t� term in ’e, substituting

f�x; t� � �e2�1� 3��x� x0��@
3
x’e�x; t�

’ �
�e2

v� �
�1� 3��x� x0��@

3
xF�x� vt�

into the first line of Eq. (15). Then, performing the integral
with careful attention to the presence of the step function,
we get the solution

’2�x; t� � �s�x� vt� � s�x� �t���1� 3��x� x0��

� 3s
�
�v
�

�
x� x0 � �

�
t�

x0

v

���

	 ���x� x0 � �t� ���x� x0�� (22)

where,

s�x� �
�e2

�v� ��2
@2
xF�x� � �

2�e2x

�v� ��2
exp��x2�:

As in Sec. IV, the s�x� �t� is negligible in the relevant
region near the refinement interface. Thus the first term in
Eq. (22) is effectively the differencing error associated
with the upsweep in ’e which propagates across the grid
at speed v. This part grows 4 times larger in the coarse x >
x0 region. The second term is quite interesting, as it prop-
agates in the reverse direction at speed �. It has the same
s�x� shape as the forward propagating component, but it is
reversed, and contracted by a factor �=v. It is timed to
originate at the interface as the first pulse crosses. The two
terms combine make the full solution continuous at the
interface. Heuristically, one could say that the second term
is caused by the discontinuity in the differencing error,
generated in order to produce a regular solution, and then,
necessarily advecting away as required by the original
104010
model equation, Eq. (14). It is contracted because it prop-
agates at a different speed than the first term, while their
time dependences must match at the interface.

Note that although we concretely consider second-order
finite differencing here, the finite differencing order is
largely irrelevant in this analysis. The calculation can be
directly adapted for the leading order in a higher-order
finite differencing by changing a few coefficients.

We check that this analysis accurately describes the
numerical errors in our Bumpy model evolutions by com-
paring the predicted error with the numerical error results.
As Fig. 3 shows, the prediction of Eq. (22) agrees to high
precision with the numerical simulation errors realized in
high resolution runs. The figure shows both the rightward
propagating wave which travels at velocity v with the
driving pulse, and the shorter-wavelength reflected wave.
The reason that demonstrable convergence was not readily
achieved in our Bumpy simulations is now clear. Because
the reflection must propagate at a significantly slower
speed than the pulse which generated it, while their fre-
quencies must match, the reflected pulse necessarily has a
shortened wavelength. The key ingredients in producing
this effect are that we are simulating a system with strongly
mismatched propagation speeds, and with the potential for
generating mode-mixing reflections off numerical features
such as our refinement interfaces. A similar difficulty has
recently been noted in the context of reflections from
external boundaries [21]. In such situations, with resolu-
tion just sufficient to accurately resolve the long-
wavelength features in the solution, the shortened wave-
length of the numerical reflections makes them unresolv-
able without a significant increase in the resolution (say by
a factor of v=�). We thus have reason to expect that such
-5
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an effect is indeed the source of the bumpy reflection in our
black hole runs. We will verify this by attempting to
eliminating this type of error.
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FIG. 4 (color online). Comparison of the error in ’ reflected
from the refinement boundary at x � 50 in the case of a second-
order conventional stencil and a second-order MAD stencil.
VI. IMPROVING THE DIFFERENCING STENCILS

Errors that are slow to demonstrably converge, of the
type exposed in Secs. IV and V, now seem likely to occur
under fairly general circumstances. This explains our dif-
ficulties in many attempts to eliminate these effects by
tweaking the interface conditions in various ways. Our
analysis suggests that the only ways to avoid these prob-
lems, aside from eliminating the slowly propagating modes
by setting �i � 0, is to remove the mode-mixing reflec-
tions at interfaces. The results of the last section clearly
show that the reflected error in the Bumpy system is over-
whelmingly due to the discontinuity in the differencing
operator. More specifically, the reflection is related to the
discontinuity in the second-order truncation error. This
observation suggests a solution.

Consider using modified differencing stencils such that
the coefficient of the second-order truncation error in the
fine-grid region is multiplied by a constant factor q0 while
the coefficient of the second-order truncation error in the
coarse grid region is multiplied by a constant factor q1.
Then the previously constant coefficient e2 of the last
section becomes

e2 ! �q0 � �q1 � q0���x� x0��e2: (23)

Repeating the steps of the last section for this new
truncation error, the solution for the second-order error in
’ becomes

’2�x; t� � �s�x� vt� � s�x� �t��

	 �q0 � �4q1 � q0���x� x0��

� �4q1 � q0�s
�
�v
�

�
x� x0 � �

�
t�

x0

v

���

	 ���x� x0 � �t� ���x� x0��: (24)

Thus for the spatially blueshifted, reflected error, we now
obtain,

’ref � �4q1 � q0�s
�
�
v
�

�
x� x0 � �

�
t�

x0

v

���
: (25)

One possibility would be to eliminate the leading order
reflection error simply by choosing q0 � q1 � 0. This
choice corresponds to using higher-order stencils, say third
or fourth order accurate, throughout the entire grid. Higher-
order differencing methods are clearly valuable in numeri-
cal relativity simulations [10]. However, we will focus here
on identifying a minimal way to realize effective second-
order convergence in a second-order convergent finite
differencing scheme. Our result should generalize to arbi-
trary order.
104010
Note that with the choice q0 � 1 and q1 �
1
4 , the re-

flected error vanishes. More generally, of course, any
choice of q0 and q1 that makes the truncation error con-
tinuous across the refinement boundary will remove the
second-order reflection. In particular, the choice

qn �
�
h0

hn

�
2

(26)

will work in the nth refinement region of a grid with an
arbitrary number of refinement levels, where h0 is assumed
to be the grid spacing in the finest region. We call such a
mesh-adapted differencing scheme MAD.

A second-order MAD stencil can be obtained simply by
linearly combining a second-order accurate stencil with a
higher-order accurate stencil, as follows:

Dhn � qnD
�2�
hn
� �1� qn�D

�j�
hn

(27)

where the superscripted numbers in square brackets repre-
sent the order of accuracy of the differencing operator, and
j > 2. (Of course, this stratagem can be readily generalized
for higher-order MAD operators as well.) In the particular
case of a second-order upwinded stencil combined with a
third-order lopsided stencil, the resulting stencil has the
form

Dhn �
1

hn

��
�

1

3
�

1

3
qn

�
E�hn �

�
�

1

2
� qn

�

� �1� qn�Ehn �
�
�

1

6
�

1

3
qn

�
E2hn

�
: (28)

We have implemented this MAD stencil in the numerical
simulations of the Bumpy system. Figure 4 shows the
result for a run at a moderate resolution. With the MAD
stencil the dominant reflected error is nearly eliminated.
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FIG. 5 (color online). Comparison of the Hamiltonian con-
straint H in the case of second-order accurate, conventional
differencing stencils and second-order accurate, MAD stencils,
as well as a demonstration of convergence in the latter case.
There is a single puncture black hole centered at the origin, and
refinement boundaries at jxij � 1M, 2M, and 4M.
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VII. RESULTS FOR BLACK HOLE EVOLUTIONS

We can demonstrate that our analysis does indeed ex-
plain the problematic reflections in our black hole simula-
tions, by verifying that the same remedies applied to fix our
Bumpy model problem, i.e. higher-order or MAD stencil-
ing, also fix the problem in our black hole simulations.

As in [10], we have found simulations employing third
or higher-order accurate differencing of advection terms
are unstable in the vicinity of black hole punctures, if the
stencil has any points on the ‘‘downwind’’ side. If the third
or higher-order accurate differencing stencil does not have
any points on the downwind side, it requires three or more
layers of guard cells to accommodate points on the upwind
side, which is expensive memory wise. Thus, although
higher-order spatial differencing should reduce reflection
from refinement boundaries, it brings with it a new set of
problems to solve.

Use of a second-order accurate MAD stencil, as in
Eq. (28), for advection, avoids the above difficulties. As
we generally locate the punctures within the finest grid
regions, and the MAD stencil automatically reverts to
conventional second-order upwinding in this region, the
advection derivative does not take any points on the down-
wind side in the vicinity of the puncture and we find that
stability is maintained.

In our Einstein solver, we have implemented a second-
order accurate MAD stencil for advection. For all non-
advection derivatives, the MAD stencil is constructed from
104010
a linear combination of second-order centered and fourth-
order centered stencils, as in Eq. (27). As a result, reflec-
tion from refinement boundaries has been dramatically
reduced in the case of a single puncture. Figure 5 compares
the Hamiltonian constraint error from a run with conven-
tional stencils with the Hamiltonian constraint error in runs
with MAD stencils, demonstrating clear improvement. The
plot shows that the reflection error for our hf � M=32 case
is much reduced with the MAD stencil. By comparing with
the hf � M=64, MAD-stencil run, we also see that the
remaining bump now converges (demonstrably) away at
second order or better.

For simplicity we show only plots from single black hole
simulations here, although we have applied MAD in more
interesting binary black hole cases as well. We find that the
improvements generalize naturally to these cases. In par-
ticular we find that errors in the Weyl scalars near refine-
ment boundaries are reduced by at least an order of
magnitude.
VIII. CONCLUSIONS

We have studied a problem which occurs in numerical
relativity simulations with nonvanishing shift with mesh
refinement. These involve slow advection modes across a
mesh interface, and produce large numerical reflections
that propagate at the speed � of the advection. We have
successfully modeled the problem analytically. Our analy-
sis suggests that the effect is a general consequence of
discontinuous jumps in the finite differencing stencil in a
problem with propagation modes of widely differing
speeds. Our proposed solution, to adjust the finite differ-
encing stencils to make the leading order differencing error
continuous across mesh interfaces, is shown to be effective
in black hole simulations with mesh refinement, but may
have wider application in numerical relativity. In addition
to grids of nonuniform refinement, mesh-adapted differ-
encing may also be appropriate for grids with multiple
coordinate patches, where discontinuous differencing error
can also be expected.
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