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Geometrically motivated hyperbolic coordinate conditions for numerical relativity:
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We study the implications of adopting hyperbolic-driver coordinate conditions motivated by geomet-
rical considerations. In particular, conditions that minimize the rate of change of the metric variables. We
analyze the properties of the resulting system of equations and their effect when implementing excision
techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the
excision surface where some modes are not of outflow type with respect to any excision boundary chosen
inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specifi-
cation of these conditions is a delicate issue as the outflow modes involve both gauge and main variables.
As an alternative to these driver equations, we examine conditions derived from extremizing a scalar
constructed from Killing’s equation and present specific numerical examples.
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1This picture has changed as consistent boundary conditions
have been developed applicable to cases where excision is
employed [13,14].
I. INTRODUCTION

The choice of suitable coordinate conditions has cer-
tainly played a major role in the understanding of solutions
of Einstein equations at the analytical level. From the early
well posedness result by Choquet-Bruhat [1] to recent
global existence proofs [2–4], a judicious choice of coor-
dinates was key to yielding a tractable problem.

At the numerical level, coordinates play even a more
crucial role as an unfortunate choice might render the
simulation useless despite much computational effort. In
fact, the optimal situation is one where coordinates not
only behave well (i.e. not forming coordinate singularities)
but also aid in the simulation. The latter refers to a choice
of coordinates that adapts to the problem at hand, making
evident (possibly approximate) symmetries that might be
present.

A testimony of the importance of this subject has been
the number of works that have been devoted to it. From the
early works of York and Smarr [5,6] which proposed
coordinate conditions through elliptic equations, to more
recent works which present alternatives to choosing coor-
dinates that could aid in the numerical simulation (see for
instance [7–12]) considerable efforts have been invested
towards defining useful coordinate conditions. In general,
these conditions seek to minimize suitably defined quanti-
ties with the hope that these will, in turn, have a positive
impact in the behavior of numerically evolved quantities.

The proposed coordinate conditions are usually given in
algebraic terms or through elliptic equations. The latter is
expected when conditions requiring stationarity of varia-
bles—whose evolution is determined by hyperbolic equa-
tions—are imposed. When attempting to use such
conditions, one faces the problem of dealing with a
hyperbolic-elliptic system of equations which require ap-
propriate boundary conditions. Until recently, convenient
boundary conditions for the main variables in space-times
05=72(10)=104009(15)$23.00 104009
involving black holes were not sufficiently understood for
generic situations when singularity excision was used.1

The complications associated with properly defining the
elliptic side of the problem at the analytical level coupled
to the additional ‘‘extra cost’’ in solving these equations
during the evolution has spurred a number of efforts aiming
to circumvent both these issues. The idea has been to
promote the elliptic equations to hyperbolic ones through
‘‘driver equations’’ [15]. These conditions aim to sidestep
the cost issue and the need to impose boundary conditions
at possible excision surfaces.

Conditions based on this strategy have been employed in
a number of works yielding much improved evolutions,
most notably in Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formulation-based codes where specific coordi-
nate conditions are obtained by requiring the time variation
of the (trace of the) connection variables be driven to zero
(the so-called �-driver). The hyperbolicity analysis of the
BSSN system with the �-driver conditions augmented by
suitable advection terms has been presented in [16]. It is
shown that the system is strongly hyperbolic in this case,
though unfortunately these augmented coordinate condi-
tions do not necessarily freeze the � variables. It is then
unclear wether these augmented conditions will have the
same impact as the original ones in simulations and also if
they share similar hyperbolicity properties. Therefore,
there are a number of questions that remain open: (i)
What is the true impact of adopting these ‘‘driver‘‘ con-
ditions on the hyperbolic properties of the complete (main
variables plus gauge) system? (ii) Furthermore, are the
conditions obtained sufficiently flexible to guarantee desir-
able properties such as to yield a convenient characteristic
-1 © 2005 The American Physical Society
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structure at boundaries? (iii) How must one extend the
knowledge gained in the ‘‘�-freezing conditions’’ so that
these can be thought of as truly geometric expressions not
tied to particular variables in the system—and hence use-
ful to other formulations? (iv) What is the freedom in the
implementation of these conditions and their behavior in
actual applications?

In the present work, we examine these questions both in
the theoretical and practical senses in order to draw con-
clusions applicable to most metric based formulations of
Einstein equations by considering coordinate conditions
motivated from possible geometrical constructions. In par-
ticular, we concentrate on conditions defined either at a
given hypersurface (and its embedding on the four-
dimensional space-time), or at the four-dimensional
space-time level. The former results into a set of elliptic
equations which contains the well-known minimal distor-
tion/strain condition for the shift vector and the maximal
conditions for the lapse while the latter gives hyperbolic
equations related, in a sense, to the harmonic coordinates.

With these conditions, we analyze the properties of the
whole system of equations (coordinate conditions plus
Einstein equations) where in the case of implementing
the elliptic equations we promote them to hyperbolic
ones via the ‘‘driver’’ approach. Additionally, we inves-
tigate possible difficulties that can be encountered when
employing these coordinate conditions in conjunction with
an excision strategy.

Our analysis mainly concerns 3� 1 metric formula-
tions; that is, those based on the intrinsic metric and
extrinsic curvature of spacelike hypersurfaces defined by
a foliation of the space-time. The equations governing the
future evolution of these variables are derived from the
Einstein equations in the space-time of interest and are
augmented by additional variables and check whether that
the resulting system, coupled to the coordinate conditions,
is at least strongly hyperbolic.

As we will see, in all cases one obtains a system with a
characteristic structure such that its eigenvectors couple
gauge/coordinate variables to the main variables. This has
strong implications for the system, since:

� I
n the cases where singularity excision is to be used,

the characteristics of the system must be such that
they are completely outflow towards the excision
boundary. This condition is fulfilled when, roughly
�n > � (with �n � �ini the projection of the shift
along the spacelike unit normal to the excision sur-
face ni and � the lapse function). Since now the
coordinate conditions are dynamical, extra care
must be taken to monitor that it is fulfilled.
� S
ince the characteristic modes of the system now mix
coordinate and main variables, if the condition above
is not satisfied, it is extremely difficult to provide
boundary conditions to the gauge functions consis-
tently. This is to be contrasted with the case where the
elliptic conditions themselves are employed. Here
104009-2
boundary conditions for the gauge variables could be
imposed so as to guarantee the outflow requirement is
satisfied.
Unfortunately, as we will describe in Sec. III, commonly
used conditions fail to satisfy some important desirable
conditions which might have strong implications in nu-
merical implementations. We point out how this can be
avoided and the cost associated in doing so. Additionally,
we analyze alternative conditions derived from considering
approximate symmetries in the space-time. This condition,
called ‘‘harmonic almost-Killing equation’’ coupled to
Einstein equations gives rise to a well behaved system
where coordinates respond to (approximate) symmetries.
We present simulations to investigate their usefulness
within standard numerical relativity test beds.

In order to carry out several analysis presented in this
work, it is necessary to adopt a given formulation of the
equations. To this end we consider the strongly hyperbolic
formulation presented in [17] and the so-called Z4 formu-
lation. The former can be regarded as an ‘‘augmented’’
ADM formulation with the addition of first order variables
keeping the metric’s gradient and suitable combination of
constraints to the right hand sides. The latter is basically a
covariant extension of the Einstein field equations, ob-
tained by introducing a new four vector Z� which is
defined by its evolution equations. This way, the symme-
trized covariant derivatives of this four vector are added to
the Einstein equations, that is

R�� �r�Z� �r�Z� � 8�
�
T�� �

1

2
Tg��

�
: (1)

The solutions of the Einstein’s solutions are recovered
from the extended set when Z� happens to be a Killing
vector, that is

r�Z� �r�Z�: (2)

For a generic space-time, this happens just in the trivial
case Z� � 0, so true Einstein’s solutions can be easily
recognized.
II. ‘‘IDEAL COORDINATES’’

Before presenting different possibilities for adopting
coordinates we comment on what are arguably useful
properties they should satisfy. There exist several discus-
sions on what constitute requirements for good coordinate
conditions (see, for instance, [6,8,18]); these are based on
the intuitive picture that useful coordinates, from the point
of view of a numerical implementation, should:

� b
e free of artificial (coordinate) singularities;

� t
ake advantage of existing symmetries in the prob-

lem, whether approximate or exact. In particular if the
space-time is stationary, coordinate conditions should
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give rise to metric components explicitly time
independent;
� i
n the absence of symmetries, they should minimize
the rate of change of either the metric or other appro-
priately defined geometrical quantities;
� b
e 3-covariantly defined if possible (i.e. independent
of coordinate changes within a given hypersurface).
The points above are important at a fundamental level in
that they are hopefully satisfied irrespective of the formu-
lation used or the particular problem under study. To these,
further requirements might be added that refer more to
specific applications like coordinates having:

� s
uitable behavior near singularities. For instance,

conditions yielding a convenient slicing of the
space-time. This could range from those that avoid
the singularities altogether (like singularity avoiding
conditions) to those that penetrate the possible hori-
zon (in the case where excision techniques are to be
applied). In the latter case, it important that the re-
sulting characteristic structure be such that all varia-
bles are outflowing towards the excision region.
� a
ppropriate asymptotic behavior so that extraction of
physically relevant quantities is facilitated and/or
related coordinate speeds are bounded so as to not
have to deal with superluminal cases.
2These drawbacks are presently not strong ones as reasonably
well-defined conditions have been presented [21] and efficient
elliptic solvers have been implemented [22–26].
Finally, the conditions adopted must be such that within
the formulation of Einstein equations employed the well
posedness of the underlying problem to be treated is guar-
anteed as the choice of coordinates is not decoupled from
the issue of defining a well posed problem. For instance,
the ADM formulation with analytically prescribed coordi-
nate (lapse and shift) conditions is weakly hyperbolic
(hence yielding an ill-posed problem) while with harmonic
coordinates are symmetric hyperbolic. For a more general
discussion of hyperbolic formulations, see for instance
[19].

As mentioned, one of the main motivations when choos-
ing coordinate conditions is that they should not introduce
spurious ‘‘dynamics’’ in the evolution of the system. This
motivation has led throughout the years to the introduction
of different conditions. When attempting to define such
conditions an obvious difficulty is the need to do so in a
three-covariant way so as to decouple coordinate effects to
the true physical behavior of the space-time. Away to do so
was introduced by Smarr and York [5] by constructing
scalar quantities from the intrinsic and extrinsic curvatures
of the space-time and minimizing their variation with
respect to the lapse function and shift vector.

For instance, the ‘‘strain‘‘ scalar defined in analogy with
fluid dynamics is defined as

@t�ij � �ij � 2�r�i�j� � �Kij� (3)

which can be used to construct a positive definite
Lagrangian

L � �ij�
ij: (4)
104009
This geometrical object is used to construct a (non-
negative) action which measures the distortion or strain
of a given hypersurface. By minimizing this action with
respect to the shift �i,

�S
��i

� 0; S �
Z
L

���
g
p
d3x; (5)

an elliptic equation (called ‘‘minimal strain’’) is obtained
for the shift. When this equation is fulfilled, the rate of
change of a suitable norm of the spatial metric will be
minimized from one hypersurface to the next one.

The minimal strain equation can be generalized by con-
sidering the action of the densitized metric ���ij [with
� � det��ij�], obtaining in this way what we will call the
‘‘minimal densitized strain.’’ This equation can be written
simply as

rk��
ki � ��kitr�	 � rk�ri�k �rk�i � 2��kirm�m

� 2��Kij � ��kitrK�	 � 0 (6)

so the minimal strain condition reduces to the choice � �
0. Another interesting case, called ‘‘minimal distortion’’
(in analogy with a related notion of elasticity) is recovered
for the choice � � 1=3.

These (elliptic) equations seem natural conditions for
the shift in numerical relativity applications, since they
satisfy the fundamental properties mentioned earlier.
Notice that one could have also opted to minimize the
action with respect to the lapse �. This yields an algebraic
condition for it [7,8], though it is ill-defined for time-
symmetric cases. An alternative strategy is to consider
minimizing a scalar defined by _Kij

_Kij with respect to the
lapse. This provides a fourth-order elliptic equation for it
[20]. We will refrain from considering it here as it will
introduce further complications either at the computational
cost level (if implementing the elliptic equation) or at a
conceptual level when promoting the equation to a hyper-
bolic condition.

As mentioned, when considering these conditions within
an initial boundary value problem, assessing the well pos-
edness becomes more involved as the system becomes of
elliptic-hyperbolic nature. This, in particular, means the
solution will strongly depend on the boundary data speci-
fied. Until recently, the lack of a well-defined strategy to
specify inner boundary conditions (say in the case where
black hole excision is adopted), coupled to the extra cost
associated with solving elliptic equations numerically, in-
duced considerable activity towards employing related
conditions within a purely hyperbolic problem.2 For these
reasons, it has become customary to define associated
hyperbolic equations to implement related conditions.
-3
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Parabolic conditions could also be considered, but they
certainly would not simplify the cost issue (as their
Courant-Friedrich-Lévy condition scales quadratically
with the grid spacing, and can be further regarded as an
inefficient method to solve the elliptic equation itself via
relaxation techniques). We will thus concentrate on hyper-
bolic conditions and analyze the implications they carry.
III. HYPERBOLIC COORDINATE CONDITIONS

We will restrict our analysis to a large family of hyper-
bolic coordinate conditions. Some of these are derived by
simple relations that have been employed in the past while
others are motivated by the minimization of geometrical
quantities as described above. In this latter case, we follow
recent works [9,10], in that we will approach the problem
here by adopting hyperbolic-driver conditions to imple-
ment the equations. However, as opposed to these works,
we will require that the coordinate conditions analyzed do
indeed minimize the desired elliptic equations. That is, we
will neither assume that considering other related equa-
tions having the same principal part but differing in the
lower order terms will yield similarly behaved coordinates
nor that suitable lower order terms can be added so as to
obtain first order conditions. Although these assumptions
can be, and have been, adopted in previous works, the
conditions thus obtained are not guaranteed to satisfy the
original sought-after geometrically motivated conditions.

To be specific, we will consider conditions that can be
written as

@t� � ��2Q; (7)

@t�i � ��Qi (8)

for suitably defined fQ;Qig which we regard as the gauge
conditions. These will be given by either algebraic or
differential equations relating the Q-quantities with the
other variables of the system, trying to fulfill as many of
the desired requirements described in the previous section
as possible.

In what follows we consider separately three distinct
cases which refer to the way the fields Q;Qi are defined.
We distinguish cases with the name ‘‘algebraic‘‘ whenQ or
Qi are directly defined, ‘‘differential‘‘ when they obey
evolution equations and ‘‘semialgebraic’’ in cases where
an algebraic for one and a differential for the other is
considered.

A. Algebraic gauge conditions

One of the simplest choices is an algebraic relation
between the Q-quantities fQ;Qig and the main variables
of the system. In this definition are included the general
gauge conditions proposed recently in [10] and the sub-
families discussed in many other works (e.g., [8,11]). The
prototype of algebraic gauge conditions is given by the
104009
harmonic coordinates, which were introduced half a cen-
tury ago to ensure the well posedness of the Einstein
equations [1,27]. This is obvious as in this case, the prin-
cipal part of Einstein equations for all components reduce
to

g���g���;�� � l:o: (9)

Although the well posedness of the Cauchy problem is
ensured this way for the evolution system, this coordinate
choice does not fulfill a priori many of the properties of an
ideal gauge condition in the absence of suitably defined
sources or lower order terms. In particular, the freezing of
the metric components in (almost) stationary space-times
is by no means guaranteed. Another delicate issue is that
the shift so-defined is not a three-vector and so need not
reflect the symmetries in the problem. This can be seen
more clearly by translating the harmonic coordinates con-
dition to the 3� 1 decomposition language:

Q � �
�k

�
@k ln�� trK

Qi � �
�k

�
@k�i � ��ki�@j�jk � @k ln

����
�
p
� @kln��:

(10)

The Qi will not transform as a vector (except under linear
transformations), so neither Qi nor �i will be vectorial
quantities during the evolution.

B. Semialgebraic gauge conditions

We will refer to as semialgebraic gauge conditions those
that, keeping an algebraic relation for Q, allow for a
differential definition of the Qi. This way there is enough
freedom to fix the shift with an exact geometric condition.
Naturally, one could have done the opposite, i.e. an alge-
braic relation toQi while a differential one forQ. Since the
former is what is most commonly used in current applica-
tions and elliptic conditions for the lapse, that minimize the
rate of change of the extrinsic curvature, are fourth order
we will concentrate on algebraic/differential conditions for
the lapse/shift.

For the lapse we propose a generalization of the har-
monic coordinates which includes the Bona-Masso lapse
condition [28] and its slight modification presented in [9],
that can be written as

Q � �a
�k

�
@kln�� f����trK � 2�� (11)

where � is added when considering the Z4 formulation of
Einstein equations, otherwise this term must be dropped.

The generalization consists on having added the parame-
ter a to the above equations which determines whether the
advection terms are included (a � 1) or not (a � 0). The
‘‘lapse speed’’ (i.e., the speed of the eigenvectors associ-
ated to the lapse) will be fixed by this parameter in combi-
nation with the free function f���. Notice also that the
-4
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subfamily a � 1 reduces to several well studied cases
depending on the expression for f � f���: f � 0 is the
geodesic slicing, f � 1 is the time harmonic slicing, f �
2=� is the ‘‘1� log’’ and so on. Additionally, the subfam-
ily a � 0 has been used successfully in the evolution of
single black hole [9].

The rationale behind this generalization is that, as we
will see later, the characteristic structure of the coordinate
conditions adopted will have delicate, profound, differ-
ences depending on the values these parameters take. In
addition to this generalization for the lapse condition, we
consider a similar one to the shift condition which we will
define by a suitable hyperbolic driver which seeks to satisfy
the minimal distortion condition. We next revise how this
condition is to be defined and further generalize it to
include related options.

1. Approximate geometric shift

An elliptic condition can be imposed in a dynamical way
through a parabolic or hyperbolic ‘‘evolution’’ equation.
The former can be regarded as a standard relaxation way to
obtain the solution of the elliptic equation while the latter
drives the solution towards the desired one, in analogy with
a damped oscillator. The first approach was used in [15] to
convert the minimal distortion elliptic equations into time-
dependent parabolic equations by means of the Hamilton-
Jacobi method, that is,

@t�
i � 	rk

�
�ki �

1

3
�kitr�

�
: (12)

The parameter 	 is characteristic of all the drivers, and
determines the dissipation strength employed so that the
solutions of the elliptic and the parabolic equations agree.
For small values of	, the shift is expected to tend slowly to
the elliptic solution. At this point it is worth noticing that,
in the fully dynamical case, it is not completely clear that
Eq. (12) is actually a driver. The procedure is inspired in
simple elliptic equations, like for instance the Laplace
equation r2
 � 0. In this simple case the Hamilton-
Jacobi method indeed provides a driver to the elliptic
equation. In the case of Einstein equations, however, this
conclusion is not immediate as the equations are highly
coupled. In a ‘‘frozen variables’’ approximation, where all
main variables are regarded as fixed, the driver condition
does give rise to a solution satisfying the elliptic equations
(up to suitable boundary conditions). In general, however,
assessing this behavior is considerably more delicate.

Nevertheless, current simulations indicate—at least for
the cases considered—that the hyperbolic-driver condi-
tions do give rise to reasonably well behaved solutions
[9] as judged by monitoring the approximate fulfillment
of the original elliptic condition that motivated the driver
condition. These simulations implement a driver in such a
way that some of the variables of the BSSN formalisms
[29,30], the �i, are frozen at late times in black hole
104009
evolutions. Although they give rise to great improvement
in the evolution of single black holes an head-on collisions,
it is not clear whether they are successful due to the fact
that they minimize particularly delicate variables in the
system [31] or due to their ‘‘proximity’’ (in a loose sense)
to a minimal distortion condition. If the latter is the reason,
it would indicate that this condition could benefit other
formulations. Unfortunately, to our knowledge, these con-
ditions have been employed in practical applications only
in the BSSN-based codes.

In order to investigate the usefulness of the geometri-
cally motivated condition we consider it within the driver
approach generalized in the following way (Q3 equation):

�@t � bL��Q
i �rk�g���

ki � ��kitr��	 � �	Qi:

(13)

Let us discuss in detail the differences between the stan-
dard gamma driver condition, as used in [9,13]. First, a Lie
term has been included in the Q3 equation with a free
constant b. Although this Lie term does not come naturally
from the driver, we will see later that it affects the shift
speed (that is, the speed of the eigenvectors associated to
the shift) and it will be required in order to fulfill other
requirements. The physical meaning, when b � 1, would
be that the driver is not along the time lines but along the
normal lines to the spacelike hypersurfaces.

The second difference is that we employ a covariant
derivative (with respect to the intrinsic metric of the hyper-
surface) in (13) which is dictated by the minimal distortion
condition. This additionally ensures the tensorial character
of the equation, and so both the Qi and the �i are now
vectors, with the corresponding advantages. Finally, the
parameter � has been kept in order to generalize the
condition and adapt it to other formalisms that do not use
the conformal decomposition. This way, it one can choose
which densitized strain is going to be minimized during the
evolution.

2. Characteristic analysis

In order to analyze the structure of the system with the
coordinate conditions adopted we must choose a particular
formulation. Here we employ the Z4 formalism though we
have checked that similar issues arise when employing the
above coordinate conditions in the formulation presented
in [17].

The characteristic analysis of the gauge conditions (11)
and (13) with the Z4 formalism described in the next
section shows that there are three clearly separated ‘‘gauge
cones.’’ We refer to them in this way to stress that these
come about due to the coordinate conditions considered.
However, their corresponding eigenvectors span not just
the part of the Hilbert space corresponding to the lapse,
shift and derivatives of this last one. Indeed, they have
components both on the coordinates and main variables
sectors which will have delicate consequences as we shall
-5
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see later. These gauge cones can be grouped into three
distinct entities:

� L
3If
instan
apse cone, which propagates with speed
� a�1

2 �n 

�����������������������������������������������
f�2 � ��a� 1�=2	2�2

n

p
.

� T
ransversal shift cone, which propagates with speed
� b�1

2 �n 

�����������������������������������������������
g�2 � ��b� 1�=2	2�2

n

p
.

� L
ongitudinal shift cone, which propagates with speed
� b�1

2 �n 

�����������������������������������������������������������������
2g�1� ���2 � ��b� 1�=2	2�2

n

p
.

An analysis of the associated eigenvectors both for the Z4
and the formalism described in [17] reveals that the full
evolution system is strongly hyperbolic only if all the
gauge speeds are different one from each other and differ-
ent from the speed of light. Otherwise, there is a collapse of
some of the eigenvalues and there is not a complete basis of
eigenvectors, leading to a weakly hyperbolic system.

We thus see the need to introduce the Lie terms (con-
trolled with the parameters fa; bg) in Eqs. (11) and (13)
which will provide sufficient flexibility to obtain a well
behaved system. For simplicity, let us focus on the condi-
tion for the lapse—the same discussion is also valid for the
other gauge cones. If the Lie term is included (a � 1), as
the driver acts to minimize the dynamics along the normal
line, the associated speeds are ��


���
f
p
�. This kind of

structure allows for inflow coordinates where �n >
���
f
p
�

and all the lapse eigenvectors have negative speed. As
mentioned, this requirement is crucial near a black hole
horizon, where a standard practice is to excise the singu-
larity by introducing an excision boundary. Here it is not
known which boundary conditions to define and even how
they could be implemented if known.3 Another problem of
this approach is the existence of so-called ‘‘sonic points’’
(in analogy with fluid dynamics) where the speed is zero
(�n �

���
f
p
�). At these points there is a collapse of some of

the gauge eigenvectors with some standing modes, and the
system is weakly hyperbolic in one direction.

On the other side, if the Lie term is not included (a � 0),

the lapse speeds are � 1
2�n 


�������������������������������
f�2 � ��n=2�2

p
. In this

case the driver is along the time lines and the evolution
system is always strongly hyperbolic; the speeds/eigens-
peeds are such that only in the case � � 0 could there be a
collapse of eigenvectors. However, some of these eigens-
peeds are such that, at an excision surface, they will always
describe incoming modes (i.e. towards the computational
domain). This means that boundary conditions are to be
specified for these modes somehow. Unfortunately, as
these modes couple coordinate and main evolution varia-
bles, one has to worry about how to provide suitable
boundary conditions to the gauge functions and carry the
evolution of the main variables without providing bound-
ary conditions to them. This is a delicate problem in itself.
Intuitively, one expects that boundary conditions are only
required for the gauge functions; however, some of the
no excision is employed this issue does not arise (see for
ce [32,33]).

104009
main variables themselves depend on the gauge functions
also (the extrinsic curvature). Hence, the issue of separat-
ing the gauge dependent component of the incoming
modes must be clarified before proceeding this way. To
do so requires considering constraint preserving boundary
conditions which might be further complicated by the fact
that the characteristic structure need not be constant along
the excision surface.

Summarizing, there is a tension between trying to obtain
a minimizing prescription and ensure both strong hyper-
bolicity of the system and that any suitably defined exci-
sion boundary is of outflow type. In hindsight it could be
argued that this is a consequence of having tried to ‘‘get
away‘‘ without solving an elliptic equation—which does
require boundary conditions at all boundaries—and solely
deal with a hyperbolic equation where no boundary is
required at the excision surface.

It is then clear that the options are: (i) to stay at the
elliptic (or related parabolic) level for the coordinate con-
ditions; (ii) give up the symmetry seeking approach
through driver conditions (at least in the problematic re-
gions by suitably modifying the equations or by adding
convenient lower order terms to the equations [34]) or (iii)
consider a new set of options that aim to resolve the
conflicts.

C. Almost-stationary motions: the Q4

An appealing alternative is to consider conditions de-
rived by minimizing some suitably defined space-time
scalars. As it has been recently pointed out in [12], the
harmonic almost-Killing equation (HAKE)

r�

�
���;�� �

1

2
�r � ��g��

�
� 0 (14)

is a generalization of the Killing equation ���;�� � 0 whose
solution space includes also the affine Killing vectors and,
of course, its subfamily the homothetic Killing vectors. For
this reason, the covariant conservation law (14) can pro-
vide a precise definition of the concept of approximate
Killing vectors as solutions of the HAKE equation (14).
This equation can be obtained from the standard varia-
tional principle (5) with a Lagrangian L given by

L � ���;	��
��;	� �

1

2
�r � ��2: (15)

Since the Lagrangian is nonpositive it is not possible to
guarantee that extremizing the action will provide a solu-
tion that minimizes it. However, by suitably adding damp-
ing terms, the hope is that will indeed be the case. In such a
case, the HAKE equation can be of great utility as a
coordinate condition, because it is not only well adapted
to the stationary space-times (a Killing vector is a solution)
but also ‘‘minimizes’’ the deviation from the stationary
regime. In space-times with some (quasi)symmetry, it is
expected that the congruence of time lines of the observers
-6
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will be aligned during the evolution with the time (almost)
Killing vector, avoiding in this way spurious time depen-
dence due to an unfortunate choice of coordinates.

The physical meaning can be better understood by con-
sidering the adapted coordinates � � @t, where now
��� � L�g�� � @tg��. The 4D Lagrangian (15) can be
written as

L � ������ �
1

2
g������g���; (16)

which can be reinterpreted as a four-dimensional general-
ization of the positive definite 3D Lagrangian (4).
Following the analogy, the HAKE equation (14) can be
seen as the 4D generalization of the minimal densitized
strain (6). The main difference is that, since the HAKE
equation considers also the time component of the space-
time, the structure of the resulting system is not elliptic
anymore but hyperbolic.

In the Z4 context there are Z-terms that must be included
in the HAKE (14) in order to get a well posed problem.
With these terms, the conservation law (14) can be written
in different ways, like for instance

r�

�
1���
g
p L��

���
g
p
g���

�
� 2g��L�Z�; (17)

or, in adapted coordinates,

g	��@t��	�� � 2g��@tZ� � 0: (18)

Equation (17) shows explicitly the tensorial character of
the gauge condition, while Eq. (18) points out its relation
with the harmonic coordinates, i.e. g	���	� � 0. This
gauge condition, which will be called Q4, is the closest
to fulfill all the requirements; not only the shift but also the
lapse is well adapted to stationary space-times, and if there
is only an approximated symmetry, the coordinates are
expected to adapt in order to minimize the rate of change
of the metric. An additional property is that, as a result of
their construction, the gauge conditions obtained are also
defined in a covariant way.

The ambiguity of including or not the Lie terms in the
Q-equations, introduced in the Q3 gauge, is not present
here, where there is no choice: the Lie terms are actually
there. As a consequence, the lack of strong hyperbolicity at
sonic points appears again in the gauge cones, as will be
shown in the next section.
IV. THE EVOLUTION SYSTEM: Z4 FORMALISM +
Q4 GAUGE

In order to study the hyperbolicity of the gauge condi-
tions, we have to consider them within the context of a
specific formalism in order to get a closed set of equations
that will constitute the evolution system. For concreteness
we adopt the Z4 formalism, but similar results can be
obtained with other formulations.
104009
Here the Z4 formalism and the Q4 gauge will be written
down as an evolution system of (second order in space and
first order in time) equations by means of the 3� 1 decom-
position. The characteristic structure of a fully first order
version of this evolution system will be analyzed in detail,
as well as how to pass from a second order system (in
space) to a first order one without altering the structure of
the eigenvectors.

A. The formalism: the (first order) Z4 system

The four-dimensional equations (1) can be written, by
using the 3� 1 decomposition, in the equivalent form [35]:

�@t �L���ij � �2�Kij (19)

�@t�L��Kij ��ri�j��
�
Rij�riZj�rjZi� 2K2

ij

��trK� 2��Kij�Sij�
1

2
�trS� 
��ij

�

(20)

�@t �L��� �
�
2
�R� 2rkZk � �trK� 2��trK

� tr�K2� � 2Zk�k=�� 2
	 (21)

�@t �L��Zi � ��rj�Ki
j � �i

jtrK� � @i�� 2Ki
jZj

���i=�� Si	: (22)

In order to convert Eqs. (19)–(22) into a fully first order
system, the spatial derivatives of the lapse, the shift and the
intrinsic metric must be introduced as new independent
quantities, that is,

Ai � @i ln�; Bk
i � @k�i; Dkij �

1

2
@k�ij; (23)

and substituted everywhere. The evolution equations for
these additional quantities can be computed easily taking
the time derivative of the definition (23) and permuting the
time and spatial derivatives. Because of the commutativity
of second spatial derivatives, we can add without any
change in the solution space the constraints Cki � @kAi �
@iAk, Clk

i � @lBk
i � @kBl

i and Cklij � @lDkij � @kDlij

with free parameters fcacbcdg to the evolution equations
of the lapse, shift and intrinsic metric, respectively. It the
evolution equations for the metric components are defined
in a general way as

@t� � ��
2Q; @t�

i � ��Qi; @t�ij � �2�Q

(24)
-7
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then the evolution of their spatial derivatives, with the
addition of the ordering constraints, would be

@tAi � @i��Q	 � ca�lCli � 0 (25)

@tBk
i � @k��Qi	 � cb�lClk

i � 0 (26)

@tDkij � @k��Qij	 � cd�
lClkij � 0: (27)

Here there is a delicate point; if one wants to preserve the
same eigenvectors when passing from the second order
system (in space) to the first order one, the choice
fcacbcdg � f111g is compulsory. Since we are interested
on the physical solutions, which should not depend on the
order of the (spatial derivatives of the) equations, this will
be our choice from now on.

With this choice, a first order version of the Z4 formal-
ism can be written as a system of balance laws:

@tAi � @l���
lAi � �

l
i��Q� �

mAm�	 � Bi
lAl � Bl

lAi
(28)

@tBk
i � @l���lBk

i � �lk��Q
i � �mBmi�	

� Bl
iBk

l � Bl
lBk

i (29)

@tDkij � @l���lDkij � �lk��Qij � �mDmij�	

� Bk
lDlij � Bl

lDkij (30)

@tKij � @k���
kKij � ��

k
ij	 � S�Kij� (31)

@t�� @k���
k�� ��Dk � Ek � Zk�	 � S��� (32)

@tZi � @k���kZi � �f�Kk
i � �

k
i�trK ���g	 � S�Zi�

(33)

where

�kij � Dk
ij �

1

2
�1� ���Dij

k �Dji
k�

�
1

2
�ki�Aj �Dj � �1� ��Ej � 2Zj	

�
1

2
�kj�Ai �Di � �1� ��Ei � 2Zi	; (34)

being Di � Dik
k and Ei � Dk

ki. The nonzero source terms
can be found in the appendix.

B. The Q4 gauge

The gauge condition can be written as a set of evolution
equations for some gauge quantities by means of the 3� 1
decomposition, using either the covariant conservation law
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(17) or the nonvectorial ‘‘standing’’ equation (18). Of
course, these equations (and their 3� 1 forms) are com-
pletely equivalent, so one could be recovered from the
other without any problem at the second order (in spatial
derivatives) level. At the first order level this transition is
not always so transparent when the ordering constraints
Cki, Clk

i and Cklij are included; this is the reason to start
from the appropriate version of the HAKE equation from
the very beginning, at the four-dimensional level, to write
then the most convenient 3� 1 gauge equations.

The 3� 1 form of the conservation law (17) provides
directly evolution equations for the tensor quantities
fQ;Qig, and it can be useful to take advantage of the
symmetries of the problem. For instance, in spherical
coordinates the vector Qi is in general Qi �
�Qr;Q�;Q
�. If the problem is also spherically symmetric,
then only Qr and �r would have a nontrivial evolution
equation, as opposed to what happens either with the
harmonic coordinates (10) or the nonvectorial standing
version (18). Notice that the semialgebraic Q3 (13) has
also this vectorial character.

On the other side, the 3� 1 form of the standing version
(18) reduces directly to evolution equations for some com-
binations of variables which follow an ODE, so they are
directly standing modes of the system. This version is more
convenient in general cases without symmetries in order to
write the system in fully first order. The resulting standing
modes, combinations of the Q-quantities with other varia-
bles of the system, hold always, so these eigenvectors are
the same in both second and first order versions. The
standing version (18) can be written, by means of the 3�
1 decomposition, as

@tP � @t���Q� trK� 2�� � �jAj	

� �2�2Kij�Qij � �ijQ� � 2�Qj�Aj � Zj� (35)

@tP
i�@t��Q

i��jBj
i��2�2Ei�Di�Ai�2Zi�	

�2�Qj��Kj
i�Bj

i��2�3�Qjk��jkQ��ijk

�4�3�Qij��ijQ�Zj��Qi���Q� trK���jAj	

(36)

where the standing P-quantities have been defined. From
these equations it is easy to see that the principal part is just
the time derivative of the harmonic conditions (10).

As it was discussed previously, Eqs. (35) and (36) admit
many different solutions. A convenient way to enforce the
precise desired solution without unfavorably affecting the
characteristic structure of an hyperbolic system was intro-
duced in [36]. The method consists in adding a source
damping term that damps the solution to the desired one.
In our case it would be

@tQ � � � � � 	�Q� �trQ� (37)
-8



GEOMETRICALLY MOTIVATED HYPERBOLIC . . . PHYSICAL REVIEW D 72, 104009 (2005)
@tQ
i � � � � � 	Qi (38)

where the dots stand now for all the original terms. Since
only one vector can be constructed just by contracting the
��� tensor with the normal lines, there cannot be any
ambiguity on the damping term for the equation of Qi.
However, the two different scalars Q and trQ can be
constructed from ���, so all the combinations are included
in the damping terms in (37). Two special cases arise here:

� T
he first one would correspond to the choice � � 0;

all theQ-quantities are driven to zero, so that one tries
to minimize the rate of change of all the metric
components. It is the default case, most suitable in
physical situations in which we expect a stationary
regime to be reached asymptotically.
� T
he second case would correspond to the choice � �
1; the lapse Eq. (35) is driven to the solutionQ � trQ
instead of Q � 0. This way, although the shift equa-
tion is still used for minimizing the intrinsic metric,
the lapse just tries to follow the singularity avoidant
condition @t��=

����
�
p
� � 0. This can be useful in all

cases in which singularity avoidance is required. Note
that a stronger singularity avoidance behavior is ex-
pected when �> 1.
C. Characteristic structure

The evolution system has the following 54 independent
variables

u � f�;�i; �ij; Kij;�; Zk; Ai; Bj
i; Dkij; P; P

ig (39)

where the fQ;Qig can be written in the equations as a
function of the fP;Pig and other variables. The system is
strongly hyperbolic if all the eigenvalues are real with a
complete base of eigenvectors for any arbitrary direction
nk and the symmetrizer can be shown to be smooth. We
have not looked into this, though the analysis would follow
the lines of those presented in [16,37] where the condition
has been shown to hold.

The analysis of the eigenvalue/eigenvector structure is
more clear when the quantities (and the modes) are decom-
posed by projecting them into this specific direction. That
way, for instance, a vector Ti would be separated into its
longitudinal part Tn � Tknk and its transversal compo-
nents Ta � Ti � Tnna. From now on, we will use the
indices fa; b; c; dg for the transverse components and n
for the projection along nk. Using this notation, the list
of the gauge-independent eigenvectors can be written as:

� S
tanding modes: there are 10 eigenfields correspond-

ing to the metric components with speed v � 0

��	; ��i	; ��ij	: (40)
� N
ormal modes: there 20 transversal components of
the first order derivatives, propagating with speed
v � ��n:
104009-9
�Dcij	; �Ac	; �Bc
i	: (41)
� T
ransverse light cone: there are 6 new independent
eigenvectors propagating with light speed v �
��n 
 � that allow to recover fKab;Dnabg, that is,

L�
�ab �

�
Kab �

1

2�
�Bab � Bba�

�




�
Dnab �

�1� ��
2

�Dabn �Dban�

�
: (42)
� M
ixed light cone: there are 4 new independent eigen-
vectors propagating with light speed v � ��n 
 �
that allow to recover fKna; Zag, that is,

Lna�
� � �Kna	 

1

2
�Aa �Dac

c � ��� 1�Dc
ca

� �Dann � 2Za	: (43)
� E
nergy cone: there are 2 new independent eigenvec-
tors propagating with light speed v � ��n 
 � that
allow to recover f�; Zng, that is,

E�
� �
�

��
1

�
Bc

c
�



�
Dnc

c �Dc
cn � Zn

�
:

(44)
Several comments are in order here. The eigenvectors
are simple due to the choice fcacbcdg � f111g. Other cases,
like the trivial one fcacbcdg � f000g, are considerably
more complicated and do not have a complete basis of
eigenvectors at the sonic points. Notice also that, up to
here, the results are independent on the gauge condition.
The remainder of the characteristic structure is dictated by
the choice of coordinate conditions; in our case it is given
by

� L
apse sector: The standing eigenvector �P	, plus the

cone spanned by the 2 new independent eigenvectors
propagating with light speed v � ��n 
 � that al-
low to recover fKnn; Ang, that is,

G�
� � �P	 � ��� �n���trK� 2�� 
 An	 (45)
� T
ransversal shift sector: The standing eigenvector
�Pa	, plus the cones spanned by the 4 new indepen-
dent eigenvectors propagating with light speed v �
��n 
 � that allow to recover fBna;Dnnag, that is,

Sa
�
� � �Pa	 � ��� �n����Aa �Da � 2Ea � 2Za�


 �Bna � Ban�	 (46)
� L
ongitudinal shift sector: The standing eigenvector
�Pn	, plus the cone spanned by the 2 new independent
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eigenvectors propagating with light speed v �
��n 
 � that allow to recover fBnn;Dnnng, that is,

Sn
�
� � �Pn	 � ��� �n���Dn 
 ��trK� trB�	:

(47)
Note that at the sonic points ( j �n j� �) one of the sign
choices in the former equations coincides with one of the
standing eigenfields fP;Pig. Then, there is not a complete
basis of eigenvectors and the system is just weakly hyper-
bolic there, as it happens with the Q3 gauge. However,
these sonic points can be found only in the tachyonic
coordinates regions, where �2 
 �2. Moreover, there
will be missing eigenvectors there only for the particular
directions in which j �knk j� �. This is considerably less
severe than the failure to achieve strong hyperbolicity for
generic directions in the full computational domain. This
sonic points issue arises also in the hydrodynamical equa-
tions and is often dealt with by a small amount of dissipa-
tion [38]. In the next section we will check numerically the
behavior of the system.
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FIG. 1. Maximum norm of the trK for the harmonic gauge
around the sonic point �x � � � 1 for three different resolu-
tions. The slope of the norms remains constant independently of
the resolution as expected on strongly hyperbolic systems. The
simulations are performed in a cube of length L � 1 with 16, 32
and 64 points, respectively. The time step is dt � 0:25dx and no
artificial dissipation has been added.
V. NUMERICAL RESULTS

The previous gauge conditions will be tested in different
periodic space-times which have been suggested [39] as
standard test beds for numerical relativity codes. The nu-
merical algorithm used is the standard method of lines [40]
with centered second order discretizations of spatial de-
rivatives and third order Runge-Kutta to evolve in time. We
will focus on three different tests: the ‘‘robust stability‘‘
test, in order to check the well posedness of the formalism;
the gauge waves, in order to see the effect of the different
gauge conditions in space-times with a timelike Killing
vector; and the Gowdy waves, where there is no such
timelike Killing vector. Usually we will compare the re-
sults of the (first order) Z4 formalism either with the
harmonic coordinates (the evolution system will be called
Z4harm) or the Q4 condition (the evolution system will be
called ZQ4). The results for the zero shift case, which are
identical in few cases to the Z4harm as we will show later,
were already presented in [41].

A. Robust stability

Let us consider a small perturbation of Minkowski
space-time which is generated by providing random initial
data for every dynamical field in the system. The level of
the random noise must be small enough to make sure that,
as long as the implementation is stable, fields will remain
at the linear regime even for a hundred crossing times (the
time that a light ray will take to cross the longest way along
the numerical domain). This test is designed to experimen-
tally assess the hyperbolicity of the evolution system by
exciting high-frequency modes and observing the overall
behavior of the solution. As higher frequencies are allowed
104009
in the problem, for strongly/symmetric hyperbolic systems
the solution should be well behaved while this is not the
case with weakly hyperbolic systems.

The results of this test around the standard flat space-
time �i � 0 are already well known from the analytical
analysis for both the evolution systems Z4harm and ZQ4.
Since both of them are strongly hyperbolic around �i � 0,
all the norms remain constant during the simulation, de-
creasing slightly due to the inherent dissipation of the
numerical scheme (no additional artificial dissipation has
been added in the simulations). However, it can be useful to
study numerically what happens at the sonic point �x � �,
where the ZQ4 is strongly hyperbolic for all the directions
but one, and check whether the ZQ4 system leads to a
convergent solution. In order to study this scenario, we
define both � and �x being 1 plus a small random
perturbation.

In order to see the expected behavior, we have plotted
first in Fig. 1 the norm of trK of the Z4harm evolution
system around the sonic point for three different space
resolutions. Notice that, although we are displaying one
scalar quantity, the same behavior is observed by all the
other norms. As expected in strongly hyperbolic systems,
as resolution is increased the numerical solution either
should not grow or its growth should be lesser. Note also
that the same kind of behavior is shown for both the
Z4harm and the ZQ4 evolution systems around � � 0.

A similar plot is presented in Fig. 2 for the ZQ4 evolu-
tion system, again for three different space resolutions.
Although some of the variables (trK in the plot) show a
growing norm, its slope decreases with resolution. So,
-10
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FIG. 3. Norms of the nontrivial strain component Qxx for both
the harmonic and the Q4 gauges with different values of the
second damping parameter �. While the harmonic and the Q4
gauges with � � 1 show a similar nonfreezing behavior, the Q4
with � � 0 actually minimizes the strain, driving the system to a
stationary state. The initial amplitude of the gauge wave is A �
0:1 and the simulations are performed in a channel of 50� 5� 5
points with length L � 1 in the longest direction. The time step
is again dt � 0:25dx and in this case some (small) Kreiss-Oliger
artificial dissipation has been added in order to kill the high-
frequency modes.
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FIG. 4. The norms of the metric components for the ZQ4
evolution system with � � 0. After few crossing times all of
them remain almost constant, implying a very small value of its
time derivatives, the Q-quantities.

 0

 1e-09

 2e-09

 3e-09

 4e-09

 5e-09

 6e-09

 7e-09

 8e-09

 9e-09

 1e-08

 0  20  40  60  80  100

time

dx = 1/16
dx = 1/32
dx = 1/64

FIG. 2. The same plot as that in Fig. 1 but for the Q4 gauge.
The slope of the norms, although they are growing in all the
simulations, decreases as the resolution increases, approaching
to the (constant) exact solution. This suggests that the system is
well posed even at the sonic points.
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although the profiles are different from the standard case
shown in Fig. 1, the observed behavior is consistent with a
stable implementation, suggesting that the ZQ4 evolution
system is not ill posed at the sonic points.

B. The gauge waves

We now consider again the Minkowski metric written in
nontrivial coordinates, obtained by performing a general
conformal transformation to the t-x coordinates, that is,

ds2 � H2�t; x���dt2 � dx2� � dy2 � dz2: (48)

Propagation along the x axis can be simulated by consid-
ering a dependence like H�t; x� � h�x� t�, so the exact
time evolution (in these coordinates) will be just the
‘‘shifted’’ initial profile. We will use here a periodic
smooth profile, like a sine wave

h�t; x� � 1� A sin
�
2�x
d

�
(49)

where d is the size of the x domain and A is the amplitude
of the wave. Additionally, we will take advantage of the
periodicity of the initial profile to use periodic boundary
conditions with d � 1.

In Fig. 3 the norm of the strain Qxx is shown for both the
Z4harm and the ZQ4 evolution systems. The evolution of
the Z4harm is the same as the zero shift case described in
[41]. In the ZQ4 case we have plotted two different cases,
corresponding to different damping coefficients. The first
one is with � � 1, so the time lines are driven to the
condition Q � trQ. As it can be seen in the plot, the result
is very similar to the harmonic case. The second case
corresponds to the choice � � 0, where the time lines
are driven to get aligned with one of the Minkowski time-
104009
like Killing vectors. The result shows the desired behavior;
the observers behave in a way in which the metric compo-
nents are explicit stationary, as it can be checked in Fig. 4.

Different snapshots of the (nontrivial component of the)
extrinsic curvature Kxx, in Fig. 5, shows that the evolution
is almost frozen between 10 and 100 crossing times.
Finally, a convergence test for the variable Qxx is per-
formed in Fig. 6. The solution displays a decaying behav-
ior, in which all resolutions match, until an asymptotic
stage is reached (after around 30 crossing times), where
the plots clearly converge to Qxx � 0.
-11
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FIG. 5. The extrinsic curvature Kxx in the x direction at differ-
ent times for the same simulation as that in Fig. 4. After 10
crossing times there are not many changes in the profile.
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C. The Gowdy waves

Let us consider now the Gowdy space-time, which de-
scribes a space-time containing plane polarized gravita-
tional waves. The line element can be written as

d s2 � t�1=2eQ=2��dt2 � dz2� � t�ePdx2 � e�Pdy2�

(50)

where the quantities Q and P are functions of t and z only
and periodic in z, so that (50) can be implemented with
periodic boundary conditions. Following [39], we will
choose the particular case
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FIG. 6. The nontrivial component Qxx is plotted for different
resolutions (dx � 1=50, dx � 1=100, dx � 1=200) with the
Z4Q with � � 0. All plots match during the transient decaying
stage, until some minimum is reached. This minimum value can
be seen to converge at a second order rate to Qxx � 0.
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P � J0�2�t� cos�2�z� (51)

Q � �J0�2��J1�2�� � 2�tJ0�2�t�J1�2�t�cos2�2�z�

� 2�2t2�J0
2�2�t� � J1

2�2�t� � J0
2�2�� � J1

2�2��	

(52)

so that it is clear that the lapse function

� � t�1=4eQ=4 (53)

is constant everywhere at any time t0 at which J0�2�t0�
vanishes. In [39] the initial slice t � t0 was chosen for the
simulation of the collapse, where 2�t0 is the 20th root of
the Bessel function J0, i.e. t0 ’ 9:88.

Let us now perform the following time coordinate trans-
formation:

t � t0e
�
=
0 ; 
0 � t3=4

0 eQ�t0�=4 ’ 472; (54)

so that the expanding line element (50) is seen in the new
time coordinate 
 as collapsing towards the t � 0 singu-
larity, which is approached only in the limit 
!1. Notice
that this singularity avoiding time coordinate 
 is not the
proper time nor it does coincide with the number of cross-
ing times, due to the collapse of the lapse.

As in the gauge waves test, the simulation is performed
for the Z4harm and the ZQ4 evolution system with differ-
ent values of �. The maximum norm of the lapse � is
plotted in Fig. 7, showing two different kinds of behavior
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ingularity avoiding behavior. This is indicated by
the collapse of the lapse, which can clearly be seen
both in the harmonic gauge and in the ZQ4 case with
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0− 3

0− 2

0− 1

1

10

t ime

har m

Q4(η = 1)

Q4(η = 0)

7. Maximum norm of the lapse for both the harmonic and
4 gauges. After 100 crossing times the Q4 gauge with � �
s too close to the singularity and crashes, while the other

continue evolving until 1000 crossing times without a
em. The simulations are performed in a channel of 5� 5�
ints with length L � 1 in the longest direction. The time

is again dt � 0:25dx and some amount of Kreiss-Oliger
ation has been added.
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FIG. 8. Maximum norm of the nontrivial component of the
shift for the same simulation as in Fig. 7. The time scale has been
changed from the linear to the logarithmic type in order to clarify
the plot. Note that the Q4 gauge with � � 0 leads to a monotonic
growing of the norm of the shift. In the other cases, we can see
the strong oscillations of the harmonic case as contrasted with
the smooth behavior of the Q4 gauge with � � 1.
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� � 1. This behavior is very similar to the zero shift
case already described in [41]. We can see in Fig. 8
that the rate of change of the shift is much slower in
the ZQ4 case with � � 1 than in the harmonic case,
where strong time oscillations appear. This shows the
freezing effect of the Q4 gauge, when compared with
harmonic simulations, even for singularity avoiding
choices of the gauge damping parameters.
� L
apse freezing behavior. This is indicated by the
absence of lapse collapse in the ZQ4 case with � �
0. Since the metric is collapsing, one gets close to the
singularity in a finite amount of coordinate time and
the code crashes. When translated in terms of proper
9

8

7

6

5

4

1

1

1

1
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time

dx = 1/50
dx = 1/100
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9. The � quantity is plotted for three different resolutions
1=50, dx � 1=100, dx � 1=200) with the Q4 gauge and

1, showing a (second order) convergence to the exact zero
on.
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time, however, all the simulations arrive approxi-
mately to the same point. We can see in Fig. 8 a sharp
increase in (the norm of) the shift, which is trying to
freeze the collapse by increasing the observers out-
going speed.
It is worth noting here that this qualitative difference in the
numerical simulations is triggered by the choice of the
second damping parameter �, without affecting the prin-
cipal part of the original HAKE equation.

The convergence of the solution for the ZQ4 system with
� � 1 is shown in Fig. 9, where the � scalar is plotted for
three different resolutions.
VI. CONCLUSIONS

In this paper a large suite of hyperbolic gauge conditions
has been studied with some detail, pointing out their ad-
vantages and possible problems.

We have paid particular attention to conditions derived
from geometrical scalars devised in order to minimize
spurious coordinate effects. Our analysis reveals several
important consequences applicable to these conditions and
also all related ones (whose principal parts coincide with
those studied here, as the gamma driver condition):

� M
inimization of these quantities leads to a character-

istic structure that yields inflow modes near the black
hole excision surfaces. This implies that some kind of
boundary condition is needed. However, as men-
tioned, this is a delicate issue as main and gauge
variables are intertwined in the inflow modes.
� R
elated conditions, obtained by the addition of suit-
able advection terms to the equations, do resolve this
issue but at a cost of bringing two more: the condi-
tions do not necessarily minimize the sought-after
scalars and there are surfaces where the system be-
comes weakly hyperbolic.
Notice that there is a way to avoid most of these problems
altogether at the hyperbolic level by considering that a
suitable first integral of the conditions does exist (which
could be ensured by adding appropriate lower order terms
to the equations) [10]. However, the resulting conditions
need not minimize the scalars and thus spurious coordinate
effects might very well remain.

As an alternative, a new coordinate condition, which has
been introduced very recently, is used as a gauge prescrip-
tion for numerical relativity applications. The main char-
acteristic of this gauge condition (Q4) is that it tries to
‘‘minimize’’ the deviation of the time lines from the time-
like (quasi) Killing vectors, if there is one present on the
space-time. The analogy with the 3D minimal strain con-
dition is pointed out, and the evolution equations for the
gauge quantities are written explicitly. The full list of
eigenvectors is given, showing how to pass from a second
order system (in space) to first order without changing the
structure of the eigenvectors. In order to enforce the de-
sired solution, some damping terms are included in the
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gauge equations, which allow for two kinds of interesting
alternatives. The first one corresponds to freezing all met-
ric components and it can be used when the space-time
contains a (quasi)symmetry. The second one does not
attempt to minimized the rate change of the lapse, but
rather to drive it so that its rate of change is governed by
the trace of the distortion. This provides a less restrictive
alternative gauge condition for more general situations.

Finally, some numerical experiments have been per-
formed in order to check the properties of the Q4 gauge,
the condition which appears as the most promising one
within generic hyperbolic conditions derived in a geomet-
rical way. First, with the robust stability test, it has been
shown that the evolution system leads to solutions which
are consistent with those of a well posed problem even at
the sonic points, where the system is weakly hyperbolic
just for some specific directions.4 The gauge waves test is
also employed to check the conditions, showing that the Q4
gauge (for the choice � � 0) indeed aligns the time lines
with the time Killing vector, thus leading to a stationary
state. The Gowdy waves test allows to further discriminate
4Since weak hyperbolicity only occurs for specific directions at th
issue is often successfully dealt w
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the effect of the damping parameters, leading to either a
singularity avoidant or to a lapse freezing behavior (when
the lapse is driven either by the conditionQ! trQ orQ!
0, respectively).
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APPENDIX: SOURCES OF THE Z4 EVOLUTION SYSTEM
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