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We study two classes of static uniform black string solutions in a �4� 1�-dimensional SU(2) Einstein-
Yang-Mills model. These configurations possess a regular event horizon and correspond in a four-
dimensional picture to axially symmetric black hole solutions in an Einstein-Yang-Mills-Higgs-U(1)-
dilaton theory. In this approach, one set of solutions possesses a nonzero magnetic charge, while the other
solutions represent black holes located in between a monopole-antimonopole pair. A detailed analysis of
the solutions’ properties is presented, the domain of existence of the black strings being determined. New
four-dimensional solutions are found by boosting the five-dimensional configurations. We also present an
argument for the nonexistence of finite mass hyperspherically symmetric black holes in SU(2) Einstein-
Yang-Mills theory.
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I. INTRODUCTION

Black holes in more than four spacetime dimensions
have a much richer spectrum of horizon topologies than
their four-dimensional counterparts. In a d-dimensional
asymptotically flat spacetime, the static vacuum black
hole of a certain mass with horizon topology Sd�2 is
uniquely described by the Schwarzschild-Tangherlini so-
lution [1]. While this solution is hyperspherically symmet-
ric, so-called black strings also exist [2]. Such
configurations are important if one supposes the existence
of extra dimensions in the Universe, which are likely to be
compact and described by a Kaluza-Klein (KK) theory.
The simplest vacuum static solution of this type (and the
only one known in closed form) is found by assuming
translational symmetry along the extra coordinate direction
and corresponds to a uniform black string with horizon
topology Sd�3 � S1. Though this solution exists for all
values of the mass, it is unstable below a critical value as
shown by Gregory and Laflamme [3]. This was interpreted
to mean that a light uniform string decays to a (hyper-
spherical) black hole since that has higher entropy.
However, Horowitz and Maeda [4] argued that such a
transition has an intermediate step: the light uniform string
decays to a nonuniform string, which then eventually
decays to a black hole. This prompted a search for this
missing link, and a branch of nonuniform black string
solutions was found in [5,6]. Nevertheless, a number of
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aspects still remains to be clarified and the literature on
nonuniform black string solutions is continuously growing
(see [7] for a recent review).

The uniform black string solutions have been explored
from many points of view, in particular, by including
various matter fields. However, most of the studies in the
literature restricted to the case of an Abelian matter con-
tent. At the same time, a number of results obtained in the
literature clearly indicates that the solutions of Einstein’s
equations coupled to non-Abelian matter fields possess a
much richer structure than in the U(1) case (see [8] for a
survey of the situation in d � 4). Here the only case
systematically discussed in the literature is d � 5 and an
SU(2) gauge field, for an Ansatz with no dependence on
the extra z coordinate. No exact solutions with reasonable
asymptotics are available analytically in this case and the
field equations have to be solved numerically. As a new
feature, both globally regular and black string solutions are
possible to exist. The simplest vortex-type configurations
have been constructed in [9] and are spherically symmetric
in four dimensions, extending trivially into one extra di-
mension. The black string counterparts of these solutions
have been constructed recently in [10] and found to present
a complicated branch structure.

However, as argued in [11], the existence of a non-
Abelian winding number implies a very rich set of possible
boundary conditions, the configurations which are spheri-
cally symmetric in four dimensions corresponding to the
simplest case. A discussion of a more general set of vortex-
type, globally regular solutions has been presented in [11].
In a four-dimensional picture these correspond to axially
symmetric multimonopoles (MM) and monopole-
-1 © 2005 The American Physical Society
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antimonopole (MA) solutions in an Einstein-Yang-Mills-
Higgs (EYMH) theory with a nontrivial coupling to a
Maxwell and a dilaton field, respectively. A preliminary
discussion of the black string counterparts of some of these
solutions has been presented in [12].

It is the purpose of this paper to present a systematic
analysis of the uniform black string solutions in Einstein-
Yang-Mills (EYM) theory in five spacetime dimensions,
for two different sets of boundary conditions satisfied by
the matter fields at infinity. Apart from the solutions dis-
cussed in [10], we present a detailed study of the deformed
black string configuration, which in the �3�
1�-dimensional reduced theory can be interpreted as de-
scribing axially symmetric multimonopole black holes and
non-Abelian black holes with magnetic dipole hair, respec-
tively. Although all fields are independent on the extra
coordinate, the event horizon of these solutions is de-
formed (the horizon circumference along the equator dif-
fers from the corresponding quantity evaluated along the
poles), which resembles the nonuniform black string case
[5,6].

Although the no hair conjecture is known to be violated
for d � 5 solutions with one compact extra dimension (see
e.g. the discussion in [13]) the solutions presented in this
paper provide another counterexample to this conjecture.
However, this is not a surprise, given the relation noticed
above with the �3� 1�-dimensional theory, which is
known to present hairy black hole solutions.

As already noticed in [12], after boosting the d � 5 con-
figurations and reducing to d � 4, we obtain new four-
dimensional solutions which rotate and present a nonzero
non-Abelian electric charge. For the particular case of con-
figurations which are spherically symmetric in four dimen-
sions, this procedure generates d � 4 dyonic black holes.

We argue here that these solutions are interesting from
yet another point of view. Different from other known
theories, no d � 5 hyperspherically symmetric finite
mass EYM solutions exist in five dimensions, unless one
considers the inclusion of higher order curvature terms in
the action [14]. The nonexistence proof for the globally
regular case has been presented in [9] (see also [15]). In
Appendix A, we present a similar argument for black hole
solutions. Therefore, the simplest d � 5 solutions of the
EYM theory corresponds to uniform vortices and black
strings.

Our paper is organized as follows: In Sec. II, we give the
model including the Ansatz and the boundary conditions.
In Sec. III, we describe our numerical results. The proper-
ties of the vortex solutions are also reviewed with a number
of new results being presented. In Sec. IV, we comment on
the new d � 4 solutions that we obtain by boosting the d �
5 EYM configurations, and in Sec. V we give our
conclusions.

Most of the notations and sign conventions used in this
paper are similar to those in Ref. [11].
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II. THE MODEL

A. Action principle

We consider the five-dimensional SU(2) Einstein-Yang-
Mills action

I5 �
Z
d5x

����������
�gm
p

�
R

16�G
�

1

2g2 TrfFMNFMNg
�

(1)

(throughout this paper, the indices fM;N; :::g will denote
the five-dimensional coordinates and f�; �; :::g the coordi-
nates of the four-dimensional physical spacetime).

HereG is the gravitational constant, R is the Ricci scalar
associated with the spacetime metric gMN , and FMN �
1
2 �

aF�a�MN is the gauge field strength tensor defined as
FMN � @MAN � @NAM � i�AM; AM�; where the gauge
field is AM �

1
2 �

aA�a�M , �a being the Pauli matrices and g
the gauge coupling constant.

Variation of the action (1) with respect to gMN and AM
leads to the field equations

RMN �
1

2
gMNR � 8�GTMN; (2)
rMF
MN � i�AM; F

MN� � 0; (3)

where the YM stress-energy tensor is

TMN � 2 Tr�FMPFNQg
PQ �

1

4
gMNFPQF

PQ�: (4)
B. The Ansatz

In what follows we will consider uniform black string
configurations, assuming that both the matter functions and
the metric functions are independent on the extra coordi-
nate x5 	 z. Without any loss of generality, we consider a
five-dimensional metric parametrization

ds2 � e�a ���dx
�dx� � e2a �dz� 2W �dx

��2; (5)

with a � 2=
���
3
p

.
The four-dimensional reduction of this theory with re-

spect to the Killing vector @=@z has been presented in [11].
For the reduction of the YM action term, a convenient
SU(2) Ansatz is

A �A�dx� � g��dz� 2W �dx��; (6)

where W � is a U(1) potential, A� is a purely four-
dimensional gauge field potential, while � corresponds
after the dimensional reduction to a triplet Higgs field.
-2
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This leads to the four-dimensional action principle

I4�
Z
d4x

��������
��
p

�
1

4�G

�
R

4
�

1

2
r� r� 

�e2
��
3
p
 1

4
G��G��

�
�e2 =

��
3
p 1

2g2 TrfF ��F
��g

�e�4 =
��
3
p

TrfD��D��g�2e2 =
��
3
p 1

g
G��Trf�F ��g

�2e2 =
��
3
p

G��G��Trf�2g

�
; (7)

where R is the Ricci scalar for the metric ���, while
F �� � @�A� � @�A� � i�A�;A�� and G�� �

@�W � � @�W � are the SU(2) and U(1) field strength
tensors defined in d � 4.

Here we consider five-dimensional configurations pos-
sessing two more Killing vectors apart from @=@z. These
are �1 � @=@’, corresponding to an axial symmetry of the
four-dimensional metric sector (where the azimuth angle ’
ranges from 0 to 2�), and �2 � @=@t, with t the time
coordinate.

We consider the following parametrization of the four-
dimensional line element, employed also to find globally
regular solutions

d�2 � ���dx�dx� � �ttdt2 � d‘2

� �f�r; ��dt2 �
q�r; ��
f�r; ��

�dr2 � r2d�2�

�
l�r; ��
f�r; ��

r2sin2�d’2; (8)

and the function gzz depending also on r; � only. Here t is
the time coordinate, r is the radial coordinate, while 0 

� < � is a polar angle.

We take the event horizon to reside at a surface of
constant radial coordinate r � rh > 0, characterized by
the condition f�rh� � 0, i.e. gtt � 0. The remaining metric
potentials take nonzero and finite values at the event
horizon.

The construction of the corresponding YM Ansatz com-
patible with the spacetime symmetries has been discussed
in [11]. For the time and extra-direction translational sym-
metry, we choose a gauge such that @A=@t � @A=@z � 0.
However, the action of the Killing vector �1 can be com-
pensated by a gauge rotation L’AN � DN

� ; with � being
a Lie algebra valued gauge function [16]. According to the
standard analysis, this introduces a winding number n in
the Ansatz (which is a constant of motion and is restricted
to be an integer).

As discussed in [11], the most general five-dimensional
Yang-Mills Ansatz compatible with these symmetries con-
tains 15 functions: 12 magnetic and 3 electric potentials

AN �
1
2A
�r�
N �r; ���

n
r �

1
2A
���
N �r; ���

n
� �

1
2A
�’�
N �r; ���

n
’; (9)
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where �nr , �n�, and �n’ denote the scalar product of the vector
of Pauli matrices ~� � ��1; �2; �3� with the unit vectors
~enr � �sin� cosn’; sin� sinn’; cos��, ~en� � �cos� cosn’;
cos� sinn’;� sin��, ~en’ � �� sinn’; cosn’; 0�.

Searching for solutions within the most general Ansatz
is a difficult task. Therefore, similar to [11] we use a purely
magnetic reduced Ansatz with six essential non-Abelian
potentials and

A�r�r � A���r � A�r�� � A���� � A�’�’ � A�’�5 � A�a�t � 0:

The consistency of this reduction has been verified at the
level of the YM equations.

However, for configurations with a nontrivial � depen-
dence the gauge potentials A’, A5 have components along
the same directions in isospace, which implies that the T’5

component of the energy-momentum tensor will be non-
zero [11]. Thus the Einstein equations imply the existence,
in the five-dimensional metric Ansatz (5), of one extra-
diagonal g5’ metric function, i.e.

W � � J�r; ��	’�: (10)

A suitable parametrization of the nonzero components
of A�a�N which factorizes the trivial � dependence and
admits a straightforward four-dimensional picture is

A�’�r � 1
rH1�r; ��; A�’�� � 1�H2�r; ��;

A�r�’ � �n sin�H3�r; �� � 2gJ�r; ���1�r; ��;

A���’ � �n sin��1�H4�r; ��� � 2gJ�r; ���2�r; ��;

A�r�5 � �1�r; ��; A���5 � �2�r; ��:

(11)

The gauge-invariant quantities expressed in terms of these
functions will be independent on the angle ’.

To fix the residual Abelian gauge invariance we choose
the gauge condition

r@rH1 � @�H2 � 0:

The d � 5 EYM configurations extremize also the ac-
tion principle (7) and can be viewed as solutions of the
four-dimensional theory. In this picture, Hi�r; �� are the
magnetic SU(2) gauge potentials,  �r; �� is a dilaton,
J�r; �� is a U(1) magnetic potential, while �1�r; ��,
�2�r; �� are the components of a Higgs field. We mention
also that, similar to the pure (E)-YMH case, one may
define a ’t Hooft field strength tensor and an expression
for the non-Abelian electric and magnetic charges within
the action principle (7).

C. Particular solutions

Restricting to configurations which are spherically sym-
metric in d � 4, one exact solution of the d � 5 EYM
equations is found taking the product of the d � 4
Schwarzschild black hole with a circle (here we consider
an isotropic coordinate system)
-3
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ds2 �

�
1�

rh
2r

�
4
�dr2 � r2d�2� �

�
1� rh

2r

1� rh
2r

�
2
dt2 � dz2;

(12)

and for a pure gauge SU(2) field H1 � H3 � �2 � 0,
�1 � const, H2 � H4 � 1, the event horizon being lo-
cated at r � rh=2> 0.

The second solution is more important and corresponds
to an embedded U(1) configuration with

ds2 �

�
r2 � 2�r� � r��r� �r� � r��2

4r2

�
2
�dr2 � r2d�2�

�

�
1�

4r�r

r2 � 2�r� � r��r� �r� � r��2

�
dt2

�

�
1�

4r�r

r2 � 2�r� � r��r� �r� � r��2

�
dz2; (13)

and Hi � �2 � 0, �1 � const, where r� and r� are two
constants with r�r� � 4
2n2=3. In a four-dimensional
perspective, this describes a Dirac monopole in an
Einstein-Maxwell-dilaton theory [the U(1) field originat-
ing here from the d � 5 non-Abelian field], with a dilaton
coupling constant 1=

���
3
p

(see e.g. [17]). These solutions
have an regular event horizon at r � r� � r�. There is
also a curvature singularity at r � r�. The physical mass
of the solution is M � �2r� � r��=4, while the magnetic
charge is QM �

��������������
3r�r�
p

=2.

D. Boundary conditions

1. Metric functions

To obtain finite energy density black string solutions that
asymptote to M4 � S1, where M4 is the four-dimensional
Minkowski spacetime, the metric functions have to satisfy
the boundary conditions

@r jr�rh � fjr�rh � qjr�rh � ljr�rh � @rJjr�rh � 0;

(14)

on the event horizon, and

fjr�1 � qjr�1 � ljr�1 � 1;  jr�1 � Jjr�1 � 0;

(15)

at infinity. For solutions with parity reflection symmetry
(the case considered in this paper), the boundary conditions
along the �z and �� axes are (with �z � r cos� and �� �
r sin�)

@� j��0;�=2 � @�Jj��0;�=2 � @�fj��0;�=2 � @�qj��0;�=2

� @�lj��0;�=2 � 0: (16)
2. Matter functions

In [11] the following general set of boundary conditions
at r! 1 has been proposed for the magnetic potentials �1

and �2
104008
lim
r!1

�1 � � cosm�; lim
r!1

�2 � � sinm�; (17)

with m � 0; 1; . . . , and � an arbitrary constant.
The expression of the boundary conditions satisfied by

the gauge functionsHi at r! 1 depends on the value ofm
and is given in [11]. In this paper we restrict ourselves to
the simplest cases, m � 0 and m � 1, corresponding in a
four-dimensional picture to MM and MA configurations,
respectively. For m � 0 one finds

Hijr�1 � 0; (18)

with i � 1; 4, while them � 1 solutions are found within a
set of boundary conditions

H1jr�1 � H2jr�1 � 0; H2jr�1 � H4jr�1 � �1:

(19)

In both cases, the boundary values at the event horizon are

H1jr�rh � 0;

@rH2jr�rh � @rH3jr�rh � @rH4jr�rh � 0;

@r�1jr�rh � @r�2jr�rh � 0:

(20)

The conditions along the axes are determined by the sym-
metries and finite energy density requirements. For m � 0
solutions we impose

H1j��0;�=2 � H3j��0;�=2 � �2j��0;�=2 � 0;

@�H2j��0;�=2 � @�H4j��0;�=2 � @��1j��0;�=2 � 0;
(21)

which in a four-dimensional picture implies a magnetic
charge QM � n. The conditions satisfied by the m � 1
configurations are

H1j��0;�=2 � H3j��0;�=2 � @�H2j��0;�=2

� @�H4j��0;�=2 � 0;

@��1j��0 � �1j���=2 � �2j��0 � @��2j���=2 � 0:

(22)

In addition, regularity on the �z axis requires the conditions
lj��0 � qj��0, H2j��0 � H4j��0 to be satisfied, for any
values of the integers �m; n�.

E. Physical parameters

The physical parameters of the solution can be com-
puted by taking either a five-dimensional viewpoint, or in
terms of the four-dimensional theory that is obtained via
KK reduction. Both kind of viewpoints are of course
directly related, but the five-dimensional theory is simpler
and so we take this viewpoint here.

For a given solution we consider the asymptotic region
as defined by r! 1. The field equations imply the follow-
ing asymptotic form of the relevant metric potentials gtt
and gzz
-4
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gtt ’ �1�
ct
r
�O�1=r2�; gzz ’ 1�

cz
r
�O�1=r2�;

(23)

while the functions which enter the four-dimensional line
element (8) behave for large r as

f ’ 1�
f1

r
�O�1=r3�;

q ’ 1�
q1 � q2sin2�

r2 �O�1=r3�;

l ’ 1�
q1

r2 �O�1=r
3�;

(24)

where ct; cz, f1, q1, and q2 are arbitrary real constants
(with f1 � cz=2� ct).

Here it is convenient to use the general formalism pro-
posed in [18] (see also [19]). The d � 5 spacetime has a
translation-invariant direction z and hence it can be as-
signed a 2� 2 ADM stress-energy tensor Tab, a; b � t; z.
This is computed from the asymptotic metric gMN �
�MN � hMN (in Cartesian coordinates) as

Tab �
1

16�G

Z
d��2�r2ni��ab�@ihcc � @ih

j
j � @jh

j
i �

� @ihab��; (25)

where ni is the radial normal vector and a; b; c run over
parallel directions t; z while i; j run over transverse direc-
tions. The integration is over the transverse angular direc-
tions. Using this we obtain the mass and momentum as the
integrated energy and momentum densities.

In terms of ct, cz the massM and the tension ~� along the
z direction are given by

M �
L

4G
�2ct � cz�; ~� �

1

4G
�ct � 2cz�; (26)

where L is the length of the extra dimension, which—if
not stated differently—is set to one in this paper. Note that
a similar mass expression is found by applying the
Hawking-Horowitz mass formula [20]. Another relevant
quantity here is the relative tension [21] defined as

nt �
~�L
M
�
ct � 2cz
2ct � cz

; (27)

with 0 
 nt 
 2 for any d � 5 static solution. A vacuum
uniform black string has nt � 1=2 and exists for all values
of M, while in the nonuniform case, knowing the exact
curve of a branch in the �M;nt� phase diagram enables one
to obtain the entire thermodynamics of that branch.

F. Temperature, entropy, and deformation of the
horizon

The zeroth law of black hole physics states that the
surface gravity  is constant at the horizon of the black
hole solutions, where
104008
2 � ��1=4�gttgij�@igtt��@jgtt�jr�rh : (28)

To evaluate , we use the following expansions of the
metric functions at the horizon:

f�r; �� � f2���
�
r� rh
rh

�
2
�O

�
r� rh
rh

�
3
;

q�r; �� � q2���
�
r� rh
rh

�
2
�O

�
r� rh
rh

�
3
;

l�r; �� � l2���
�
r� rh
rh

�
2
�O

�
r� rh
rh

�
3
:

(29)

Since from general arguments the Hawking temperature T
is proportional to the surface gravity , T � =�2��; we
obtain the relation

T �
f2���

2�rh
�����������
q2���

p : (30)

One can show, with help of the �r�� Einstein equation
which implies

f2q2;� � 2q2f2;�; (31)

that the temperature T, as given in (30), is indeed constant.
For the line element (8), the area A of the event horizon

is given by

A � 2L�
Z �

0
d� sin�

���������������������
l2���q2���

p
f2���

r2
h: (32)

According to the usual thermodynamic arguments, the
entropy S is proportional to the area A

S �
A

4G
; (33)

leading to the product

TS �
rhL
4G

Z �

0
d� sin�

����������
l2���

q
: (34)

The horizon parameter rh entering the boundary con-
ditions is not a physical parameter. We thus introduce the
area parameter x� with

x� �

����������
A

4�L

s
(35)

to characterize the solutions.
Since the energy density of the matter fields is angle

dependent at the horizon, the horizon will be deformed. A
suitable parameter to measure the deformation of the hori-
zon of the black string solutions is given by the ratio � :�
Le=Lp of the horizon circumference along the equator

Le �

 Z 2�

0
d’e�a =2

���
l
f

s
sin�r

!���������r�rh;���=2

; (36)

and along the poles
-5
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Lp � 2

 Z �

0
d�e�a =2

���
q
f

s
r

!���������r�rh;’�0

: (37)

Note that the nonuniform black string solutions [5,6] have
also a deformed horizon, with a different physical origin,
however.

G. A computation of the Euclidean action

The expression (33) for the entropy can be derived in a
more rigorous way by using Euclidean quantum gravity
arguments. Here we start by constructing the path integral
[22]

Z �
Z
D�g�D���e�iI�g;�� (38)

by integrating over all metric and matter fields between
some given initial and final hypersurfaces,� corresponding
here to the SU(2) potentials. By analytically continuing the
time coordinate t! it, the path integral formally con-
verges, and in the leading order one obtains

Z ’ e�Icl (39)

where Icl is the classical action evaluated on the equations
of motion of the gravity/matter system. In computing Icl,
one should supplement (1) with the boundary term

Ib � �
1

8�G

Z
@M

d4x
�������
�h
p

�K � K0�; (40)

where K is the trace of the extrinsic curvature for the
boundary @M and h is the induced metric of the boundary.
In (40) we have already subtracted the contribution of the
background spacetime which is taken to be flat spaceM4 �
S1.

We note that the considered Lorentzian solutions of the
EYM equations extremize also the Euclidean action, t! it
having no effects at the level of the equations of motion.
The value of � is found here by demanding regularity of
the Euclideanized manifold as r! rh, which together with
the expansion (29) gives � � 1=T. The physical interpre-
tation of this formalism is that the class of regular sta-
tionary metrics forms an ensemble of thermodynamic
systems at equilibrium temperature T [23]. Z has the
interpretation of the partition function and we can define
the free energy of the system F � ���1 logZ. Therefore,

logZ � ��F � S� �M; (41)

or

S � �M� Icl; (42)

straightforwardly follows.
To compute Icl, we make use of the Einstein equations,

replacing the R volume term with 2Rtt � 16�GTtt . For our
purely magnetic Ansatz, the term Ttt exactly cancels the
matter field Lagrangian in the bulk action Lm �
�1=2g2 Tr�FMNFMN� (see also the general discussion in
104008
[24]). The divergent contribution given by the surface
integral term at infinity in Rtt is canceled by the boundary
action (40) and we arrive at the simple finite expression

Icl � �2ct � cz�
L�

4�G
�
�L
2G

Z �

0
d� sin�

���������������������
l2���q2���

p
f2���

r2
h:

(43)

Replacing now in (42) (where M is the mass energy
computed in Sec. II D), we find

S �
�L
2G

Z �

0
d� sin�

���������������������
l2���q2���

p
f2���

r2
h; (44)

which is one quarter of the event horizon area, as expected.
III. NUMERICAL SOLUTIONS

For a nonvanishing magnitude of the gauge potential A5

at infinity, �, it is convenient to work with dimensionless
variables by taking the rescalings r! r�g and �! �=�.
Thus the field equations depend only on the coupling
constants 
 �

����������
4�G
p

�, yielding the dimensionless mass
(per unit length of the extra dimension) � �
�4�G�2��1M, the dimensionless tension being � �
�4�G�2��1 ~�. For 
 � 0 (no gravity) and no dependence
on the z coordinate, the four-dimensional picture corre-
sponds to the SU(2)-YMH theory in a flat M4 background.

The solutions’ properties crucially depend on the value
of m and will be discussed separately for m � 0 and m �
1. In each case, we start by presenting a review of the
globally regular vortex-type configurations which turn out
to be crucial in the understanding of the domain of exis-
tence of the uniform black string solutions.

The spherically symmetric solutions are found by using
the differential equation solver COLSYS [25]. In the axially
symmetric case, the resulting set of 11 partial differential
equations are solved by using the program FIDISOL, based
on the iterative Newton-Raphson method. Details of the
FIDISOL code are presented in [26]. In this scheme, a new
radial variable is introduced which maps the semi-infinite
region �rh;1� to the closed region �0; 1�. Our choice for
this transformation was x � 1� rh=r. Typical grids have
sizes 100� 30, covering the integration region 0 
 x 
 1
and 0 
 � 
 �=2. The typical numerical error for the
functions is estimated to be on the order of 10�3.

A. m � 0 vortex-type configurations

The equations of motion admit next to black string
solutions also vortex-type solutions which exist on the
full interval �0:1�. The boundary conditions satisfied by
these solutions as r! 1 and on the axes are similar to the
-6
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black string case, while as r! 0 one imposes

H1jr�0 � H3jr�0 � 0; H2jr�0 � H4jr�0 � 1;

�1jr�0 � �2jr�0 � 0;

@r jr�0 � @rfjr�0 � @rqjr�0 � @rljr�0 � Jjr�0 � 0:

(45)
FIG. 1. The profiles of the metric functions f,  at the origin
(with � � 0), f�0�,  �0� are shown as a function of 
 for the
deformed non-Abelian vortices with m � 0, n � 2. The upper
and lower curve correspond to the 1. and 2.branch of solutions,
respectively. Also shown is the mass per winding number of the
solutions, �=2, where the 1.branch has lower energy than the
2.branch.

FIG. 2. The profiles of the metric functions f and  are shown
for 
 � 0:8 on the first (main) branch (solid) and on the second
branch (dashed) of m � 0 non-Abelian deformed vortex solu-
tions (n � 2). x here denotes the compactified coordinate x 	
r=�1� r�. Note that the two solid curves close to each other
distinguish between � � 0 and � � �=2.
1. Spherically symmetric solutions

For m � 0, n � 1, all metric and matter functions de-
pend only on the radial coordinate r. For the matter func-
tions we then have

H1 � H3 � �2 � 0; H2 � H4 � K�r�;

�1 � �1�r�;
(46)

while for the metric functions we get J � 0 and q � l such
that the metric becomes diagonal:

ds2 � e�a �r�
�
�f�r�dt2 �

q�r�
f�r�
�dr2 � r2d�2

� r2sin2�d’2�

�
� e2a �r�dz2: (47)

In [9] it has been found that several branches of solutions
can be constructed when the effective gravitational cou-
pling 
 is varied. While the first branch exists for 
 2
�0:1:268�, the successive branches exist on smaller and
smaller intervals of 
, e.g. the second branch for 
 2
�0:312:1:268�, the third for 
 2 �0:312:0:419� and the
fourth for 
 2 �0:395:0:419�. Further branches can be
constructed in the interval 
 2 �0:395:0:419�, but have
not been determined in detail. The endpoint of the branches
is reached when the interval in 
 shrinks to a point at 
 �

cr. It has been noticed in [9] that the gauge field function
H2�r� � H4�r� 	 K�r� becomes oscillating around a fixed
point. The number of oscillations increases along succes-
sive branches and becomes infinite in the limit 
! 
cr.

For one fixed value of 
, we thus have one, two, three,
and four globally regular vortex solutions for 
 2
�0:0:312�, 
 2�0:419:1:268�, 
 2 �0:312:0:395�, and 
 2
�0:395:0:419�, respectively. The mass of the fundamental
solution on the first (the ‘‘main’’) branch is lower than the
mass of the solution on any successive branch for a fixed
value of 
. We would thus expect the ‘‘higher’’ solutions to
be unstable with respect to the fundamental solution.

2. Axially symmetric solutions

The spherically symmetric configurations admit axially
symmetric generalizations, obtained by taking n > 1 in the
matter Ansatz. A general discussion of these solutions has
been presented in [11]. Here we report new results for n �
2. While in [11] only one branch of solutions in 
 has been
constructed, we have reconsidered this problem and man-
aged to construct a second branch of deformed non-
Abelian vortices. While the first (main) branch exists for
104008

 2 �0:1:28�, we constructed a second branch for 
 2
�0:88:0:1:28�. This is demonstrated in Fig. 1, where we
plot the mass of the solution per winding number �=2 as a
function of 
. Clearly, the solutions on the second branch
have higher energy than those on the main branch for the
same value of 
. We also show the values of the metric
functions f and  at the origin (with � � 0), f�0�, and
 �0�. Clearly, the solutions on the two branches are differ-
ent for one fixed value of 
. f�0� on the second branch of
solutions is very close to zero. This is also demonstrated in
-7



FIG. 4. The value of the gauge field function of the uniform
black string (m � 0, n � 1) at the horizon H2�x�� � H4�x�� 	
K�x�� is shown as a function of x� for 
 � 0:2 and 
 � 0:5. The
upper and lower curves correspond to the 1. and 2.branch of
solutions, respectively.
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Fig. 2, where we compare the profiles of the metric func-
tions f and  for 
 � 0:8 on the two branches.

We believe that several more branches exist, but we were
unable to construct them. Again, the pattern of globally
regular deformed vortex solutions is important to under-
stand the domain of existence of the deformed black
strings, which we will discuss below.

B. m � 0 black string configurations

1. Spherically symmetric solutions

Here we present a detailed analysis of the model studied
in [10,12]. In [10], black string solutions for a fixed value
of the horizon value and varying gravitational coupling 

have been constructed. It has been found that the pattern of
solutions is very similar to that observed for non-Abelian
vortices. Several branches of solutions exist and the extend
of the branches in
 gets smaller and smaller for successive
branches. In [12], the gravitational coupling has been fixed
to 
 � 0:5 and the horizon radius has been varied. Two
branches of solutions in x�, which both exist for x� 2
�0:x�;max�, have been found with x�;max � 0:633. In the
limit x� ! 0, the solutions on the first and second branch,
respectively, correspond to the globally regular non-
Abelian vortex solution on the main and second branch
of vortex solutions for fixed 
. It has been suggested in
[12] that two branches in x� exist for all fixed values of 
.
The numerical results presented here confirm this expec-
tation. In Fig. 3 we show the domain of existence of the
black string solutions in the �
-x�� plane.

As is clearly seen from this figure, the critical behavior
of the solutions depends crucially on the choice of 
. For

 2 �0:0:312� the solutions on the second branch tend to
the Einstein-Maxwell-dilaton (EMD) solutions for a finite
0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α

x ∆

EMD

EMD + black
strings

2.
3.

4. or
higher

FIG. 3. The domain of existence of the m � 0 uniform black
string solutions in the �
-x�� plane is shown. ‘‘2.’’, ‘‘3.’’, and ‘‘4.
or higher’’ indicate to which non-Abelian vortex solution the
black strings on the second x� branch tend in the limit x� ! 0.
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value of x� � x�;cr. This is demonstrated in Fig. 4 for 
 �
0:2, where the value of the gauge field function H2�x� �
H4�x� 	 K�x� at the horizon, K�x��, is shown as a function
of x�. Clearly, the second branch of solutions ends at
K�x�;cr� � 0, which together with the boundary conditions
at infinity tells us that K�x� 	 0.

In addition, the value of the gauge field function �1 at
x�;cr tends to one for x� ! x�;cr (see Fig. 5) such that
�1�x� 	 1. The gauge field is thus trivial and becomes
that of an EMD solution. At the same time, the metric
function  , which in the four-dimensional picture corre-
FIG. 5. The value of the gauge field function �1 of the uniform
black string (m � 0, n � 1) at the horizon, �1�x��, is shown as a
function of x� for 
 � 0:2 and 
 � 0:5. The lower and upper
curves correspond to the 1. and 2.branch of solutions, respec-
tively.
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FIG. 6. The value of the metric function  of the uniform black
string (m � 0, n � 1) at the horizon  �x��, is shown as a
function of x� for 
 � 0:2 and 
 � 0:5. The upper and lower
curves correspond to the 1. and 2.branch of solutions, respec-
tively.

FIG. 7. The value of the gauge field function H2 of the de-
formed black string (m � 0, n � 2) at the horizon, H2�x�; � �
0� is shown as a function of x� for 
 � 0:1 and 
 � 0:5. The
upper and lower curves correspond to the 1. and 2.branch of
solutions, respectively. Here and in Figs. 8 and 9, the curves for
different � are essentially equal to those for � � 0.

FIG. 8. The value of the gauge field function �1 of the
deformed black string (m � 0, n � 2) at the horizon,
�1�x�; � � 0� is shown as a function of x� for 
 � 0:1, 
 �
0:5, and 
 � 1:0. The lower and upper curves correspond to the
1. and 2.branch of solutions, respectively.
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sponds to a dilaton, tends to the dilaton field of the corre-
sponding EMD solution. This can e.g. be seen by compari-
son of the value of  �x�;cr� (see Fig. 6) with that of the
EMD solution with same horizon value.

For 
 � 0:5, the picture is completely different. Again,
two branches of solutions exist, but now the second branch
extends all the way back to x� � 0.K�x�� and �1�x�� tend
back to one and zero, respectively, for the values of the
globally regular vortex solution (see Figs. 4 and 5). The
solutions reach the globally regular vortex solutions dis-
cussed in Sec. III B for x� ! 0. However, Fig. 5 shows that
the terminating solution of the second branch is different
from that of the first branch. The limiting solutions of the
first and second branch, respectively, correspond to the
fundamental and second globally regular vortex solutions.
The reason why the second branch terminates in the second
regular solution relates to the fact that only two different
globally regular vortex solutions exist for 
 � 0:5. If we
had chosen a value of 
 for which more than two vortex
solutions exist, the second branch of black strings would
terminate into the ‘‘highest’’ available solution, e.g. for

 2 �0:395:0:419�, the second branch would terminate in
the fourth globally regular solution. This behavior is dem-
onstrated in Fig. 3, where we indicate with ‘‘2.’’, ‘‘3.’’, ‘‘4.’’
the interval of 
 for which, respectively, 2, 3, and 4
globally regular solutions exist. The second branch of
black strings then terminates in the solution on the highest
branch available.

B. Axially symmetric solutions

We have constructed deformed black string solutions for
n � 2 for three fixed values of 
. Our results are shown in
Figs. 6–10, where we give the values of the gauge field
104008
functionsH2, �1 and of the metric functions  and J at the
horizon as functions of the area parameter x�. First, we
remark that—apart from the metric function J—the
curves can hardly be distinguished for different values of
�. Very similar to what has been observed in the case n �
1, two branches of solutions exist. Again, the limiting
behavior depends strongly on the choice of 
. Since we
do not have a detailed analysis of the branch structure of
the n � 2 globally regular vortex-type configuration, we
cannot make a precise prediction to which solution the
second branch tends. However, we can make qualitative
-9



FIG. 9. The value of the metric function  of the deformed
black string (m � 0, n � 2) at the horizon  �x�; � � 0� is
shown as a function of x� for 
 � 0:1, 
 � 0:5, and 
 � 1:0.
The upper and lower curves correspond to the 1. and 2.branch of
solutions, respectively.

TABLE I. Maximal and critical value of x� for deformed black
string solutions (n � 2).


 x�;max x�;cr Bifurcation of second branch with

0.1 1.35 0.88 EMD
0.3 1.33 0.72 EMD
0.5 1.30 0.0 regular
1.0 0.845 0.0 regular
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statements about the domain of existence of the deformed
black strings in the �
-x�� plane. We find that for 
 � 0:1,
the second branch terminates into an EMD solution with
H2�x�� tending to zero at a finite x� � x�;cr (see Fig. 7),
�1�x�� reaching one in this limit (see Fig. 8), while  and
J take their respective values of the corresponding EMD
solution (see Figs. 9 and 10). Note that the EMD is a
spherically symmetric solution, the curves for different �
should thus meet at x�;cr. This is what we noticed in our
FIG. 10. The value of the metric function j used in the Ansatz
described in Appendix B of the deformed black string (m � 0,
n � 2) at the horizon, j�x�� is shown as function of x� for 
 �
0:1, 
 � 0:5, and 
 � 1:0. We show the curves for � � 0 (solid)
and � � �=2 (dotted). The upper and lower curves correspond to
the 1. and 2.branch of solutions, respectively.
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computation. For 
 � 0:5 and 
 � 1:0, the situation is
different. We find that the second branch of black string
solutions reaches back to x� � 0, where it tends to a
globally regular vortex-type solution. Since we do not
know the detailed branch structure of the globally regular
n � 2 solution, we do not know which higher solution the
limiting solution is. Clearly, the limiting solution is axially
symmetric, which can be seen in Fig. 10, where the curves
for j�x�� (note that j is the transformed function given in
Appendix B) ends at finite values for x� � 0. If the solu-
tions would be spherically symmetric the off-diagonal
component of the metric tensor would be vanishing, i.e.
j � J 	 0, which clearly is not the case here.

The domain of existence of the deformed black strings is
qualitatively very similar to that of the uniform black
strings. The values for n � 2 are given in Table I.

We give the maximal horizon value x�;max at which the
two branches meet as well as the critical horizon value x�;cr

where the second branch of solutions ends. The last column
indicates at which solution the second branch terminates.
Clearly for 
 � 0:1 and 
 � 0:3, the second branch tends
to the EMD solution for x� ! x�;cr, while for 
 � 0:5 and

 � 1:0, the second branch extends all the way back to
FIG. 11. The ratio � � Le=Lp of the horizon circumference
along the equator Le and along the poles Lp is shown for the
deformed black strings (m � 0, n � 2) as a function of the
horizon parameter x� for 
 � 0:1, 
 � 0:5, and 
 � 1:0. The
upper and lower curves correspond to the 1. and 2.branch of
solutions, respectively.
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FIG. 12. The temperature T and the entropy S of the deformed
black strings (m � 0, n � 2) are shown as functions of x� for

 � 0:5.

FIG. 14. The tension � of the (m � 0, n � 2) deformed black
string solutions is shown as a function of x� for 
 � 0:1 and

 � 0:5. The lower and upper curves correspond to the 1. and
2.branch of solutions, respectively.
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x� � 0, where it bifurcates with the globally regular solu-
tion. We note when comparing the results for the deformed
black strings with those for the uniform black strings that
the former exist for much larger values of the horizon
value.

In Fig. 11, we show the ratio of the horizon circum-
ference along the equator Le and along the poles Lp, � �
Le=Lp as a function of x� for three different values of 
.
This ratio is a direct measure for the deformation of the
horizon of the black string solution. For 
 � 0:1, � stays
very close to 1 which, of course, is related to the weak
gravitational coupling. For both 
 � 0:5 and 
 � 1:0, the
FIG. 13. The mass of the (m � 0, n � 2) deformed black
string solutions is shown as a function of x� for 
 � 0:1 and

 � 0:5. On the 
 � 0:1 plot, the bullet shows where the second
branch stops. The lower and upper curves correspond to the 1.
and 2.branch of solutions, respectively.
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deformation of the horizon is much stronger on the second
branch as compared to the first branch. Interestingly, the
maximal deformation of the 
 � 0:5 solution is larger than
that of the 
 � 1:0 solution. This is likely related to the
fact that the 
 � 0:5 black string solutions have larger
possible horizon values than the 
 � 1:0 solutions.

In Fig. 12, we show the temperature T and the entropy S
of the deformed black strings (n � 2) as functions of x�.
We present the figure only for 
 � 0:5 because the curves
differ hardly for different 
 (e.g. 
 � 0:2, 
 � 1:0). The
numerics further indicates that, for fixed x�, the solution
with the lower mass possesses the lower temperature. The
temperature tends to infinity in the limit x� ! 0, while the
entropy tends to zero. This is not surprising since as x� !
0 the event horizon area tends also to zero, while the
temperature of a globally regular solution is arbitrary.
FIG. 15. A (�; nt) diagram is plotted for a (m � 0, n � 2)
deformed black string solutions and two values of 
.
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FIG. 16. The energy density of the matter fields � � �Ttt is
shown as a function of the coordinates �� � r sin�, �z � r cos�
for a (m � 0, n � 2) deformed black string solution with 
 �
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FIG. 17. The value of the gauge field function H2 at the
horizon. H2�x�; � � 0� is shown as a function of x� for �m �
1; n � 1� black string solutions with 
 � 0:2 and 
 � 0:5. Here
and in Figs. 18–25, the dotted line denotes the higher branch
solution with the continuous line corresponding to the funda-
mental branch.
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The dependence of the mass of the solutions of the
parameter x� is exhibited in Fig. 13 for two values of 
.
In Fig. 14 we present a plot of the tension� of the solutions
as a function of x� for two values of
. One can see that the
behavior of � resembles that of�, the tension on the upper
branch being higher that the corresponding value on the
lower branch. In Fig. 15 the ��; nt� phase diagram is
presented for 
 � 0:1, 
 � 0:5. This type of phase dia-
gram was proven important in classifying the nonuniform
black strings and black holes on a cylinder [21]. One finds
that these deformed black string solutions cover compact
regions of the ��; nt� plane. In particular there are solutions
with nt > 1=2, where 1=2 is the vacuum value.

The energy density of the matter fields is angle depen-
dent, and, in particular, is not constant at the horizon. The
maximum of the energy density resides on the �� axis, as
seen in Fig. 16, where a three-dimensional plot of the Ttt
component of the energy-momentum tensor is presented.

C. m � 1 black string configurations

A very different picture is found by taking m � 1 in the
asymptotic boundary conditions, i.e. �1 � cos�, �2 �
sin�, the asymptotics of Hi being fixed by (22) (here we
consider the case n � 1 only, although a number of n � 2
configurations have been studied also with similar qualita-
tive results). Different from m � 0, no spherically sym-
metric solutions are found for this set of boundary
conditions.

Let us briefly recall the features of the corresponding
vortex-type solutions discussed in [11]. The boundary
conditions at infinity and at � � 0, �=2 satisfied by these
regular solutions are similar to the black hole case. The
conditions (45) at r � 0 are also fulfilled except for the A5

potentials, which satisfy cos�@r�1 � sin�@r�2 � 0,
sin��1 � cos��2 � 0.

In the limit 
! 0, a branch of m � 1 vortex-type
solutions emerges from the uplifted version of the d � 4
flat spacetime MA configurations in YMH theory [27].
104008
This branch ends at a critical value 
cr � 0:65. Apart
from this fundamental branch, the m � 1 solutions admit
also excited configurations, emerging in the 
! 0 limit
(after a rescaling) from the spherically symmetric solutions
with A5 � 0 (corresponding after dimensional reduction to
solutions of a d � 4 EYM-dilaton theory). The lowest
excited branch (the only case discussed in [11]), originat-
ing from the one-node spherically symmetric solution,
evolves smoothly from 
 � 0 to 
cr where it bifurcates
with the fundamental branch. The energy density � � �Ttt
possesses maxima at z � �d=2 and a saddle point at the
origin, and presents the typical form exhibited in the
literature on MA solutions [27,28]. The modulus of the
fifth component of the gauge potential possesses always
two zeros at �d=2 on the z-symmetry axis. The excited
solutions become infinitely heavy as 
! 0 while the
distance d tends to zero.

These regular solutions present black hole counterparts,
which, in a four-dimensional perspective, share many
properties with the corresponding EYMH black hole con-
figurations with magnetic dipole hair [29]. For any fixed
value of 
, 0<
< 
reg

cr , we obtain two branches of black
string solutions. Imposing a regular event horizon at a
small radius x�, the lower branch of black string solutions
emerges from the corresponding lower branch globally
regular EYM vortex-type solution. This branch of solu-
tions extends to a maximal value x�;max�
�. Along this
lower branch, the mass increases with increasing x� (see
Fig. 23). Decreasing x� from x�;max�
�, a second branch of
solutions appears. Along this upper branch the mass de-
creases with decreasing x�, reaching the regular upper
branch MA solution, when x� ! 0. We note that for the
same event horizon radius, the mass of the upper branch
-12
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FIG. 18. The value of the gauge field function �1 at the
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solution is higher. In Figs. 17–20 we illustrate the value of
the functions H2, �1,  , and J at x� for two values of 
.
Similar to the m � 0 case, these plots do not exhibit a
strong dependence on the value of � [except for J�x��]. The
metric function J�r; �� presents a nontrivial angular depen-
dence, behaving asymptotically as J J0sin2�=r. Other
branches of solutions may exist as well, in particular, those
emerging from multinode regular configurations.

In Fig. 21, we show the ratio of the horizon circum-
ference along the equator Le and along the poles Lp, � �
Le=Lp as a function of x� for 
 � 0:2 and 
 � 0:5. As
seen in Fig. 22, the Hawking temperature increases with
decreasing rh, diverging as rh ! 0. While the entropy of
the regular solutions is zero, it approaches a maximal value
at rh�max��
�. Figures 23 and 24, respectively, present the
mass � and the tension � of the solutions as a function of
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FIG. 19. The value of the metric function  at the horizon
 �x�; � � 0� is shown as a function of x� for �m � 1; n � 1�
black string solutions with 
 � 0:2 and 
 � 0:5.
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x� for two values of 
. As in the case of m � 0 solutions,
the behavior of � resembles that of � and the tension on
the upper branch is higher than the corresponding value on
the lower branch. In Fig. 25 the ��; nt� phase diagram is
presented for 
 � 0:2, 
 � 0:5. We note again the exis-
tence of solutions with nt > 1=2.

In Fig. 26 we exhibit the energy density of a typical
lower branch m � 1, n � 1 solution, with 
 � 0:2, rh �
0:04. Note the different shape of Ttt as compared to the
m � 0 case, with two extrema on the z axis.

D. A5 � 0 solutions

It is interesting to consider the following consistent
reduction of the Ansatz (11)
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FIG. 21. The ratio � � Le=Lp of the horizon circumference
along the equator Le and along the poles Lp is shown for �m �
1; n � 1� black string solutions as a function of the horizon
parameter x� for 
 � 0:2 and 
 � 0:5.
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FIG. 22. The temperature T and the entropy S are shown as
functions of x� for �m � 1; n � 1� black string solutions with
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FIG. 24. The tension � of the �m � 1; n � 1� black string
solutions is shown as a function of x� for 
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�1 � �2 � 0; (48)

(i.e. no Higgs field will appear in the d � 4 theory), in
which case one should also set W � � 0.

The four-dimensional picture one finds from (7) corre-
sponds to a EYM-dilaton system

I4 �
Z
d4x

��������
��
p

�
1

4�G

�
R

4
�

1

2
r� r� 

�

� e2 =
��
3
p 1

2g2 TrfF ��F
��g

�
; (49)

with a particular coupling between dilaton and gauge field.
Both particlelike and black hole solutions of this system

are known to exist. Here we will review their basic prop-
erties from a five-dimensional perspective. Although the
configurations are again indexed by the set of two integers
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FIG. 25. A (�; nt) diagram is plotted for �m � 1; n � 1� black
string solutions and two values of 
.
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�m; n�, the A5 � 0 EYM solutions present a number of
distinct features. First, it appears that there are no m � 0
finite mass non-Abelian vortices or black string solutions.
This can easily be proven for configurations which are
spherically symmetric in four dimensions by applying the
arguments in [30]. This implies that, without a Higgs field,
there are no non-Abelian monopole solutions in the EYMD
system (49).

However, nontrivial solutions are found by taking the
m � 1 set of boundary conditions for the matter fields Hi.
First, for n � 1, the four-dimensional solutions are again
spherically symmetric being discussed in [31]. The corre-
sponding d � 5 vortices and black strings are parameter-
ized by the number k of nodes of the gauge function K�r�,
the extremal Abelian solution being approached as k tends
to infinity. All these solutions turn out to be unstable in
linearized perturbation theory [31].

As found in [32,33], these configurations admit axially
symmetric generalizations, obtained for a winding number
n > 1. Different from the A5 � 0 case, here we find black
string solutions for any radius rh of the horizon. These
deformed solutions are characterized by two integers, the
winding number n and the node number k of the purely
magnetic gauge field. The mass of these solutions increases
with n; k. With increasing node number the magnetically
neutral black string solutions form sequences tending to
limiting solutions with magnetic charge n, corresponding
in a d � 4 picture to EMD black hole solutions. Although
no proof exists in the literature, we expect these configu-
rations to be unstable, too.

A general �2m; n� set of d � 4 EYM solutions have been
discovered recently in [34,35]. There the gauge potentials
Hi satisfy a complicated m-dependent set of boundary
conditons. These solutions presumably admit dilatonic
generalization within the theory (49), describing in a d �
5 picture new sets of non-Abelian vortices and black
strings.
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IV. NEW d � 4 SOLUTIONS FROM BOOSTED d � 5
CONFIGURATIONS

For vacuum solutions extremizing (7), it has been known
for some time that, by taking the product of the d � 4
Schwarzschild solution with a circle and boosting it in the
fifth direction, the entire family of electrically charged
(magnetically neutral) KK black holes is generated.

As remarked in [11], a similar construction can be
applied to the solutions of the d � 4 EYMH-U(1)-dilaton
theory (7). Starting with a purely magnetic d � 4 static
configuration ����;A;W ;�;  �, and uplifting it accord-
ing to (5) and (6), one finds in this way a vortex-type (or
black string) solution of the d � 5 EYM theory. The next
step is to boost this solution in the �z; t� plane

z � cosh�Z� sinh��; t � sinh�Z� cosh��:

(50)

The dimensional reduction of this EYM configuration
along the Z direction provides a new solution in the d �
4 EYMH-U(1)-dilaton theory. For the specific Ansatz con-
sidered in this paper one finds

d�2 � ����dx�dx�

� ea� � � ��tt�d�� 2 sinh�W ’d’�
2 � ea� � � �d‘2

� � �f�d�� 2 sinh�W ’d’�
2 �

�q
�f
�dr2 � r2d�2�

�
�l
�f
r2sin2�d’2; (51)

the new functions being expressed in terms of the initial
solution as

� �  �
1

2a
log�cosh2�� e�3a fsinh2��; (52)

�f � f
��������������������������������������������������
cosh2�� e�3a fsinh2�

q
; �q � q; �l � l;

(53)

for the dilaton and metric functions, while the expression
of the new gauge potentials is

�Ar � Ar; �A� � A�;

�A’ � A’ � 2�W ’
e�2a fsinh2�

e2a cosh2�� e�a fsinh2�
;

�A� � � sinh�
e�a f

e2a cosh2�� e�a fsinh2�
;

�W ’ �
e2a cosh�W ’

e2a cosh2�� e�a fsinh2�
;

�W � �
1

2

�e2a � e�a f� sinh� cosh�

e2a cosh2�� e�a fsinh2�
:

(54)

The new Higgs is
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�� � � cosh�: (55)

To support a boosting given by a parameter �, one finds the
condition

e�3a ftanh2 < 1; (56)

which turns out to be satisfied by all considered
configurations.

For axially symmetric solutions, the new four-
dimensional line element presents a nonzero extradiagonal
metric component ��’�, and thus describes a rotating space-
time. Also, the electric potentials �A� of the d � 4 SU(2)
field is nonzero, being proportional to the Higgs field.

This procedure applied to globally regular MM and MA
configurations generates charged rotating solutions. As
discussed in [11], although they will rotate locally, the
total angular momentum of the MM solutions is zero,
and the spacetime consists in two regions rotating in op-
posite directions. The solutions with a zero net magnetic
charge possess a nonvanishing angular momentum propor-
tional to the magnetic charge (the rotating solutions found
recently in EYMH theory present the same qualitative
picture [36]). In this construction, the causal structure is
not affected by the boosting procedure, i.e. ��’’ > 0, (no
closed timelike curves) and no event horizon occurs in the
new solutions (here we take also �1< �<1 and ignore
the causal problems implied by performing the transfor-
mation (50) with an extra-S1 direction).

The same procedure applied to static, axially symmetric
black hole configurations gives rotating black hole solu-
tions. For the new line element (51), the event horizon is a
Killing horizon of the Killing vector � � @=@� ��H@=@’
[37]. Here �H � � ���’= ��’’ (evaluated at the event hori-
zon) corresponds to the event horizon velocity. The result-
ing solutions have a number of interesting properties. For
the specific Ansatz used in (51), one can see that the event
horizon location is unaffected by the boosting procedure
���

��rh� � 0, while �H � 0, i.e. the event horizon is not
rotating with respect to infinity. Therefore the causal struc-
ture of the initial solution is unchanged by the generation
procedure, and no ergoregion is found, since �f > 0 outside
the event horizon. Moreover, similar to the regular case, the
ADM angular momentum of the black hole solutions with
a nonavanishing magnetic charge is zero, although they
rotate locally, while the m � 1 solutions have a nonzero
angular momentum.

A detailed discussion of the properties of the d � 4
EYMH-U(1)-dilaton rotating solutions generated by boost-
ing static axially symmetric configurations in the x5 direc-
tion will be given elsewhere.

A. d � 4 spherically symmetric dyonic black holes

For the rest of this section we will concentrate on the
simpler spherically symmetric case. The black string solu-
tions of this model are discussed in [10]. The four-
104008
dimensional initial picture is straightforward, and consists
in magnetic monopole black holes in EYMH-dilaton the-
ory (i.e. no U(1) field W � � 0). After boosting, the new
d � 4 solutions correspond to black hole dyons, which,
different from other cases discussed in the literature have
also a nonvanishing U(1) electric potential (the spherically
symmetric, globally regular counterparts of these solutions
have been constructed in [38] by directly solving the field
equations).

For the particular case of spherical symmetry, the rela-
tions (51) read

d�2 � � �f�r�d�2 �
�q�r�
�f�r�
�dr2 � r2d�2 � r2sin2�d’2�;

(57)

with the new metric functions being determined by (52).
The four-dimensional YM fields are

�Ar � 0; �A� � �1� K�r���1
’;

�A’ � ��1� K�r�� sin��1
�; �A� � sinh��1�r��1

r ;
(58)

with K�r� being the magnetic non-Abelian potential of the
initial monopole solution. The transformed Higgs field of
the four-dimensional theory is H � cosh��1, while the
new dilaton � is given by

ea � � ea �r�
������������������������������������������������������
cosh2�� e�3a �r�fsinh2�

q
: (59)

One can see that, similar to the solutions of the (E-)YMH
theory, the magnitude at infinity of the electric potential is
restricted to be less than that of the Higgs field. The
Maxwell field which appears as a result of the boosting
procedure possesses a nonvanishing electric potential �W �
which can be read from (54).

The location of the event horizon is unaffected by boost-
ing, while the relation between the Hawking temperature
and entropy of the dyonic black holes and the correspond-
ing quantities of the monopole solutions is �T � T= cosh�,
�S � S cosh�. The properties of a dyon solution can be
predicted from the ‘‘seed’’ configuration, in particular,
the domain of existence in the �
; rh� plane. The magnetic
potential K�r� vanishes at infinity which gives a unit mag-
netic charge, while the non-Abelian electric charge deter-
mined as Q�n�e � limr!1r2@r �A� is

Q�n�e � �
sinh�

2
�3ad� �2h1 �M� � �3ad� 2M�

� cosh2��; (60)

(where h1 � limr!1r
2@r�). The ADM mass and the

Abelian charge of these solutions are determined in terms
of the mass M and dilaton charge d of the initial configu-
rations
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�M � M�cosh2�� 1
2sinh2�� � 3

4adsinh2�;

Q�a�e � 1
4�3ad� 2M� sinh2�;

(61)

while the new dilaton charge (defined as �d �
limr!1r

2@r � ) is

�d � d�cosh2�� 1
2sinh2�� � 1

aMsinh2�: (62)

Other properties of these solutions can easily be deduced
from the analysis presented in Sec. III B 1.
V. CONCLUSIONS

In this paper we have considered black string solutions
in the d � 5 SU(2) EYM theory. From a four-dimensional
perspective, these solutions correspond to spherically and
axially symmetric black holes sitting inside the center of
(multi)monopoles and monopole-antimonopole pairs.

For a class of regular configurations corresponding to
solutions with a net magnetic charge in the d � 4 theory,
we have presented new results for a second branch of
solutions. The domain of existence in the �
-x�� plane of
the black string counterparts of these configurations has
been determined. We find that when the gravitational cou-
pling 
 is fixed, two branches of solutions exist. The
second branch terminates into Einstein-Maxwell-dilaton
solutions for values of the gravitational coupling for which
only one globally regular vortex solution exists, respec-
tively, into the highest available globally regular vortex
solution for values of 
 where more than one vortex
solution exists. We also have presented numerical argu-
ments for the existence of a different type of d � 5 EYM
black strings, corresponding in a four-dimensional picture
to black holes located in between a monopole-
antimonopole pair.

In this context, we have proposed a simple procedure to
generate new d � 4 electrically charged solutions with
non-Abelian matter fields starting with static d � 5 EYM
black string solutions.

In Appendix A an argument has been presented against
the existence of hyperspherically symmetric black hole
solution with reasonable asymptotics in SU(2) Einstein-
Yang-Mills theory in d � 5. Therefore, the solutions dis-
cussed in this paper as well the regular counterparts rep-
resent the simplest nontrivial configurations in d � 5 EYM
theory, they providing also another couterexample to the
no hair conjecture in five dimensions.

Concerning the stability of these non-Abelian black
holes, we expect the m � 0 solutions with a nonzero
magnetic charge to be stable in a certain region of the
parameter space. However, all m � 1 configurations are
presumably unstable, like their MA-flat space counterparts
[27].

One may speculate about the existence of nonuniform
vortices and black strings with non-Abelian matter, with a
dependence on the extra z-coordinate. Similar to the vac-
104008
uum case, we expect these solutions to emerge from the
uniform EYM configurations for a critical value of the
mass. However, the five-dimensional gravity presents
also black ring solutions, with a horizon topology S2 �
S1, which approaches at infinity the flat M5 background. A
vacuum black ring can be constructed in a heuristic way by
taking the neutral black string, bending the extra dimension
and spinning it along the circle direction just enough so
that the gravitational attraction is balanced by the centrifu-
gal force. This is a neutral rotating ring, obtained in
Ref. [39] as a solution of the d � 5 vacuum Einstein
equations. Generalizations of this solution for an Abelian
matter content are known in the literature. Non-Abelian
versions of these configurations are also likely to exist, and
will necessarily have an electric field. However, the con-
struction of such solutions represents a difficult challenge.
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APPENDIX A: NO d � 5 SPHERICALLY
SYMMETRIC BLACK HOLE SOLUTIONS

Following the notations in [15], we consider a static,
spherically symmetric five-dimensional spacetime, with a
metric given in Schwarzschild coordinates by

ds2 � �f�r�e�2	�r�dt2 �
dr2

f�r�

� r2�d 2 � sin2 �d�2 � sin2�d’2��; (A1)

where

f�r� � 1�
��r�

r2 : (A2)

For black hole solutions f�rh� � 0 for some rh > 0, while
f0�rh�> 0 and 	�rh� stay finite.

The construction of a sherically symmetric Yang-Mills
Ansatz for a gauge group SU(2) has been carefully dis-
cussed in [15]. The expression of the non-Abelian connec-
tion in this case is

Aar � 0; Aa � �0; 0; w�;

Aa� � �w sin ;� cos ; 0�;

Aa’ � �cos sin�;w sin sin�;� cos��; Aat � 0;

(A3)

in terms of only one function w�r�. With the above Ansatz,
we find the Einstein-Yang-Mills equations
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�0 � 2r
�
fw02 �

�1� w2�2

r2

�
; 	0 � �

2

r
w02;

1

r
�rfe�	w0�0 �

2

r2 e
�	w�1� w2� � 0:

(A4)

Introducing a new variable

z � 2 lnr; (A5)

the Eqs. (A4) imply the relations

d�
dz
� 4f

�
dw
dz

�
2
� �1� w2�2; (A6)

f
d2w

dz2 � �e
�z�� e�z�1� w2�2�

dw
dz
�

1

2
w�1� w2� � 0;

(A7)

with f � 1� e�z� and the function 	 being eliminated.
To find a proof for the nonexistence of finite mass solutions
of the above system, following [15], it is convenient to
introduce the function

E �
1

2
f
�
dw
dz

�
2
�

1

8
�1� w2�2; (A8)

satisfying the equation

dE
dz
� �4e�z

�
dw
dz

�
2
�
E�

�
8

�
: (A9)

It is obvious that E�rh�< 0; at the same time, as proven in
[15], E! �0 as r! 1, for finite mass solutions.
Therefore, if the solution is regular everywhere, E must
vanish at some finite point z0, and dE=dr � 0 there (when
there are several positive roots of E, we take the largest
one). However, another point should exist z1 > z0 such that
dE=dz � 0 i.e. the function E should present a positive
maximum for some value of z. Now we integrate the
Eq. (A9) between z0 and z1 and find

E�z1� � �4
Z r1

r0

e�z
�
dw
dz

�
2
�
E�

�
8

�
dz < 0; (A10)

which contradicts E�z1�> 0. Therefore E�z� should vanish
identically and one finds no d � 5 finite mass, spherically
symmetric EYM configurations. Note that this argument
does not exclude the existence of configuration with a
diverging mass function as r! 1. In fact, such solutions
can easily be found and share many properties with the
configurations without an event horizon discussed in [9].

YVES BRIHAYE, BETTI HARTMANN, AND EUGEN RADU
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APPENDIX B: RELATION TO A PREVIOUS EYM
STRING ANSATZ

The m � 0 deformed black strings discussed in
Ref. [12] have been found for a slightly different Ansatz.
While the Ansatz (5) and (6) admits a straightforward KK
picture and is useful for the determination of the corre-
sponding rotating solutions, the notation of [12] turned out
to be more convenient for numerical computation ofm � 0
configurations.

For completeness, we present here the relation between
these two Ansätze. The five-dimensional metric parame-
trization used in [12] is

ds2 � e��
�
�~fdt2 �

~m
~f
�dr2 � r2d�2�

�
~l
~f
r2sin2��d’� jdz�2

�
� e2�dz2; (B1)

while the YM matter Ansatz corresponds to

A�dx
� �

1

2gr
��n’� ~H1dr� �1� ~H2�rd�� � n��

n
r

~H3

� �n��1� ~H4��r sin�d’� � ~�1�nr � ~�2�n��dz�;

(B2)

where ~f, ~l, ~m, �, j, ~Hi, � 1; 2; 3; 4 and ~�1, ~�2 are again
functions of r and � only. They are related to the ‘‘un-
tilded’’ functions appearing in (5) and (6) as follows:

ea � e�
�
1� e�3�

~l
~f
j2r2sin2�

�
1=2
;

J �
j
2

~l
~f
e�3�r2sin2�

�
1� e�3�

~l
~f
j2r2sin2�

�
�1
;

f � ~f
�
1� e�3�

~l
~f
j2r2sin2�

�
1=2
;

m � ~m
�

1� e�3�
~l
~f
j2r2sin2�

�
; l � ~l

(B3)

for the metric functions and

H1 � ~H1; H2 � ~H2; H3 � ~H3 �
2g
n
J�1

sin�
;

H4 � ~H4 �
2g
n
J�2

sin�
; �1 � ~�1; �2 � ~�2

(B4)

for the gauge fields functions. Of course, the final results
are the same for both Ansätze.
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