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Quantum gravity, torsion, parity violation, and all that
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We discuss the issue of parity violation in quantum gravity. In particular, we study the coupling of
fermionic degrees of freedom in the presence of torsion and the physical meaning of the Immirzi
parameter from the viewpoint of effective field theory. We derive the low-energy effective Lagrangian
which turns out to involve two parameters: one measuring the nonminimal coupling of fermions in the
presence of torsion, the other being the Immirzi parameter. In the case of nonminimal coupling the
effective Lagrangian contains an axial-vector interaction leading to parity violation. Alternatively, in the
case of minimal coupling there is no parity violation and the effective Lagrangian contains only the usual
axial-axial interaction. In this situation the real values of the Immirzi parameter are not at all constrained.
On the other hand, purely imaginary values of the Immirzi parameter lead to violations of unitarity for the
case of nonminimal coupling. Finally, the effective Lagrangian blows up for the positive and negative unit

imaginary values of the Immirzi parameter.
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I. QUANTUM GRAVITY AND EFFECTIVE FIELD
THEORY

The Wilsonian point of view on effective field theory is a
very powerful organizing principle allowing us to drasti-
cally restrict the number of theories relevant for the de-
scription of low-energy physics. As far as the low-energy
physics is concerned, the Wilsonian approach instructs us
to consider the most general local actions invariant under a
given symmetry, while forgetting about the underlying
microscopic degrees of freedom. Of course this philosophy
might have to be radically changed in the presence of
gravity, but in this paper we adopt the usual point of
view in order to understand better the issue of gravitation-
ally induced parity violation.

Gravity is a theory which is classically invariant under
the diffeomorphism group and since we want to be able to
incorporate standard model-like fermions, the effective
field theory also should be invariant under a local
Lorentz gauge symmetry. The dynamical field variables
are given by the frame field (a one form valued in the
vectorial representation) e;’de“ and Lorentz connection (a
one form valued in the Lorentz Lie algebra) wf{ dx*. If we
apply the effective field theory point of view to gravity, and
consider only actions which are analytic functionals of the
frame field connection and its derivatives,' we easily read
out the most relevant terms in the low-energy effective
action. To leading order this low-energy effective action
contains exactly six possible terms. Three of these terms
are topological invariants analogous to the QCD theta term.
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They correspond to the Euler class
o [ RY(w) A RS @)er, ()
the Pontryagin class
0 [ Rw) ARy, @)
and the Nieh-Yan class
03fdwe[/\dwe,—R”/\e,/\ej, 3)

where RY(w) = dw!’ + o'® A @y’ is the canonical cur-
vature two form. Since we are interested in semiclassical
physics we concentrate our attention on the bulk terms.”
Two of the bulk terms are well known; they correspond to
the Einstein-Hilbert action and the cosmological constant
term. The corresponding coupling constants are, respec-
tively, the Newton constant G and the cosmological con-
stant A. This is, however, not the final answer, for there
exists an additional term which is usually disregarded.
From an effective field theory point of view, this term is
as important as the two others, and thus has to be taken into
account in the low-energy effective action. The corre-
sponding coupling constant is called the Immirzi parame-
ter, .

Therefore, the leading bulk terms in the most general
four-dimensional low-energy gravitational action, in any
microscopic quantum theory of gravity (be it string theory,
loop gravity etc.) are given by

*Topological “deformations” of Einstein’s classical theory in
four dimensions have been investigated in detail in [1].
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Note that unlike the Newton and cosmological constant,
the Immirzi parameter is dimensionless. This action and
the meaning of the Immirzi parameter was first discussed
by Holst [2]. Usually 7y is taken to be equal to zero; this
forces the torsion to be the null® and we recover the usual
second order formulation of gravity. It is also frequent but
less common to encounter the choice y = oo, In this case
we recover the Cartan-Weyl formulation of gravity [3].

From the effective field theory point of view there is a
priori no reason to prefer one choice or another, and thus,
one should take into account all possible values of y and let
experiment decide its numerical value. This is the point of
view which is taken here. Effectively, at the quantum level,
this amounts to treating y as a superselection parameter.
We should add a caveat here: as briefly mentioned above,
in this paper we assume the usual local Wilsonian effective
theory, in which decoupling between the UV and IR de-
grees of freedom is usually taken for granted. This never-
theless does not have to be the case in the presence of
gravity [4], but we refrain from any further discussion of
this important issue in this paper [5].

Classically when there is no matter coupled to gravity
the equations of motion for the connection imply zero
torsion irrespective of the value of the Immirzi parameter.
At the quantum level this is not the case and one expects
observable effects associated with a particular microscopic
formulation of quantum gravity (such as loop quantum
gravity) which contains this parameter [6,7]. In [6] it is
shown that vy controls the rate of fluctuation of the torsion
at the quantum level and when different from 0 or oo, it
leads to a compactification of the phase space of gravity.
The Immirzi parameter plays an important role in loop
quantum gravity, which predicts, for example, that the area
of a surface or the volume of a spatial region are quantized
[8] (the unit quanta of area and volume being yl%, and
¥3213). The spectra of the area and volume operators are
discrete provided that the Immirzi parameter is not equal to
zero. In contrast, there is no indication that area or volume
are quantized in string theory (which might be because of
the subtle issue of background independence). Thus any
direct experimental constraint of the Immirzi parameter
can be taken as concrete steps towards the falsification of a
specific microscopic approach. This is the main motivation
for the analysis that follows.

>The action (4) is singular when y = 0. One can however
introduce an auxiliary field B! (a two form valued in the vectorial
representation) in order to rewrite the Immirzi term, up to a
boundary contribution, as [B' AT; + yT' AT;, where T =
d,e' is the torsion. When y = 0 the equation of motion for
the B field forces the torsion to be null.
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II. TORSION AND FERMIONS

In this section we follow the derivation of Rovelli and
Perez [7], obtaining similar but crucially different results.
We start with the formulation of general relativity in the
first order formalism in terms of a Lorentz connection w #1 y
and a frame field e ,where I, J... =0, 1, 2, 3 denotes the
internal Lorentz mdlces and u, v... =0, 1, 2, 3 the respec-
tive space-time indices. The curvature is defined to be
Rl (w) = 0,0 — 3,0] +[w,, »,]7. When the frame
ﬁeld is 1nvert1ble the grav1tat10nal action (4) which in-
cludes the Immirzi parameter and a zero cosmological
constant can be written in the form

Sgle, w] = ﬁ fd“xeeﬁ‘e}’P”KLRKL(w) (5)
where we have introduced the following tensor and its
inverse

1 E”
1 oJ
P”KL = 5%51} __%’
(6)
p-! IJ:L 5[15J]+16 KL
KL v:+1 v 2 )

The coupling of gravity to fermions is given by the action
ie — =
Sile. 0] = [ dc @Y eV, = Td'ef ), )

where ! are the Dirac matrices,* and

1 YuYn

_ _ Yuvys
Vﬂza,ﬁrwﬂ 1 [VM,V,,]—RL{V—.

4
®)

17 where @ is

We can decompose o'} o= ol +ct,

the torsion free spin Connectlon satlsfylng

as w

Vel =0, ©)

and C, " is the so called “contorsion” tensor related to the
torsion in the obvious way V[Mey]l = C[M”e,,],.

It is important to consider in the fermion action the
above real combination (a point overlooked in [7]) in order
to get the same equation of motion for ¢ and . The
general fermion action written in terms of the covariant
derivative V, which gives back the usual fermion action in
the absence of gravity, can be written in the form

Sile,w, y] = f (1 = i)y et

— (1L + i)V, gy el ). (10)

Such an action does not give the same equation of motion

“We use the particle physics conventlons {y 4 } = 29! with
! = diag(+1, —1, —1, —1), y5 = y° = iy0y! y 2y3. The real-

1ty conditions are y, = Y0Y1Y0» (ivs)t = vo(ivs)ve.
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for ¢ and  unless
(a — a*)ef‘CM” = 0. (11)

If « is not real this imposes a constraint on the torsion
tensor which is incompatible with the gravitational equa-
tion of motion that fixes the torsion. This is due to the fact
that the following symmetric combination is not a total
derivative in the presence of torsion [3]

e —
@Y+ Yy e )
= 3, (eelV) + e;‘CWIV], (12)

where V! is the vector fermion current (A’ denotes the axial
fermion current)

Vi=yyly, Al =yyyy. (13)

Both V! and A’ are real currents. The value @ = 0 corre-
sponds to the usual minimal coupling of fermions to grav-
ity. In general, an arbitrary real value for & corresponds to a
nonminimal coupling.

We now consider the equation of motion coming from
the variation of Eq. (7) with respect to the connection
8(Sg + Sp)/8w = 0. Since

08 1
7&0#” = %V,,(ee[’ée,’:)PKL”, (14)
and
(SSF l’eeﬂ_
Sw U 8K¢{’)’K’ 7[1’}’1]}1/’, (15)
M

this equation of motion reads’

1 ¢

217G [KL]M + Cu[KyeL]#)PKLIJ = GIJKLeIléAb (16)

The solution is given by

2
0% 1 1
eﬁbchK = 47TGW (5 ek AL — ; 771[JAK]>~ (17)

If one does the same computation starting with the action
(10) Sy one obtains instead

2
_ 0% 1 a \L
E;LC'UJK = 4WGW<EEIJKL<A + ;V)
1
— A = ayV) (1)
It is clear from this expression that e}'C, /K o y/(y* +

SWe use the identities Tt = ¢yl Ty, {7k Yuvn =
=2ieky vE Ly Yuynl = 4nxuvn-
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1)(A — ayV)X is different from O unless y =0 or
y = 0.° This shows, as previously stated, that one should
take « real in order to have a consistent action principle.

We can now obtain an equivalent action by replacing w
with @ + C(i) in (5) and (10). The terms of (5) linear in
the fermion current are total derivatives, leaving us with
the standard second order tetrad action of general relativity
with fermions, plus a four-Fermi interaction term
Sinle, ] = Sfrln) [e, ] + Sl(ﬁz [e, ¢]. This interaction term
comes first from the evaluation of

L

SWle, ] = T [ d*xeeler PV, [C,, CIKE. (19)

One can use the following identity

20V
efefP? [C,, C I = 6<U2 e V2> (20)

if e;LCM]K = GIJKLUL + T]IJVK - 771KVJ’ in order to get

2 2
7 )(A2 + 224V - a2v2>.
v +1 Y

S0, v1 = =6
@)

The other contribution is given by

nt

Se, ] = jd4x§e#CIJK(€IJKLAL + 2an;; Vi)
(22)

leading to the final expression for the effective action

3 v? 2a

S. [e, ] = —=aG[—=—\[A2+=A -V — a?V?).
mle ¥ 27 <72+1>( Y “ )
(23)

Note that this effective action is similar yet different in
detail from the one derived in [7]. One sees that the only
interaction which is independent of « is the axial-axial
interaction. The parity-violating vector-axial interaction is
absent if one considers the minimal coupling a = 0. Thus
parity violation cannot be taken as a measure of the
Immirzi parameter but only of the combination «/?11 de-
pending on the nonminimal coupling parameter. Note also
that when the Immirzi parameter is purely imaginary y =
*1i, the interaction becomes infinite. This infinite factor

S Another theoretical possibility is to have the constraint AKX =
ayVK satisfied. This is possible if we have ay = *1. In this
case this constraint is satisfied if all fermions are right handed
(ay = —1) or left handed (ary = —1). However this theoretical
possibility is clearly excluded by experiments, since we see both
right and left handed fermions and we will therefore not discuss
this option in what follows. Note that this argument relies on the
fact that in our framework the nonminimal coupling « is
supposed to be the same for all species. It is logically possible
to relax this constraint and study the case of a ‘‘species-
dependent” « [9]. We will not study this possibility which
seems unnatural.
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multiplies the term (A + ia'V)? and effectively imposes the
constraint between vector and axial-vector currents dis-
cussed in footnote 2.

We now turn to the discussion of experimental signifi-
cance of the gravitational parity violation for both non-
minimal and minimal couplings of fermions.

III. PARITY VIOLATION: THE WEAK CHARGE

In this section we review the necessary physics needed
to discuss possible gravitational parity violation.

We start with the low-energy effective Lagrangian de-
scribing interactions between electrons and quarks induced
by Z exchange

_8Gp

Ly = p [quw“qL + grary*qr]
2

X [gLeLyMeL + gReR’)’,u.eR]) (24)
where
gr = —Qsin’fy.  (25)

I; and Qy are, respectively, the isospin and charge of the
fermion. The parity-violating part of Eq. (24) is

glf‘ = If - Qfsinzew,

Ly = %g[qmmxémsa

+ Co(@y*vsq) ey e)) (26)

where
¢ = 2p(gl + gR)(gl — 8%),

q q e e (27)
Cy, = 2p(g] — gr)(gf + &%)

The first term of Eq. (26) leads to a parity-violating inter-
action between electrons and nuclei whose amplitude is
given by

=50, [atsz Mawy awiz, )
q

X{e " (pplex)y,yse(x)le” (p). (28)

where |Z, N) denotes a nucleus consisting of Z protons and
N neutrons.

In the nonrelativistic or static limit of the nucleus, we
can neglect the space components of the quark vector
current matrix element. Its time component

(Z, N1g(x)y°q(x)|1Z, N) = (Z, Nlqt (x)q(x)|Z, N) = p,(r)

(29)

yields the density of quark flavor ¢ inside the nucleus.
Since the size of the nucleus can be assumed to be small
compared to the wavelength of the momentum transfer
(py — pi), we can make the approximation

p,(X) = N,50m), (30)
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where N, is the total number of quarks of flavor ¢ con-
tained in the nucleus. Therefore,

D C1(Z N1g(x)y°q(x)|Z, N)
q

=[C,,(2Z + N) + C,4(Z + 2N)]83(r)
= _%QW(Z: N)89(r), 31

where (g7 — g%) = —3 in Cy, is factored out so that
Ow(Z, N) depends only on the nucleus.

Next, using the relation between Dirac spinors u(p) (in
the Dirac representation) and nonrelativistic Pauli spinors

o,
u(p) =vE+m |:_(f :|, (32)

E+m

we find that the time component of the electron axial-
vector current matrix element in the nonrelativistic limit
becomes

(e”(pp)lex)yoyse(x)le” (p)
1

, /—2Ef

—— G- py+ G- il PRI, (33)

1 ~ —i(p;—ps)x
mu(Pf)YOYSM(Pi)e Pimhy

2mV

Inserting Eqs. (31) and (33) into (28), we find

_ _ Gr 4 3
M= = 0N [ dixl (OG- pO*(E)
+ 83®)0 - plei(x), (34)
where
olx) = Jive%. 35)

From Eq. (34), we conclude that the first term of Eq. (26)
induces a parity-violating potential of the form

R G
Vv = 4\/{m ow(Z, N)[G - p&3 () + 8@ - )
(36)

where m,, 3’/ 2, ;37, and 7 are, respectively, the mass, spin,
momentum, and position of the electron. The factor
Ow(Z, N) is called the “weak charge” of the nucleus and
can be large enough for heavy nuclei to make the effects of
this potential observable.

The second term of Eq. (26) induces a potential depen-
dent on the nuclear spin [10] which is too weak to be
observed.
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IV. QUANTUM GRAVITY AND PARITY
VIOLATION

A. Nonminimal coupling

According to the above discussion (Sec. II) the effective
Lagrangian contains a parity-violating term provided the
coupling of fermions in the presence of torsion is non-
minimal, i.e. « # 0,

Lpy = %WGN?—ye(%lWA‘f/)W’YAVs‘/’)- (37
y-+1
If we allow 7y to be purely imaginary the overall effective
coupling in the low-energy Lagrangian is imaginary («
being real), and thus unitarity is violated. Thus the purely
imaginary values of the Immirzi parameter are excluded by
appealing to unitarity. Furthermore, the contact interaction
blows up at y = *i. Note that y = i corresponds to the
self-dual Ashtekar canonical formalism [7].
Let y be real and let

2y
y2+1a

B, —w<B<ow (38
Then the above effective interaction becomes

3 - _
Lpy = EWBGN(lﬁYmb)(‘//’)’#Yslﬂ), (39

which has the same form as the first term of Eq. (26) if we
assign the vector current to the quarks and the axial-vector
current to the electrons:

3
Lpy = EWBGN@’)’MCI)(‘?’)’“’)’Se)- (40)

Therefore, the parity-violating interaction amplitude is
3
Moy =3 7BGyY. [ d'x(Z Nlay* a0z N)
q

X (e~ (pple(x)yyse()le” (p)). (41)
Using
(Z, N|g(x)y°q(x)|Z, N) = (Z, Nlq" (x)q(x)|Z, N)
= pq(r) = Nq6(3)(r)r (42)

we have

DAZ NIGX)Y qWIZ Ny =3(Z + N)sO (@),  43)

and using Eq. (33) we find
97rBGN(Z + N) YA
EOEEID [l ol - po°()
me
+ 83 (®) - ple(x). (44)

Comparison with the Z-exchange case shows that the
corresponding coefficients are

MPV=
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~GrOw(Z, N) <= 97/2BGy(Z + N), (45)

so that the “effective” weak charge for the Immirzi pa-
rameter is

2
0, = —97B(Z + N)<\/—GN>. (46)
Gr
The values of Gy and G are [11]
Gy = 6.707(10) X 10~3°(hc)(GeV/c?) 2, @

Gr = 1.16639(1) X 1075(hc)*(GeV) 2.

So in natural units, the ratio of +/2G to G is about 10~ 3.
The factor 97 is about 3 X 10', and the factor (Z + N) is
about 102 for heavy nuclei, so the effective weak charge is
about 1073043,

The weak charges of heavy nuclei are typically of order
102, and the experimental errors on them are of order 1
[12]. So the experimental constraint on B8 will typically be

2y

o a < about 103, (48)

BE

which is practically no constraint at all. Obviously the
physical reason for this is the weakness of gravity as
compared to weak interactions, and the fact that parity is
already maximally violated in the weak sector.

The crucial point here is that the parity-violating inter-
action in principle contains two undetermined parameters,
the strength of the nonminimal coupling of fermions to
gravity and the Immirzi parameter. This seems to have
been overlooked in the literature.

B. Minimal coupling

In this situation (e = 0) the effective Lagrangian con-
tains only the axial-axial coupling and the experimental
bound on the effective coupling is known in the literature
both on four-dimensional [3] and large extra-dimensional
physics [13,14]. The effective action reads

2

3 - -
Lan = =3O ey @y ysd). (49

2 . .
where we set %WGN# = 37 in order to compare with
T

[13,14].

For example, the axial-axial contact four-Fermi interac-
tion can affect the electron-quark contact interactions. A
typical bound is [13,14]

Ay = 5.3 TeV. (50)

A stronger constraint is implied by astrophysical data
provided one assumes the existence of light sterile neutri-
nos. From supernova data one infers [14]

Ay =210 TeV. (51)

If we assume that vy is real, then

104002-5



LAURENT FREIDEL, DJORDJE MINIC, AND TATSU TAKEUCHI

<1 (52)

Thus there is no bound on ¥ in this case, given the usual
value of the Planck scale.

V. CONCLUSIONS

In this paper we have discussed the issue of parity
violation in quantum gravity. In particular, we have clari-
fied the role of the coupling of fermionic degrees of free-
dom in the presence of torsion as well as the physical
meaning of the Immirzi parameter in the low-energy ef-
fective Lagrangian. The low-energy effective theory is
found to contain two parameters: the nonminimal coupling
parameter («) and the Immirzi parameter (7). Only in the
case of nonminimal coupling (a # 0) the effective
Lagrangian contains the axial-vector interaction leading
to parity violation. The important point here is that the
parity-violating vector-axial interaction contains two pa-
rameters (« and <y). In this situation, the experimental

PHYSICAL REVIEW D 72, 104002 (2005)

constraint of an effective parameter involving both « and
v can be discussed. In the case of minimal coupling (o =
0) there is no parity violation and the effective Lagrangian
contains only the usual axial-axial interaction. Here the
bounds on the effective coupling, a function of the Immirzi
parameter, are well known in the literature. These do not
impose any constraint on the real value of y. On the other
hand, purely imaginary values of the Immirzi parameter
lead to violations of unitarity for &« # 0. Finally, the effec-
tive Lagrangian blows up for y = =*i.
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