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Charged scalar self-mass during inflation
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We compute the one loop self-mass of a charged massless, minimally coupled scalar in a locally de
Sitter background geometry. The computation is done in two different gauges: the noninvariant general-
ization of Feynman gauge which gives the simplest expression for the photon propagator and the de Sitter
invariant gauge of Allen and Jacobson. In each case dimensional regularization is employed and fully
renormalized results are obtained. The result in the de Sitter invariant gauge exhibits an on-shell
singularity which we show can be eliminated if the equation for the photon propagator is changed to
include an antisource at the antipodal point. By using our result in the linearized, effective field equations
one can infer how the scalar responds to the dielectric medium produced by inflationary particle
production. We also work out the result for a conformally coupled scalar. Although the conformally
coupled case is of no great physical interest the fact that we obtain a manifestly de Sitter invariant form for
its self-mass-squared establishes that our noninvariant gauge introduces no physical breaking of de Sitter

invariance at one loop order.
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I. INTRODUCTION

Quantum loop effects can be understood in very simple
terms as the response of classical field theory to the O-point
fluctuations of the various dynamical variables. These
fluctuations can be viewed as virtual particles which
emerge from the vacuum and disappear back into it after
a period whose duration is fixed by the energy-time uncer-
tainty principle. Because spacetime expansion redshifts
virtual particle energies it increases the time for which
they can persist, hence strengthening the effects they pro-
duce. Parker was the first to perform serious computations
about this [1].

Just as in flat space, the persistence time for virtual
particles of the same momentum becomes longer as the
mass decreases. It is simple to show that any massless and
sufficiently long wavelength virtual particle which happens
to emerge from the vacuum can persist forever during
inflation [2—4]. However, this will not lead to increased
quantum effects unless the rate at which such particles
emerge from the vacuum is significant. Almost all massless
particles possess classical conformal invariance, which
causes the rate at which they emerge from the vacuum to
redshift so rapidly that there is no significant strengthening
of quantum effects [2—4]. The two exceptions are mass-
less, minimally coupled (MMC) scalars and gravitons.
These particles are produced copiously during inflation
and can therefore mediate enhanced quantum effects.

It is quantum fluctuations of precisely these fields which
are responsible for the primordial cosmological scalar [5]
and tensor [6] perturbations predicted by inflation [7,8].
Those are tree order effects. At one loop order it has
recently been discovered that MMC scalars can catalyze
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significant quantum effects involving particles which
would not otherwise experience them owing to classical
conformal invariance. When electromagnetism (which is
conformally invariant for D = 4 dimensions) is coupled to
a charged MMC scalar the resulting one loop vacuum
polarization causes superhorizon photons to behave, in
some ways, as though they have nonzero mass [9-11].
When massless fermions (which are conformally invariant
in any dimension) are Yukawa coupled to a MMC scalar
the resulting one loop fermion self-energy engenders a
faster-than-exponential growth in the fermion mode func-
tions which seems to betoken explosive particle production
[12].

Both models have great phenomenological interest be-
cause all standard model particles would be effectively
massless on the energy scales typically envisaged for pri-
mordial inflation, and because they couple to a fundamen-
tal scalar—the Higgs—which may well be minimally
coupled. If unchecked, the Yukawa process would lead to
a degenerate fermi gas of superhorizon fermions [12]. The
electromagnetic process would not result in photon crea-
tion during inflation but leads instead to a vast enhance-
ment of the 0-point energy of superhorizon photons. After
the end of inflation the least superhorizon of these modes
will reenter the horizon and again become massless, at
which point their excess 0-point energies may seed cosmic
magnetic fields [2,13,14].

Both effects require the scalar to be massless on the scale
of the inflationary Hubble constant and it is natural to
wonder whether quantum corrections can affect this.
What happens can be determined by computing the self-
mass-squared and using this to solve the linearized effec-
tive field equations,

0, (JV=g8""d,0) - f XM () p() = 0. (1)
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In a previous paper it was shown that the scalar cannot
acquire a large enough mass rapidly enough to prevent the
Yukawa process from going to completion [15]. That result
was inevitable because only the conformally invariant
fermion propagator contributes to the Yukawa self-mass-
squared at one loop order. The nonconformal scalar propa-
gator participates even at one loop order in scalar quantum
electrodynamics (SQED) so there should be a strong effect.
Because inflation induces an effective dielectric medium of
superhorizon charged scalars [2], and because the energy
of a charged particle is reduced in a dielectric medium, it is
conceivable that the effect will be to enhance inflationary
particle production. In this paper we evaluate M?(x;x') at
one loop; we will use it in a subsequent paper to solve the
effective field equation (1).

Because this computation involves the photon propaga-
tor we must face the issue of gauge fixing. It turns out that
the simplest gauge breaks de Sitter invariance [16].
Because the scalar propagator must show a physical —as
opposed to gauge—breaking of de Sitter invariance [17]
this should not be an issue. However, one might worry
about the introduction of spurious violations of de Sitter
invariance. That can be checked by computing the self-
mass-squared of the conformally coupled scalar, which
shows no physical breaking of de Sitter invariance and
for which we obtain a manifestly de Sitter invariant result.
Another check is by computing the minimally coupled
scalar self-mass-squared in the de Sitter invariant gauge
of Allen and Jacobson [18].

This last check has a surprising outcome: the self-mass-
squared for both the minimally coupled and the confor-
mally coupled scalars exhibit on-shell singularities when
the Allen-Jacobson propagator is used. Of course we ex-
pect a big infrared effect for the minimally coupled case—
although not that big—but nothing much should be hap-
pening to a conformally coupled scalar in a conformally
flat background. The on-shell singularities must therefore
be spurious. We show that they can be eliminated by
changing the propagator equation to include an antisource
at the antipodal point. The need for such an antipodal
antisource might derive from the linearization instability
of electromagnetism which allows only charge-neutral
solutions on the full de Sitter manifold.

In the next section we use the Lagrangian of SQED to
derive the Feynman rules in the simplest gauge. In
Section III we compute the fully renormalized one loop
scalar self-mass-squared. In Section IV the same quantity
is computed in the de Sitter invariant gauge of Allen and
Jacobson. What it all means is discussed in Section V.

II. FEYNMAN RULES

Let ¢(x) represent a complex scalar field and let A, (x)

stand for the vector potential. The Lagrangian of MMC
scalar QED is,
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—(0,, —iegA,)@"(9, + iegA,)p 8"/~ 8

* 1 vo
- §0¢ @R\/_ - ZF,U.VFpa'glupg VA (2)

Here & is the bare conformal-type coupling (with confor-
mal invariance for &, = (D — 2)/4(D — 1) in D spacetime
dimensions) and e is the bare charge. We do not need to
include a bare mass because mass is multiplicatively re-
normalized in dimensional regularization. We would need
a (¢*¢@)? interaction for strict renormalizability but we
shall not require such a term for this computation. At one
loop order the need for such an interaction emerges only in
diagrams which incorporate the 4-scalar 1PI function.
Renormalization is organized in the usual way. We first
define renormalized fields in terms of the bare ones,

(‘2 = \/22(pr and A,u, = \/Z3Ary,' (3)

LSQED =

In terms of the renormalized fields the Lagrangian takes the
form,

Lsorp = —Z5(9, — ieo\/zl“m)?fi(au +iegVZ3A,,)

X @, 8"\ =8 — {oZror @R~
1

- ZZ3Fr/.LVFrpa'g'u'ngr\/ —& C))

We will henceforth speak only of the renormalized fields
and, because there can be no more ambiguity with un-
renormalized fields, we will dispense with the superfluous
subscript . Because of gauge invariance and the fact that
we want the tree order scalar to be minimally coupled our
renormalized parameters are given by the relations,

VZieg=e+0 and Z,& =0+ 8¢ (5)
Setting Z,3; =1+ 6Z,;, we
Lagrangian as,
Looep = —(9, — ieA,) @™ (9, + ieA,)p g""/—¢
- %FM,,FP(,g"”’g’”’\/—_ - 522(8# - ieAM)
X ¢*(3, +ieA,)pg"" /=8 — 6{¢"pR/~g

1
- ZBZ3FWFP,,gW’g”"1/—g. (6)

Although we can only obtain propagators in very special
geometries it is simple enough to read off the interactions
needed to compute the one loop self-mass-squared in a
general metric background. The 3-point and 4-point inter-
actions are,

Ly =ieA,(¢"¢, — ¢0)g""/—8 (7

finally express the

Ly = —A,A, 0" pgh" /=8 (8)
The counterterms we shall need are,

Lom=—02,0",¢,8""/—8 — {0 0R/—g. (9)
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The scalar propagator comes from the Lagrangian for
complex Klein-Gordon theory,

Lok = —@ue.8""V=8 (10)
It obeys the equation,
9, (V88" 9,iA4(x;x)) = i8P(x — x). (1D

The photon propagator derives from the Lagrangian for
electromagnetism,

1
£EM = _ZFMVFpO'g'U“ngO' -& (12)
1 vo 1 vo
= _iAu;vAp;og'upg J—8+ EA/L;VAO';ngpg - &
(13)

1 1
= _EA,u;VAp;(rg'ungT -8 EAuAvR#V\/__g
1
+ EA,U,;VAP;ITgMVgPU’\/ -8
1
+ E ap(A/,L;VA(Tg/-LngU'\/ -8
- AU;/LAVgMUng\/ _g) (14)

Our paradigm for the geometry of inflation is the open
conformal coordinate patch of de Sitter,

1
ds®> = a*>(—dn? + dx - dX) where a(n) = — —.
Hn

15)
Because we employ dimensional regularization, we as-
sume there are (D — 1) spatial coordinates x' with a single
conformal time 1 which runs from —oo to zero. In this

background the various metric-dependent quantities that
appear in Lgqpp are,

J—g=ad",
1'%, = Ha(808 + 8789 + 80m,,), (16)
R=D(D - 1)H2 and R*" = (D — l)Hza_zan,

gt = a—2nlw,

We shall henceforth raise and lower indices with the
Lorentz metric,
ot =9ty

9% =n""9,9,, Al = ntrA

a7
The special properties of our locally de Sitter back-

ground can be used to simplify the three volume terms of
the electromagnetic Lagrangian (14). The first becomes,
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1 |-~

_EA/L;VAP;U'gMngO— —8= _EaD 4{A,u,,vAM’V
+2HaA,, A" +2HaA, ,A*
—2HaA* Ay —2H?a*A A"
+(D—2)H?a’AZ}. (18)

W (D — 1)H*aP 24, A*

= 5 a v 5 a “

1
+ 2HaP3A,Al, — 5(3D — 8)H?aP~2A3
1 _ _
- E(HCZD 3A#AM)YO - (HLZD 3A0AM)’#. (19)

The second volume term is simple by comparison,

1 1
~SALARM =g = =5 (D = DA AR (20)

The final volume term is,
1 I,
E(A,U.;Vgl“})le —8= EaD 4(AM,,U,)2
- (D - 2)HaD’3A0A/’“,,i
1
+ E(D —2)?H?aP %A% (21)
The three volume terms can be summed to give,

1
Ly — (Surface Term) = — EaD_“A#,,,AW’
1
+5(D - 4)aP 2 H?A}
1,
oA Ak, — (D= 4)
X HaAo)?. (22)

The final expression in (22) suggests that we add the
gauge fixing term [16],

Lap = —5aP 4%, — (D - YHad 2. (23

In this gauge the photon propagator obeys the equation,
(07aP 49,65 — (D — 4)H2aD‘26268)i[pA,,](x;x’)
= 7]#,,1'50()6 —x). (24)

Because space and time components are treated differently
it is useful to have expressions for the purely spatial parts
of the Minkowski metric and the Kronecker delta,

T ouw = Ny + 0580, 8 =060 —0658). (25
Making the ansatz,
i, A x") = aa'n,, iAp(x; X)) — aa’ 89, 8%iAc(x; x').
(26)
We see that the propagators iAg(x; x") and iA(x; x") obey
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the equations of scalars with various amounts of conformal
coupling,

[a (V= gm0 )——( )RJ—}AB(x ¥)
= i6P(x — x'), 27

|:6 (V—ggh"d )—(D )R\/—}Ac(x x")
= i8P(x — x)). (28)

Of course the fact that we have written Eqgs. (27) and (28) in
an invariant form does not alter the fact that our photon
propagator only applies to a locally de Sitter background.

The various propagator equations (11) and (27) and (28)
can be almost entirely solved in terms of the following
function of the invariant length €(x; x’) between x# and x'#,

1
y(x;x') = 4sin2<§H€(x; x’))
=adH*(|x = ¥ = (In — 7'l —i8)»). (29

The most singular part of each propagator is the same as
the propagator for a massless, conformally coupled scalar

[19],
r(g - 1><f>(m)l. (30)
2 y

It has long been known that no de Sitter invariant solution
exists for the A-type propagator [17]. It is natural to imag-
ine our locally de Sitter background as one of the larger
class of conformally flat geometries but with arbitrary time
dependence in the scale factor. In that case the relevant
symmetry to preserve is spatial homogeneity and isotropy,
which is known as the “E(3)”” vacuum [20]. The simplest
solution for this is [21,22],

HD—2

i) = oo

HP2 T(D—1)
(4mPr2 T(3)

e el

HP2 2 (1T(n+D—1)
(4 )D/zz{n F(n+59)

iA (e x") = iA (s x) +

+mmm%

I'n+2 5+ 1) (y)n—(D/2)+2}
Z .

A 1
(Z) n—%+2 I'n+2)
(€29

On the other hand, the B-type and C-type propagators
possess unique, de Sitter invariant solutions [23,24],
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HP~2 T(D—-2)I'(1) o, .D. Y

lAB(X X) (4 )D/Z F(%) 2F1<D 2,1,5,1 Z),
(32)

HP™2 T'(D-3)T'(2) Dy
lAc(X.X') (4 )D/2 1_‘(%) 2F1<D 3,2,5,1 Z)

(33)

One can note the progression in the coefficients of the
conformal coupling terms in the equations for iA,, iAg
and iA,

ot
—>—%<D—:?>R\/—_g. (34)

The same progression is evident in the B-type and C-type
solutions (32) and (33). Were it extended to the A-type
solution the progression would give,

HP-2 T(D — DI(0)
@mP?2  T® 2ﬂ<

D y
1,0;—:1 —=).
02 4> (35)

However, expression (35) is singular, which reflects the
incompatibility of assuming a de Sitter invariant solution.
Rather than trying to write iA 4 (x; x’) in terms of hyper-
geometric functions it is actually more effective to expand
iAg(x;x') and iA(x; x') in the same form as iA 4 (x; x'),

HP~2 {F(n +D—-2)/y (Z)n

() = Bl x) ~ s 3R D)

Tn+9%) (y)n—(D/2)+2}’ 36)

I(n+2)\4
iAc(x; X)) = iAg(x; X)) + (4 )D/2 Z{(n

I (o2
F'(n+2-1) <i_;>n—(1)/2)+2}

T +2) 7)

These expressions tend to intimidate but it will be seen that
they are quite simple to use on account of the facts that the
infinite sums vanish for D = 4 and each term goes like a
positive power of y(x; x'). Hence the infinite sums can only
contribute when multiplied by a term which becomes
sufficiently singular upon coincidence. Note also that the
B-type and C-type propagators degenerate to iA in D =
4, so the photon propagator is the same for D = 4 as itis in
flat space. This is the gauge that takes full advantage of the
fact that electromagnetism is conformally invariant for
D =4,
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III. M?*(x;x') IN THE SIMPLEST GAUGE

The scalar self-mass-squared receives one loop contri-
butions from a single 4-point interaction (8), from a prod-
uct of two 3-point interactions (7), and from the
renormalization counterterms (9). One subsection is de-
voted to the evaluation of each sort of contribution. By far
the most difficult is the contribution from two 3-point
interactions. That requires four separate parts.

A. Contributions from the 4-point interaction

The 4-point interaction (8) gives rise to a diagram with
the topology depicted in Fig. 1. Its contribution is

—iMﬁpt(x; x) = —ie?J=gg""i[ ,A,](x;x") 8P (x — x').
(38)

We obviously require the coincidence limits of the B-type
and C-type propagators,

HP™2 T(D - 1) 1
. ) — X =
i}ir;lAB(x,x) (477_)0/2 F(%) D -2’ 39)
HP™2 T(D —1) !
limiA (x; x') = ’
M) T T e “ D20 -3

(40)
J
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FIG. 1. Contribution from the 4-point interaction.

It follows that our result for the 4-point contribution is
completely finite in D = 4 dimensions,

ie?HP24° T(D — 1) [/D — 1
—iprt(x; x) = e a ( ){< >

@mp? 1 |\D-2
—_ 1 D —
TE s GUCREZ
: 2H2
— 12?(1454()6 —x). (42)

B. Contributions from two 3-point interactions

The 3-point interaction (7) gives rise to a diagram with
the topology depicted in Fig. 2. Its contribution is

—iM3, (v x') = —e* /= gg""\| =8/ il A, J(x;x)0, 05iA s (x;x) — €2, [ =g g" | — &8P il A, J(x;x) 0 iA 4 (x;x)]
— e, [\=gg" |~ g'¢ il LA, )(x:x) 9, iA L (x:x)]

—20,0,[/—88" "\ —&'8" il LA, J(x;x)iA o (x;x)]. (43)

The key to an efficient calculation is that the most
divergent term for each of the three scalar propagators is
the conformal propagator,

A (e x) = A (O x) + i0A(x; x7), (44)

where I can be A, B, or C. Hence the most singular part of
the photon propagator has a simple tensor structure,
i, A, 10 ) = aa'n,,, id (i x') + ad'n,,, i8A,(x: )
—aa'8%,8%i8Ac(x; x'). (45)
Now recall that only the n = 0 term of i6A 4 fails to vanish

in D = 4 dimensions. Further, the nth term in each i6A;
goes like y", so these terms can only contribute when

FIG. 2. Contribution from two 3-point interactions.

;11ultiplied by something sufficiently singular from another
propagator. Because this diagram is at worst quadratically
divergent—and that only from two factors of iA—no
more than one factor of i6A; can give a nonzero contribu-
tion, and only from the n = 0 terms. We therefore partition
this subsection into computing the respective contributions
from when both the scalar and the photon propagators
provide iA, from when the scalar provides the n =0
term of i6A, times A from the photon propagator, and
from when the photon provides either i6Ag or i6 A times
iA ¢ from the scalar propagator.

1. Contributions from i\ X A

The tensor structure of the conformal part of the photon
propagator gives a simple result for the contractions in
(43),

—iM%(x;x') = —4e*(aa")P i - 'iA
—2e%aP 1o [aP T iA ]9 iA ¢
—2e2aP 7 o' [aP T iA )0, iA

— €20 - '[(aa" )P ViA4)iA. (46)
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We next substitute the explicit form of the conformal
propagator,

ré-m (aa’)! =P/
47072 AxD2

iAg(x; x') = 47

That brings the result to form,

— iM% (xx') = TG 1){4(”/)?/26' ’[(aal)l iD/Z)}
167P AxP—2 AxP~2
Za/D/z aD/2 a/l—(D/z)
+ (0/2)_16“[A Dz}%[ AxD2 :|
a x X

. 24P/? " a'P/? ; al— (/2
a/(D/z)—l Afoz 15 Afoz
(aa/)lf(D/Z) . a’[(aa/)lj/z}},

AxP—2

AxD2
Acting the derivatives is facilitated by the simple identities,

(48)

d,a? = ar{d, + pHad'}, (49)
(aa’)? (D —2)pH?*An?
. al — np+1
00 [AxDz} (ad) { AxP
2H? i
- - - x’)}, (50)
a? a'l (D —2)?
aM[AxD—Z}af“[AxD—Z} = apa/q{_ Ax2D2
(D —2)ga’HAn
- Ax2D2
(D —2)paHAn
+ Ax2D—2
pqH?aa’
E T
The result is
) e’T?(2 — 1) (4(D — 2)?%ad’
—iMG(x; ) = 1637'D { Ax2D—2
%(D —4)(D — 2)a*a*H*An?
+ Ax2D—2
%(D _ 4)2H2a2a/2
P } (52)

At this point it is useful to recall that the physics of
M?(x; x') is inferred by integrating it up against a smooth
function in the linearized effective field equation (1).
Although each of the three terms in (52) is singular at
x'# = x# (and hence Ax> = 0), they can each be expressed
as the derivatives (with respect to x* so the derivatives can
be taken outside the integration over x'#) of functions that
are integrable in D = 4 dimensions. Identities which fa-
cilitate this are,
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| 92
AT 20D —3)(D -4 (Axm)’ ©9)

1 o 1
Ax?P=2 4D —2)*(D —-3)(D —4) (AxZD_‘S)’
(54)

Ang® _ a3 1
Ax20—2 4D —2)(D —3) (Axw _6>

9% 1
4D —2)(D-3)(D - 4) <Ax2D—6>' (55)

The resulting expression for the conformal contributions to
the self-mass-squared is,
TG —1)

_'M2 eyl —
My (x; ) 1672(D — 3)

aa'o* 3
X {D 2 + g(D — 4)a’a"*H* o}

1
W)' (56)

All of the expressions in (56) are integrable with respect
to x'* in the effective field equation (1). We could take
D = 4 at this stage were it not for the explicit factor of
1/(D —4) in the first term. This is an ultraviolet diver-
gence, however, it is not yet in the correct form to be
removed by a local counterterm. We can achieve this
form by employing the identity,

1
+gD- 7)H2c12a’282}<

82( AxLz) = F’éﬂf/i) 8P(x —x). (57
The procedure is to first add zero to the basic divergence,
9’ 1\ 9 1 ul
D—- 4<Ax20*6> " D- 4<Ax20’6 AxLH)
O BTR bew) (s8)

+
D—4"T(E-1)

The parenthesized nonlocal term is not only integrable in
D = 4, it also vanishes in that dimension,

1 3 /‘LD_4 B /"LZD_S 1 D—4
A2D—6 A D2 Ax2 {(,LLZA)C2>
1 (D/2)—-2
o) L@
1 In(u?Ax?
= (-4 (’szx ) Lo —4p).  (60)

We can therefore segregate the basic divergence on a local
term—which can be absorbed into a counterterm—and
take the limit D = 4 on the finite, nonlocal term,
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92 1 _i47TD/2/.LD_4 8P (x—x')
D—4<Ax2D*6> re-1 D-4

B laz<ln(,u,2Ax2)
2

= >+ oD —4). (61)

Employing this in (56) and taking the other terms to D = 4
gives,

ie?uP4 F(% -1)

g2 (e o)) — 192 8D (v _
iMZ(x; x') 4aD (D =3)D -4 aa’9?6P(x — x')
3¢’ H?
_ l;ﬂ.z a*54(x — x')
e udlat In(u?Ax?)
2574 Ax?
+ O(D — 4). (62)

2. Contributions from i\ X i6A,

Recall that the full scalar propagator is iA,(x;x") =
iA(x; x") + i8A4(x; x'). We have just computed the result
of keeping only the conformal parts of the photon and
scalar propagators. Using just the conformal part of the
photon propagator and setting the scalar propagator to
i6A, gives,

—iM3,(x;x') = —e*(aa')P " iA 0 - 0'i6A,
— e2aP 1 or[aP T iA 0,160 ,]
—?aP 1o [aP T iA 0, i0A,]
— €20 - 0'[(aa’ )P ViA4iSA L] (63)
It is useful to separately consider the reduction of each of
the four terms on the right-hand side of (63), labeling them
“1,7 42, “3.” and “4,” respectively.
We can read off i5A, from the A-type propagator (31),
H> TE+1) (aa HP2
+
167TD/2 % -2 AxP—4 (477_)D/2
I'o-1
%{—wcot(%D) + ln(aa’)}
HD 2 1 F(n +D—1)/(y
oo 2l Torn )

B 1 F(l’l +2D 5 + 1) y n—(D/2)+2
o tety @) )

/)2—(D/2)

iI0A4(x; x') =

(64)

In D = 4 the most singular contributions to (63) have the
form, i8A,/Ax*. Because the infinite series terms in (64)
go like positive powers of Ax? these terms make integrable
contributions to (63). We can therefore take D = 4, at
which point we see that all the infinite series terms drop.
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It is sometimes also useful to note that the D = 4 limit is,

2

. H
i0A,(x;x) = By

1n<\f H2Ax2> + 0D —4). (65)

Note that the factor of e in this expression is the base of the
natural logarithm rather than the electromagnetic coupling
constant. The distinction should always be clear from
context.

We begin the reduction of the first term in (63) by
substituting the conformal propagator,

—iM%A](x; x') = —e*(aa )P ViA g (x;x)0 - 0'i8A 4 (x; X)),
(66)

2L -1 nD/2
_ TG _ V@l isasa).  (67)

AxD*4

4472

Only the first term of (64) survives when acted upon by 9 -
J',

_i (ex) = = S I'G - DIE + 1) (aa)P
oA 2070 b-2 AxP~2
nN2—(D/2)
a/[%} LoD -4, (69

e’H*> /D D 4
=%.D F(E — 1)1"(5 + 1>(aa’)2{— ADa
(D Maa'H*An> (D — 4)ad’'H?
Ax2D—4 2A2D—6

} + O(D — 4).
(69)

The first term in this expression is of a type we have
considered in the previous subsection. On the other hand,
the last two terms are integrable, so they give zero con-
tribution on account of the factors of D — 4. The final
result is

i?H*uP~*  TE+1)
87P/2 (D —3)(D —4)

—iM%A](x;x’) = —

2172

H
X a*éP(x — x') + ;—4((1(1’)262
s

« <ln(,u2Ax2)

= ) +0(D - 4). (70)

The second term in (63) is
—iM%Az(x;x) = —e?aP 1o [aP A g (x; X)) 0,

X i8A 4 (x; x)], (71)
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eTE-1) 3", i0A, DHa
- _ 2 I3 _ :
= T(GGI)D/ {8“[ AxD_2 i| ZAxD_Z 6615AA} (72)
The derivative of i6A 4(x; x') is
H?> /D 5 2Ax Ha' 89 HP=2 T(D - 1)
; ) — el —(D/2) o “ 0 _
07,164, (x; x') 6.7 F(2 + 1)(aa’) / [AxD_Z AxD_“} b D72 F(%) Ha's), + O(D — 4). (73)
Combining the two results gives
. e’H?> (D D 2(D—4) 2(D-3)a'HAn 4aHAn 2ad'H?
—iM3,, (s x) = 26D r(j - 1>F<§ + 1) X (aa/)z{ A2D=4 A2D—4 T AP szoﬁ}
e?HP~? 2a'HAn Daa'H?
+ ———=T(D — 1)(aa’)P/? +0(D — 4. 74
s D = Diaa) P2 ST 1 2O L o — 9 (74)
Of course the third term in (63) follows from the second just by interchanging x* and x'#,
. e*H* /D D 2(D—4) 2(D—-3)aHAn 4d'HAn 2ad'H?
—iM3, (x; X)) = 26D r(j - 1>F<§ + 1) X (aa/)z{ Ax2D—4 + Ax2D—4 + A2D4 Ax2D6]7
e?HP2 2aHAn Daa'H?
+ 551D — 1)(aad)P?! - +0(D — 4). 75
2D+2 4D ( (ad) AxP (D —2)AxP~2 ( ) (75)
The fact that a — a’ = aa’ HAn allows us to usefully combine (74) and (75),
. . €*H* /D D o [4D —4)  2(D - 5)ad’H*An*  4aa’H?
—1M6A2+3(x,x) —ﬁr<3_ 1>F<E+ 1) X (aa) { Ax2074 + Ax2D74 - szD—6}
e?HP~2 2H*Axn? 2DH?
+ ———=(D — 1)(aa’)P/P*1] - +0(D — 4). 76
2D+2 7D ( Nad’) AxP (D —2)AxP~2 ( ) (76)
Only the first term is not immediately integrable, and the _iM?)‘A (x;x") = —e29
explicit factor of D — 4 it bears results in a finite, local ¢ Dot .
contribution from it, - 9'[(aa")P7 iA G (x; x)iS A 4 (x; X)),
4D—4) _ 20° 1 (79
A2D—4 D —3\Ax2D6
2172 2
= i8m28*(x — x') + O(D — 4). (77) _ef d-9 (aaz In £H2Ax2 + O(D — 4), (80)
2t Ax 4
Hence the second and third terms in (63) make a com-
pletely finite contribution, e
e?H? - In(f H*Ax?))  e*H* 3
ieZHZ €2H4 == 5 4 (aa/) d 2 - 6 4 (aal)
—iM%A (x;x') = a454(x—x’)+—(aa/)3 2w Ax 2%
2377 8m? 2074 /e 3 Je
X (203 + %) In(Ax?) + O(D —4).  (78) X {63[1n2<7e Hzszﬂ +3 a2[ln2<f H2Ax2>
The final term in (63) has the simplest reduction and the Je T h 2
most interesting eventual contribution. Its reduction is a 21n<—H Ax )}} +0(D —4). 81
accomplished by simply refraining from acting the external
derivatives and instead taking the limit D = 4 on the We can now sum (70), (78), and (81) to obtain the final
integrable expression inside the square brackets, result for this subsection,
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2 H2 P4 M2+ 1) H 2 H
—iM2 N _ 2 Al Y # 114480 (e — ) — N3] 92[In2(2 2 H2 A 2
iM5, (x; x') Y { D-3)D -4 n(2M> }a (x — x') 564 (aa’) {80[ n?( x?)
2
Q2 H2AR)] + %[31112(2*2}12“2) _s ln(22H2Ax2)]} LoD — 4). 82)

Note that all the nonlocal terms proportional to (aa’)? have
combined to produce a finite, local term.

3. Contributions from i5Ap X iA

In this subsection we evaluate the contributions to the
full 3-point diagram (43) by making the following replace-
ments for the scalar and photon propagators,

IA 4 (6 x7) — iA (s x7), (83)

i[,A,106x") — ad'iSAg(x; X') 7, (84)

Here 7, is the purely spatial part (25) of the Lorentz
metric and i6Ag(x; x’) is the residual of the B-type propa-
gator (36) after the conformal contribution has been sub-
tracted,

. HT() (aa')*~ P/
iI0Ag(x;x) = 1677%2 AP

HP™2 T'(D - 2)
@4mP2 T®)
N HP™2 & {F(n +9) y\r-@/2+2

(44r)P/2 S| I(n+2) (4)

_ F(f; (Z f %—)2) (%)} (85)

As was the case for the i5A 4(x; x’) contributions consid-
ered in the previous subsection, this diagram is not suffi-
ciently singular for the infinite series terms from
i8Ag(x; x') to make a nonzero contribution in the D = 4
limit. Unlike i6A4(x;x'), even the n =0 terms of
i8Ag(x; x’) vanish for D = 4. This means they can only
contribute when multiplied by a divergence.

Making replacements (83) and (84) in the 3-point dia-
gram (43) gives

— iM%, (x;x') = —e*(aa )P H{isApd;0liA
+ 9,[i6Ap0li6A ]
+ 0l[i6Apa;iA ]
+ 0,0/ [i6AgiA ]} (86)
Because all the derivatives are spatial we can extract the

scale factors from iA(x; x’). We can also convert 9} to
—d; and combine two terms to obtain

' T2 —-1) . 1
—iM3%,(x; x) = ‘JM(GGI)D/Z{l‘SABW(AxH)
) 1
RV,
i6A
V(o) o

In analogy with the analysis of the previous subsection we
can label the three terms of this expression 1, 2 + 3, and 4.

The only nonzero contribution comes from the first term
of (87). To get it one merely substitutes the first line of (85)
and then exploits some simple derivative identities,

, e2H* /D D\ (aa’)?
ot

1 e?HP2T(D —?2)
X v2<AxD—2> - 9D+2.D g_ 1
% (““')D/2v2<AxD*2> +0(D—4), (8%

_PH TG - 1r®)
2070 4(D —3)
><< 1 )_ e2HP2 T(D —2)

Ax2D76 2D+27TD % -1
1
Afo2

(aa")*[DV? — (D — 1)9?]

X (aa’)D/2V2< ) + O(D — 4). (89)

The last expression is completely integrable so we can take
the limit D = 4, at which stage the spatial derivative terms
cancel and the d’ Alembertian term gives a delta function,
i3e*H?
62 a*8*(x — x') + O(D — 4).
(90)

The middle term of (87) is integrable with d; extracted,
so we can take D = 4 immediately. This gives zero be-
cause i6Ap vanishes in D = 4,

TG —-1)
47P/2
. 1
X (aa/)D/228i|:15AB(91<AxD_2>:|

= 0(D — 4). 1)

—iM%Bl(x;x’) = —

—iM5p  (x;x')

The same analysis and the same result pertains for the final
term of (87),
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21 (D _ .
e F(j 1)((,1(,1/)D/2v2 IBAB
47P/2 AxP~2

= 0(D — 4). 92)

—iMjp, (x;x)

Our final result for this subsection is therefore

3¢2H?
oz @8} = x) + 0D — 4)
o

93)

—iM3p(x;x') = —

4. Contributions from i5A; X iA

In this subsection we evaluate the contributions to the
full 3-point diagram (43) by making the following replace-
ments for the scalar and photon propagators,

AL xT) — iAo x7), (94)

i, A, 106 x") — —ad'isAc(x; x') 89,89 (95)
The result is
—iM3.(x;x") = €*(aa’)P"1isAcdgdpil
+ eza’DﬂGo[anliﬁAc%iAcf]
+ eZaD7166[a’D71i5AC80iACf]
+ 6280(96[(6161/)D_1iBACiACf]. (96)

Here i6A(x;x’) is the residual of the C-type propagator
(37) after the conformal contribution has been subtracted,

H*> (D D (aa')?~P/2)
; eyl = N R
i0Ao(x; x') T (2 3>F<2 l> A D
HP2 T(D—-3) HP
@mP? T®  @mP”

X 2{(1@ — g + 3)
I'(n + % — 1) /y\n—(D/2)+2
W(ﬂ

1) F('lf(;if%_):‘;) <4X1>} 97)

As with the contributions from i8A z(x; x’) considered in
the previous subsection, the only way i6A ~(x; x') can give
a nonzero contribution in D = 4 dimensions is for it to
multiply a singular term. For (96) that means only the n =
0 term can possibly contribute. Even for the n = 0 term,
both derivatives must act upon a Ax’. If even a single
derivative acts instead upon a scale factor, the result is a
term which is integrable in D = 4 dimensions, at which
point the cancellations between pairs of terms evident in
(97) results in zero net contribution. We can therefore
extract the scale factors from iA¢(x;x’) and replace 9,

PHYSICAL REVIEW D 72, 104001 (2005)

by —d, as we did in the previous subsection,
217(D _

47P/2
. 1

X

+ ag(’.‘)i&)} +0(D—-4. (98

—iM3.(x;x) = (aa')P/?

The first term in (96) is reduced the same way as was the
analogous first term from i§Az(x; x’) in the previous sub-
section,

. T2 —1) . 1
_lMécl (.X, )C/) = — W(acﬂ)D/zlaAca%<W>,
99)
e’H? (D D (aa’")? 1
T 264D (E - 3>F2<3 - 1) AxP~4 a(z)(AxD_2>
e?HP™2 T'(D - 3) 1
" 2Db+2_D D] (“a/)D/za(Z)<Axnfz>
+0(D —4), (100)
eH? B —3)I2Q-1) 1
— S ap =g @D + aﬂ(W)
2HP-2 T(D — 3) 1
T 3D, D D (aa’)D/za(Z)(AxD_z) + O(D — 4),
(101)
e*H? 1
— (aa/)25)2<rxz> + oD - 4), (102)
. 2H2
- 1266 Ca*Sx—xX) + 0D —4).  (103)
o

As in the previous subsection, the other terms are zero
because they start out with enough derivatives extracted
that we can take D = 4 right away,

, TG -1
_lM%Cz+3(X; xl) =" 47:D/2
1
X (aa’)D/QZGO[iBAca()(AxD_z)}
= 0(D — 4), (104)
) T2 —1) i6A
_lM§C4(‘x; x’) = - 47:D/2 (aal)D/za(z)<Afo2>
= 0(D - 4). (105)
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The final answer for this subsection is therefore,

—iM2(x;x') = i H* a*64(x — x') + O(D — 4). (106)
sc\Xs 262 :
|
e2uP4 TR-1)
g2 ) — LM 2 1428D(y _ I\ _
iM*(x; x") 2 D72 (D_3)(D_4)aaa 6P (x — x')

2

S aa’ 3%{In*(u>Ax?) — 2In(u?Ax?)} —

28774

2
+ %[3ln2(2’2H2Ax2) _s 1n(22H2Ax2)]} + oD - 4

By simply deleting (82) we can also obtain the one loop
self-mass-squared for a conformally coupled scalar,

: 2, D—4 F(Q -1)
_,2_/:le,u, 2 In28D(y _ ./
PIM?(x; x') 272 (D—3)(D—4)aa85 (x—x)
2
~ 584 aa' 0%{In*(u>Ax?) — 21In(u>Ax?)}
T
+0(D — 4). (108)

The relevant counterterms (9) give rise to a diagram with
the topology depicted in Fig. 3. The contribution it makes
is

—iMZ% (x5 x') = i62,0,,(/—g8""9,) 8P (x — x')

— i8&R/—g8P(x — x'), (109)

— i6Z,(ad")P/D1928D (x — x') — i[éf _1(1)_—2)522}

4\D—1
X (D —1)DH?*aP 8P (x — x). (110)
|
;2 2 2
—iMZ, (x;x') = — %aa’ In(aa’)928*(x — x') + liwz
e2H*

2074

To renormalize the self-mass-squared of a conformally
coupled scalar (108) the best choice of counterterms would
be

D—-1
0Z =4(——=)0
2|conf (D — 2) flconf
CeuPt TR -1)

T 4xP2 (D-3)D-4) (114)

With this choice we get the following renormalized self-
mass-squared,

,,,,,,,, DR —

X

FIG. 3. Contribution from counterterms.
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C. Renormalization

As we have explained, no other terms can give nonzero
contributions for D = 4. The total for —iM?(x; x') at one
loop order is therefore the sum of (42), (62), (82), (93), and
(106),

2074

a*In(a)é*(x — x') —

ie’uP4 F(g +1) H 1

+2In(— | — =tH?a*8P(x — &'
sor =3 =5 2(5,) ot )
e?H*

(aa')3{ag[1n2(z—2H2Ax2) Q2 H2AR)]

(107)

[
By comparing (107) with (110) we see that the simplest
choice of counterterms is

B e’uP4 F(% -1)

R T T
se___ Cu 3@+ 1)
- 8aP2(D - l)D{(D =3)(D—4)
H 1
2In[—) — =L 112
" n<2,u> 2} (112

This gives the following fully renormalized result,

2
pLp aa’3%{In*(u>Ax?) — 21In(u>Ax?)}
T

2
(aa')S{ag[1n2(22H2Ax2) I 2HAR)] + %[3ln2(2’2H2Ax2) _s ln(22H2Ax2)]}. (113)

[
ie?

—iMZ (x;x') = — Waa’ In(aa’)9*8*(x — x')
T

62

~ 554 aa' 3%{In*(u?Ax?)
— 21In(u>Ax?)}. (115)

The vastly greater complexity of the minimally coupled
result (113) derives from inflationary particle production,
which the conformally coupled scalar does not experience.
It is also worth noting that the conformally coupled result
can be put in a manifestly de Sitter invariant form using the
de Sitter length function y(x;x’) (29) and the conformal
d’Alembertian,

1
Dy=0,/—gg""d,) — ERW/—g =ad’a. (116)
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The resulting expression is
¢*H? DD {ln[y(x; x’)MZ/HZ]}.

Ml ) = = gy P Dt

(117)

Note its similarity to one loop scalar self-mass-squared
found for a Yukawa-coupled scalar [15]. The manifest de
Sitter invariance of this expression proves that our use of a
noninvariant gauge poses no problem at least at one loop
order.

IV. M?(x;x') IN ALLEN-JACOBSON GAUGE

One can see from expression (14) for the electromag-
netic Lagrangian that a possible invariant gauge fixing term
is,

1
£ Al — T 5 (gMVA,u,;V)le —8

|
= ——aP*(n**A,, — (D — 2)HaA,)*

5 (118)

In this gauge the photon propagator obeys,
J=al(D?)y — RyJIIP A, J(x; x') = 678 (x — x'), (119)
where the contravariant vector covariant derivative opera-
tor is
2\ —
(DK, = g*P{6k 0,05 + T+ ,,05 + TF 00
— ok, IV g0, +TF g+ TH,T
— T Vprvaﬁ}'

Vﬁp
(120)

Of course Eq. (119) is generally covariant in addition to
being de Sitter invariant, but we will only solve it for the
special case of de Sitter background.

Allen and Jacobson expressed their result for the solu-
tion of (119) in terms of scalar functions multiplying,
respectively, the parallel transport matrix and the product
of two gradients of €(x; x) [18]. For our purposes it is more
effective to express the same result in terms of the length
function y(x;x’)—which was defined in (29)—and its
derivatives,

'One can show [16] that the parallel transport matrix and the
product of the two gradients take the following form in terms of
y(x; x') and its derivatives,

1 0%y _ 1 ay ay
2H? 9x*ox'  2H?(4 —y) daxt ox'"’
1 dy dy
) ey = 7
[,u,n](xrx )[l’l,,](x,x) - sz(4 — y) IxH ax/,, .
Hence the functions a and B of Allen and Jacobson [18] relate to
our functions B(y) and C(y) as follows,

a = —2H?B(y), B = —yH?B(y) + y(4 — y)H*C(y).

(L8]0 x) =

PHYSICAL REVIEW D 72, 104001 (2005)

AN ) = Bly) — 2
pwmy Y ko

dy dy
+C0) = =0
) dxH* ax'v

(121)

It is straightforward to compute various derivatives of
y(x; x') in conformal coordinates,

dy _ 0 /
Fyvi Ha(y8), + 2a’HAx,), (122)
ay — I 0
= Had'(y6), — 2aHAx,), (123)
ax/l/
PV Padl(y60.5) — 280 aHA
a1 advoudy — 20,aHAx,
+ 2a’HAxM59, —2m,,), (124)

where the contravariant interval is Ax,, = 7, (x” — x”).
One can also establish the following useful results in any
coordinate system,

dy dy dy dy
g o = H*(4y — y?) = g (x') P
(125)
dy 9%y dy
v Y _ - 12
8" (x) 5% TP 2-y P (126)
by DIV O (1)
J ax'7 dxH9x'P Y axk
1224 ) (:)Zy aZy = 4H4 ( /) — H? dy 9y
g (x axtax'P 9x’ox'T ool ax'? 9x'o’
(128)
e L& T
Ix*ox'? dx¥ox'" wy axt 9xv’
(129)
%y _ s
Py 2 9y
- =-H X)——, 131
Dx*Dx"dx'P gurl )ax’P 31
0% 02
LR A 5 A (132)
Ix*ax'” axHax'”

Substituting (121) into (119) and making use of the
various identities gives the following coupled, ordinary
differential equations for B(y) and C(y),

(4y —y)B" + D2 — y)B' = DB + (4 — 2y)C =0,

(133)

(4y —Y)C" + (D + 4)(2 — y)C' = 2DC — 2B' = 0.
(134)
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This coupling is one indication of the substantially greater
complication of working with a de Sitter invariant gauge.
We solve this system the same way Allen and Jacobson
solved their analogous system [18], by partially decoupling

through the change of variables F(y) = B/(y) — C(y),
4y —y)F"+ (D +2)2—-y)F —2(D—1)F =0,
(135)
4y —y>)B" + (D +2)2 — y)B' — = (4 — 2y)F.
(136)

One then substitutes the general solution for F(y) into the
second equation.” The various integration constants are
chosen to enforce the delta function singularity at y = 0
and analyticity at y = 4. In the end one finds

B(y)= (fD);z F(D(Q_)3) {—(D 2_ 3>2F1<D -2, 1;%; 1- %)
+[5- (55 w0 - sy e (0,13 +13)
+ (4)()?;23)3)/2 j;)y dy'(4y' _ylz)(D/z)fl
:dy“zFl<D—2,1;§;1 —%)}, (137)
e T
- ¢(1))}2F1<D, 1;% + 1;%) + ﬁ
X ﬁ Cdy'(ay =y P/
Xf)jdy”zF1<D—2,1;§;l —%)}, (138)
piy = 7 T =3

@mP?  TE)
D—3\9 D y
—|— =L F/(D—2,1;—;1—=|, 139
(5)an( sia) 0
The two linearly independent solutions to the F Eq. (135) are,

D y
—1,2;—+ 1;=).
2 4)

The two homogeneous equations to the B Eq. (136) are,

D
2F1<D —LZTH L= %) and F1<D

D y
J’_ — . + . .
2F1(D 1;— 5 1;1 —4) and F1<D, 1,—2 1,4—)

PHYSICAL REVIEW D 72, 104001 (2005)

HP™* T'(D—1) o 1
CGmPR TR m&@—ﬁWMﬂ

Xj dy'(4y/ _y/2)(D/2)—2}’
y

where (z) = I'(2)/I'(2).

Simplicity is sometimes a matter of taste but it is diffi-
cult to imagine any criterion by which the propagator in
this gauge is simpler than the one we used in the previous
section. Where the de Sitter invariant formalism has a clear
advantage is in taking derivatives and contracting indices.
This is because derivatives of a function of y(x; x'), such as
B(y) or C(y), produce ordinary derivatives of these func-
tions with respect to y times the same basis tensors as in the
photon propagator. Invariant contractions of these basis
tensors always reduce to functions of y. For example,
one can easily compute the divergence of the photon
propagator on x”,

(140)

3,(\/—g()g"" (il L, A 1(x; 7))
= HaP~ o {2 =3B = DB + (4y —)C
+ (D + 1)(2 — y)C}.

By first substituting C(y) = B’(y) — F(y) and then using
the B Eq. (136) we can actually express this in terms of
F(y) and its first derivative,

(141)

2—-y)B — DB+ (4y —y)C'+ (D + 1)(2 — y)C
= (4y —y»)B" + (D +2)(2 — y)B' — DB

— (4y = yHF' — (D + 1)(2 — y)F, (142)

—(4y = y)F' = (D — )2 - y)F. (143)

Of course a similar result pertains for the divergence on
lo
X,

([ —8 ()P (il , AR I(x; 7))

Y)F' + (D = 12— y)F}.
(144)

dy
_H2 1D 4y —
a2 @y

When both divergences are taken the result can be reduced
to a scalar, then the second derivatives of F(y) can be
removed using the F Eq. (135),

9,005(1/ —g(x)g"" (x) —g(x )g””(X’)l[ A (x; X))
= —aP8P(x — x') — (D — 1)H*(aa")P{(2 — y)
X (4y — Y)F' + (D — 1)(2 — y)2F + 4F}. (145)

To take advantage of these relations we reexpress the 3-
point contribution (43) as follows,
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—iM3,;(x;x') = —4e* /= gg"\/ — '8P il L AB1(x; X)), 00 iA 4 (x5 x7) — 2€%0, (/= g8 i, AS1(x; x7))

X =8'8" 70510 (xx') — 220, ([ —g'g"P il AR I(x; X)) /=88 H 9,1 A, (x: )

—€20,0,(/—88""\/—&'8" il L AR 1(x; x))iA 4 (x; x').

Because the scalar propagator is not quite de Sitter invari-
ant we must also extract its de Sitter breaking term,

iA(x;x") = A(y) + kIn(aa’)

here & HP™2 T'(D - 1) (147)
where k =
@mP? T
The necessary first and second derivatives are
; ooy = 9Y 0
9,iA 4 (x;x) = WA (y) + kHad", (148)
!z N — ay ! 180
O IAL(x; x) = 8x"TA (y) + kHa'8?, (149)
9%y dy ay
9,00 0iA 4 (x;x") = Al(y) + A"
14 0'l A('x 'x) axyaxla- (y) axV a‘X_/O- (y)
+ 898%a27PisP (x — ). (150)

Note also that the function A(y) obeys the inhomogeneous
equation
(4y — y»)A” + D2 — y)A' — (D — )k = 0. (151)

With these identities, and some of the previous ones for
the photon propagator and contractions, the first term of
(146) reduces to

_ngAJI(X;x/) = _462\/__gg,uv _g/g/p(r

><i[MAﬁ‘J](x;x’)&,,&ﬁ,iAA(x;x’), (152)
= —i8e?H?BaP 8P (x — x') — 4e*H*(aa’)P{[4D
— 4y —y)JA'B+ (2 — y)dy — y)A'C
+ (2 —y)4y — yHA'B + (4y — y?)?A"C}, (153)

= —i8¢*H*BaP 8P (x — x') + 4k(D — 1)
X e2H*(aa')’[—(2 — y)B — (4y — y*)C]
+ 4(D — 1)e*H*(aa’)P(4y — yH)A[-B + (2 — y)C].

(154)
The second term of (146) gives
~iM3 () = ~2¢20, (=g, AN )
X 1[—8'g"P7diA 4 (x; x"), (155)

(146)

[
=28 a4y — 2+ K2 -y -2 5 ]
X{(4y = y)F' + (D — 1)(2 = y)F}. (156)

The third term differs only by interchanging x* and x'#, so
the two sum to

~ i3y, (x:x') = 4e2H (aa)P{(dy — y)A
— kly + ad' H*An* {4y — y»)F'

+ (D -1)2—-y)F} (157)
The fourth term in (146) gives
—iM3y, (i x') = —€%0,0,(J 788" 8’8"’
Xl AR )0 x))iA A (x: X), (158)

= je*{A + 2kIn(a)}aP 8P (x — x')
+ (D — 1)e*H*(aa’)P{A + kln(aa’)}
X{2 = )4y — y)F' + (D — 1)(2 — y)*F + 4F}.
(159)

Finally, we should include the 4-point contribution,

—iMipy () = —ie? /=gt il AN ](x; x) 8P (x — '),
(160)

= {2De?H?*BaP 8P (x — x'). (161)

Up to this point we have simply exploited the differential
equations (151) and (135) and (136) that any solution for
the scalar and photon propagators must obey. Now we
substitute the specific solutions for A(y), B(y), C(y), and
F(y), and then expand the relevant combinations to include
all singular and finite, nonzero contributions. The expan-
sion of A(y) can be read off from (31) and has the nice
property of terminating for D = 4. The two combinations
we require are

_ HP? {F(% -1 1 ) <y>

1
A()’)—m SO ) b _—+0(D_4)},

4
(162)
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(4y — yHA(y) = — Ho { Q) G- IrG)

47072 |0/ yD/2)=2
—%+0w—4% (163)
The function F(y) also terminates in D = 4,
F _HPH KB D-4TH) 1
(y) = 16702 { yD/2 2y(D/2)71 7D—1
i I'n+D—1)/y\n
X + )=
gi“ )Hn+§+D<D
'n+2-2 n—(D/2)+2
—n—2+3 4(’1 2 )X ' .
2 (n+2)! \4
(164)
Two combinations of it are needed,
4y = y)F' + (D — 1)2 — y)F
HP* 4} TE+1
= - (2)— G 7)+0(D—4),
167072 yD/2 Y21
(165)
(2 = y)4y = yHF' + (D — 1)(2 — y)*F + 4F
HP=4 T(D-1)
= X ) 166
167P/2 2D’4F(§) (166)

The last expression can be shown to be exact using (140).

Unlike iAgz(x; x') and iA~(x; x'), the expansions for B(y)
and C(y) do not terminate in D = 4 dimensions. (This is
another indication of the complication associated with
employing a de Sitter invariant gauge.) However, we can
take D = 4 in those terms which vanish rapidly enough at
y =0 to make only finite contributions to the process
under study. For the one loop self-mass-squared the rele-
vant expansions are

HP—4 22 —1)
BO) = {_ o AB0)
+O((D — 4) ln(y))}, (167)
HP™* ( TEB-1
C()’) - 167TD/2 {_ 2y(D/2)_1 + AC()’)
+ 0D — 4) ln(y))}, (168)
where the D = 4 residual functions are
3 3 y 2
AB(y) =| — - In(=) — 1
0=~ )y s 9@
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16 4

O y
Aco) =~ = ) (3)
4 1
_ 3 _ 2
@G -y a7

The two combinations for which we require expansions are
HP=4 (4T -1
(7 — _ — 2\ = 2
(2 )’)B (4y y )C - 247TD/2 { y(D/Z)—l
161n(3 N (%‘ + %y)}
-y 4=y
171)

£ In(y

—-B+(2—yIC= Gy

HP=* T2 —-1)
24 D)2 { y0/2-1
+x4—%w}

4 —y)7?
Substituting (171) and (172), and (163) in (154) gives

(172)

—iM%AJ] (x;x") = —i8e*H*BaP 8P (x — x')

2202 0 8(D — DD
)|~y
__ 8 Y

y(4 —-y)ln<4>}' (17

Although the de Sitter breaking part of the scalar propa-
gator contributes to this expression, it does so in a de Sitter
invariant fashion. Explicit breaking of de Sitter invariance
appears when we substitute (165) and (163) in (157),

G2 H2D-2 16I2(2)
>4 D (aa/)D{ D—12
m y
4D — D2
LAD - 2

yP2 y

+ aa’HzA”r]z[z2 + l“
yo ¥

—iM%AJ2+3 (x;x) =

(174)

Note that the de Sitter breaking terms are finite so they
require no noninvariant counterterms. Because (166) is
nonsingular it makes a similarly finite (and similarly non-
de Sitter invariant) contribution when substituted with
(162) in (159),

. e’ H° 31 3 e
i) = S S

e F(Ir)@_) Hmen(50)

X +21n(a)}aD5D(x —x'). (175)

We can now sum the various terms to obtain the regulated
but unrenormalized result,
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—iM3;(x;x') = +ie’H?2(D — 4)BaP 8P (x — x') +

i2HP2T(D — 1)

PHYSICAL REVIEW D 72, 104001 (2005)

{—wcot(%D) + 21n(a)}aD8D(x —x')

@mP2 T3
. 2 H2P2 (aa')? 16I2(9) = 4(D —4)(D — DI (B N 18 AA ad H*Am? 2 +1
A yP! (D —2)yP2 2y Y-y \4 oy
3
1 ln<§H2Ax2>}. (176)
Only two terms require partial integration, ie?H*2(D — 4)BaP 8P (x — x')
G2 H2D-2 16T2(2) ie’H?
W(aa’)l) X yD—_f = - 87a454(x — XY+ O(D — 4). (181)
e, (D- 212 -1)
= 1,09 A 202 . (A77) The simplest choice of renormalization constants seems
to be
ipt T@-1 pPt TG - 1)
— 9280 (x — x' Al _ _ECH 2
4 (D =3)D -2 (x —x) 8z 1707 DD -4 (182)
2 In( w2 Ax2
- %aa’&“(M) +0(D - 4), (178)
2w Ax 1/D-2 HP
5§AJ = —<—>5ZAJ -
4\D -1 (4m)P2(D — 1)D
g2 o AD—4)(D - DG (D - 1) -
S ) X == X F(Q){mot<21)> - 5}. (183)
2
e’H? (D —4)(D—1NI*®
=—-D (aa')? =, (I79)  Note that the field strength renormalization in Allen-
4 (D — 2)Ax?P~4 g

. Jacobson gauge is exactly the same (111) that we found
for the simple gauge of the previous section. The confor-
_ 3ie?H? #54x— x) + O(D — 4) (180) mal term in Allen—Jacobsgn gauge is different from what
472 : we found (112) for the simple gauge, but only by finite

It is also worth noting that (D — 4) times the coincidence

limit of B(y) is finite in D = 4 dimensions,
|

terms. So the divergence structure seems to be the same.
With these conventions the fully renormalized self-
mass-squared is

-2 2 2 2
—iMzAJm“(x;x’) = — %aa’ln(aa’)azﬁ“(x —x')+ lzﬂ_z a*In(a)d*(x — x') — ST aa' 0%{In*(u>Ax?) — 21In(u?>Ax?)}
e’H® 1 8 y 2 17 3. (e
+ NH— - In(=) 4+ ad’H*An?| = + — | — > In[ = H>Ax* | L. 184
o )y ~ 5y "(3) oA 5 | =gy ar)] (159

The first three terms agree with what we got (113) in the
simple gauge. The remaining terms show some similarities
but they do not agree. Although 1PI functions can differ,
off -shell, when computed in different gauges [25], there
seems to be a clear disagreement. To see this note that, for
large y(x; x'), the Allen-Jacobson self-mass-squared (184)
differs by a factor of & e?H*(aa’)*iA,(x; x'). There is no
chance that such a term gives zero when integrated against
a wave function, which is how one goes “on-shell”” in
position space. In fact the integral is singular.

The singularity is not present in (113) so we suspect a
problem with the homogeneous terms in the Allen-
Jacobson propagator. Specifically, it may not be correct
to enforce analyticity at y = 4. To clarify the situation we

{
will use i[ , A57](x; x) to compute the self-mass-squared

for a conformally coupled scalar whose propagator is
HP2TEZ -1
iAg(x;x') = m % = Ai(y). (185)
This field does not experience inflationary particle produc-
tion, and our result (115) for its self-mass-squared in the
simple gauge is a trivial conformal rescaling of the flat
space result. That seems to be correct on physical grounds
so we can use it to check i , A5 ](x; x').

Of course the photon structure is not changed, and most
of our previous analysis is still valid. What changes is that
the prefactor k of the de Sitter breaking term is zero and,

rather than (151), derivatives of the function A are all
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proportional to one another,

D A
Aéf(y) = —<E - 1>7Cf and

=%

(186)

We require one new combination of the photon functions,

HP % In Y
16727 [ =P "\4

LoD~ 4)}

—@4-yC=

[SS11\S)

L (187)

Using these results and (171) one finds

— M3y (03 x) = —de’J=ggh\[—g'g il L AY]

X (63 x1)0,,05 1A (x; x), (188)

= —i8¢’H?’BaP 6P (x — x') — 4e*H*(aa’)P{[4D
— (4y — y)JALB + (2 — y)(4y — yHALC

+ (2 = y)dy — yHALB + (4y — y})?ALCYL  (189)

= —i8¢2H?*BaP 8P (x — x')

42D — 2)e2H4(aa’)DAcf{2(D ~ DB - (4 - yC]

D
(31 -9B+ @y -l (190)
GLH2D2
= —i8¢2H?*BaP 8P (x — x') + W(aa )P
4ar: %)
X —+——+ oD — 4)} (191)
{ y o3y
The divergence on x” gives
—iM3, (0 x) = =269, (y=gg" il Ay 1(x: X))
— 8877 i (x; x')
= (D - ) H(ad )P4 — )
X Acf{_(4y - yz)F/
—(D— 12— yF}L (192)

This is symmetric under interchange of x* and x'* so one
gets the same from the divergence on x'?, and the two
divergence terms sum to

—iM%AJM(x; x') =2(D — 2)e*H*(aa")P (4 — y)
X Acf{_(4y - yz)F/

— (D =12~ yF} (193)
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2202 116I%(2) 2(D—2)2(2
SCHTHIONG 20D 2 op )|
167 y y y

(194)

Because the coincidence limit of A (y) vanishes in dimen-
sional regularization we obtain no local contribution from
the last term in (146),

—i M3, (i) = —€20, 0, (V 88" 8/ il L AY’]
X (03x7))iA ¢ (x5x7),
= (D —1)e*H*(aa")PA{(2 — y)(4y — y))F'

+(D—1)2—y)F +4F}, (195)
e*H® (31
= 4{2 +o(D - 4)} (196)

Because it does not involve the scalar, the 4-point contri-
bution is unchanged,

—iMipy(xx) = —ie?/=ggt il AN ](x; x) 8P (x — ),
(197)

= i2De?H?*BaP 8P (x — x). (198)

It remains to sum the various contributions and isolate
the divergences,

—iM3;(x;x') = i2(D — 4)e’?H?BaP 8P (x — x/)

e?H?*P~2 16F2(D)
+ TenD (aa’)D{ y 5
2(D — 412G
+ = 2 +O0MD-4
yP? 6y of )}
(199)

2, D—4 ' -1
_lep G- aa'9?86P(x — x')
4702 (D —3)(D — 4)

o2 2 2
+ 12’”2 a*é*(x — x') — 28677_ aa’ 3%{In*(u?Ax?)

2H4
— 2In(u2A)} + 5 (Za i oD —4).  (200)
The best choice of counterterms would seem to be
e2 D4 F(Q— 1)
Z|oont = — =2 2 201
o 2 |c0nf 4 D/2 (D_3)(D_4); ( 0 )
2, D—4 e +1
5§AJ|conf = il {_ (2 ) + 1}
47P2(D — 1)D| (D —=3)(D — 4)

(202)

104001-17



E.O. KAHYA AND R.P. WOODARD

This choice gives the following renormalized self-mass-
squared,

-2
—ij\/lijren(x; x) = — %aa’ In(aa’)926*(x — x')
2

— 286 I aa' 3%{In*(u>Ax?)
s

2H* (aa')®
967+ Ax?
(203)

—2In(u?Ax?)} +

The first two terms agree with what we found (115) in the
simple gauge, but the final term is again proportional to
(aa’) times the (conformal) scalar propagator.

How did this happen? The conformal scalar propagator
is of course correct, as is the expression (146) for the 3-
point contribution. It might seem that a bewildering se-
quence of expansions have taken place but the astute reader
will note that, except for local terms, the entire result is
proportional to the factor

2HD+2

2D — 22 HH (ad )P A (y) = 55— (aa')P
T

re
Y021

(204)

times the sum of just three combinations of the functions
B(y), C(y), and F(y). The three key combinations can be
read off from expressions (190), (193), and (195),

2D~ B (@=)CI+ (31 )J[Q =B+ 4y —)c)

HP™ [ 4T} 2
) 1677D/2{_y<0/2>2-1 f3row ‘4)} (205)
— (4 — Y[y — y)F' + (D — 1)(2 — y)F]
AP~ (16I'(5)  2(D —2)T'())
N 1677D/2{ yD/22 YO/ 2 -2+ 0(D - 4)},
(206)
1/D—1
§<m>[(2 — )@y = y)F
+ (D = 1)@ = y)°F + 4F]
HD*4 3
- W{E + oD~ 4)}- (207)

The problem derived from the presence of the constant
terms in each of these three expansions. Note that it would
not even be acceptable to have three nonzero constants sum
to zero because (206) and (207) contribute as well to the
minimally coupled self-mass-squared. Indeed, in that case
the worst problem derives from the nonzero constant in just
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(207). Whatever we do must therefore expunge these con-
stant terms.

What freedom do we have to alter B(y), C(y), and F(y)?
First recall that C(y) is not independent, but instead obeys
C(y) = B'(y) — F(y). The functions B(y) and F(y) must of
course satisfy the Egs. (135) and (136) which define the
photon propagator. However, we suspect a homogeneous
solution is missing. Because two of the three crucial com-
binations involve only F(y) we begin with it. The two
independent solutions to the F Eq. (135) and their D = 4
limits are

_ 1 D y 1
Fiy) = EZF(D — LT+ 1 - Z) — )
1 D y 1
Fa(y) = B2FI<D ~125 1;Z> — G
(209)

In D = 4 these induce the following dependence in B(y)
through its Eq. (136),

5B, (y) = — | 3 SN\ 3
B =——= + In[= ] — ,
Y y [(4—y)2 4—y} <4> 4—y
(210)
! 3.3 N3

The solution of Allen and Jacobson is entirely based
upon F,(y) and 6B;(y). The other solution, F,(y) and
8B, (y), was rejected on the grounds that its singularity at
the antipodal point (the pole at y = 4) would correspond to
a point source there. Although this seemed correct to us as
well, the problem we have encountered with the self-mass-
squared makes us suspect that, on the full de Sitter mani-
fold, the photon propagator should have an antisource at
the antipodal point X*,

J=8LDH#, = R, 1i[PA, (x5 x)

= 61 ,i[6P(x — x') — 8P (x — X)]. (212)
We offer two arguments in support of this suggestion. First,
the linearization instability of the gauge invariant theory
precludes solutions with nonzero charge, and the only de
Sitter invariant position at which to locate the compensat-
ing anticharge is the antipodal point. Second, including an
antisource makes the problem go away. The contributions

of —F,(y)/87?, and of the terms it induces in B(y) and
C(), to expressions (205)—(207) are
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- 2{2(D — 1)[8By — (4 — y)8C,] + (g - 1)

xuz—yWB2+My—y%mzﬂ

CHP 818y
1672 4—y 4

—%—f—%+0(1)—4)}, (213)
yy 3
1
=i A=Yy —y)Fy+(D—-1)2~y)F,]
HP=* [ 4
W{zt SF2+0(D- 4)} (214)

e X5 (e - ey i

+ (D = 1)(2 = y)’F, + 4F,]

HP—4 3
= 0 0 ) —_ + J— .
16770/2{ 5 oD 4)} (215)
A final point is that there is nothing to be gained from the
homogeneous solutions to the B Eq. (136),

2
Mrzen(X; x) = éaal ln(aa/)6254()€ —x)

teH
p

Although this gauge breaks de Sitter invariance, it did not
require any noninvariant counterterms. Nor did it prevent
the attainment of a fully de Sitter invariant result for the
conformally coupled scalar,

M % (x; x') = —5 aa’ In(aa’)9> 8% (x — x')
)
by aa’ 3%{In*(u?Ax?)
— 2In(u2 A, (219)

Working in a de Sitter invariant gauge [18] was much

more complicated. Although all contractions and deriva-
|

2 2H?
M/iJren (x;x) = gaa’ In(aa’)o?86*(x — x') — s

’e /4_8 Y\ 4 udH? 23+1_§£22
164( ){Zy v - y)ln<4> aaHAn[ﬁ v Ta Ay

2H2
_¢ 5-a*In(a)6*(x — x') —
T

a*In(a)é*(x — x') —
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1 14
B,(y) = 62F<D1 2+1 1—%)—»y—2+§, (216)
1 D y 1 1
B F (D 1;=+1;2) — — 2
)= gD ) e ey
(217)

Of course we must reject B;(y) on account of its singularity
at y = 0. Because we do not care overmuch what happens
at the antipodal point we might allow B, (y). However, this
does not affect relations (206) and (207) because they
involve only F(y). It turns out that B,(y) also has no effect
upon (205), so there is nothing to be gained by adding it.

V. DISCUSSION

We have used two different gauges to compute the
renormalized self-mass-squared for a massless, minimally
coupled scalar and for a massless, conformally coupled
scalar. In the simplest gauge [16] our result for the mini-
mally coupled scalar is

2
zge saa’' 9In*(u?Ax?) — 2In(u?Ax?)}
T

92
(aa’)3{ n*(272H?Ax?) — In(22H?*Ax?)] + — [31n2(2’2H2Ax2) -5 ln(ZZHZAxZ)]}. (218)

[

tives of de Sitter invariant objects produce simple combi-
nations of the propagator functions B(y) and C(y) and their
derivatives, the propagator functions (137) and (138) are
themselves so complicated as to preclude a simple analy-
sis. It is particularly pointless to employ a de Sitter invari-
ant gauge when the matter field in question necessarily
breaks de Sitter invariance as does the minimally coupled
scalar [17].

There also seems to be a physical problem with the de
Sitter invariant propagator. This is evident from our renor-
malized results for the minimally coupled and conformally
coupled scalars,

2

218 1 aa’ 3%{In*(u>Ax?) — 21In(u?Ax?)}
T

(220)
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2
M3 (X)) = £ _ad In(aa’)o?6*(x — x')

ren 8,77-2
)
~ 58 zaa' 9% (u?Ax?) — 2In(u?Ax?)}
T
ie’H* (aa’)?
967 Ax* (221)

In each case the leading infrared contribution goes like
(aa’)* times the relevant scalar propagator. Although off-
shell quantities such as the self-mass-squared can depend
upon the choice of gauge [25], some of the extra terms we
get for the de Sitter invariant gauge are actually singular on
shell.

We suspect the problem is that the de Sitter invariant
propagator should not be required to be analytic at the
antipodal point. We demonstrated that the on-shell singu-
larities disappear when the propagator is given an anti-
source antipodal to the source. There may be a
mathematical justification for this in the fact that the gauge
invariant theory possesses a linearization instability which
precludes solutions with nonzero net charge.

Of course this study was not undertaken to compare
different gauges. Our motivation was instead to learn
how the scalar responds to the dielectric medium of super-
horizon scalars produced by inflation. It has previously
been shown that this medium causes superhorizon photons
to behave, in some ways, as if they have positive mass
[2,9-11]. Key questions we seek to answer are:

(a) Does part of the scalar get “eaten’’ to make up the

longitudinal polarization of the massive photon as in
the Higgs mechanism?

PHYSICAL REVIEW D 72, 104001 (2005)

(b) Does the one loop self-mass-squared enhance or
retard further particle production?
Both questions can be answered by using the self-mass-
squared (218) to solve the linearized effective field equa-
tion (1) at one loop order. This will be undertaken in a
subsequent paper.

A final application of this computation is to serve as
“data” in obtaining a stochastic formulation of SQED to
sum the leading infrared logarithms [26,27]. Aside from its
intrinsic interest, SQED provides a nearly perfect arena for
the difficult task of generalizing Starobinskii’s techniques
[28,29] from simple scalar models to quantum gravity. It
possesses derivative interactions and gauge constraints, it
shows infrared logarithms, and it is relatively tractable.
This exercise has demonstrated the validity and viability of
the Feynman rules in the noninvariant gauge. The stage has
been set for the computations which are crucial for check-
ing any stochastic formulation of SQED, the two loop
vacuum expectation values,

Qle"(e@)Q),  (QF,5(x)F,, (X)),

(222)
and (Q|T,,x)]Q).

ACKNOWLEDGMENTS

This work was partially supported by NSF Grant
No. PHY-0244714 and by the Institute for Fundamental
Theory at the University of Florida.

[1] L. Parker, Phys. Rev. 183, 1057 (1969).

[2] T. Prokopec and R.P. Woodard, Am. J. Phys. 72, 60
(2004).

[3] R.P. Woodard, Proceedings of XII International
Conference on Selected Problems of Modern Physics,
Dubna, 2003, edited by B.M. Barbashov, G.V. Efimov,
A. V. Efremov, S. M. Eliseev, V. V. Nestorenko, and M. K.
Volkov, p. 355.

[4] R.P. Woodard, in Quantum Field Theory Under the
Influence of External Conditions, Norman, 2003, edited
by K. A. Milton (Rinton Press, Princeton, 2004), p. 325.

[5] V.F. Mukhanov and G.V. Chibisov, Pis’ma Zh. Eksp.
Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].

[6] A.A. Starobinskii, Pis’ma Zh. Eksp. Teor. Fiz. 30, 719
(1979) [JETP Lett. 30, 682 (1979)].

[7] V. Mukhanov, H. Feldman, and R. Brandenberger, Phys.
Rep. 215, 203 (1992).

[8] A.R. Liddle and D.H. Lyth, Phys. Rep. 231, 1 (1993).

[9] T. Prokopec, O. Tornkvist, and R. P. Woodard, Phys. Rev.
Lett. 89, 101301 (2002).

[10] T. Prokopec, O. Tornkvist, and R. P. Woodard, Ann. Phys.
(N.Y.) 303, 251 (2003).

[11] T. Prokopec and R.P. Woodard, Ann. Phys. (N.Y.) 312, 1
(2004).

[12] T. Prokopec and R.P. Woodard, J. High Energy Phys. 10
(2003) 059.

[13] A.C. Davis, K. Dimopoulos, T. Prokopec, and O.
Tornkvist, Phys. Lett. B 501, 165 (2001).

[14] K. Dimopoulos, T. Prokopec, O. Tornkvist, and A.C.
Davis, Phys. Rev. D 65, 063505 (2002).

[15] L.D. Duffy and R.P. Woodard, Phys. Rev. D 72, 024023
(2005).

[16] R.P. Woodard, gr-qc/0408002.

[17] B. Allen and A. Folacci, Phys. Rev. D 35, 3771 (1987).

[18] B. Allen and T. Jacobson, Commun. Math. Phys. 103, 669
(1986).

[19] N.D. Birrell and P.C.W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1982).

[20] B. Allen, Phys. Rev. D 32, 3136 (1985).

104001-20



CHARGED SCALAR SELF-MASS DURING INFLATION

[21] V.K. Onemli and R.P. Woodard, Classical Quantum
Gravity 19, 4607 (2002).

[22] V.K. Onemli and R. P. Woodard, Phys. Rev. D 70, 107301
(2004).

[23] P. Candelas and D.J. Raine, Phys. Rev. D 12, 965 (1975).

[24] J.S. Dowker and R. Critchley, Phys. Rev. D 13, 3224
(1976).

[25] R. Jackiw, Phys. Rev. D 9, 1686 (1974).

[26] R.P. Woodard, Nucl. Phys. B, Proc. Suppl. 148, 108

PHYSICAL REVIEW D 72, 104001 (2005)

(2005).

[27] N.C. Tsamis and R.P. Woodard, Nucl. Phys. B724, 295
(2005).

[28] A.A. Starobinskii, Field Theory, Quantum Gravity and
Strings, edited by H. J. de Vega and N. Sanchez (Springer-
Verlag, Berlin, 1986), p. 107.

[29] A.A. Starobinskii and J. Yokoyama, Phys. Rev. D 50,
6357 (1994).

104001-21



