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Sneutrino warm inflation in the minimal supersymmetric model
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The model of RH neutrino fields coupled to the MSSM is shown to yield a large parameter regime of
warm inflation. In the strong dissipative regime, it is shown that inflation, driven by a single sneutrino
field, occurs with all field amplitudes below the Planck scale. Analysis is also made of leptogenesis,
neutrino mass generation and gravitino constraints. A new warm inflation scenario is purposed in which
one scalar field drives a period of warm inflation and a second field drives a subsequent phase of reheating.
Such a model is able to reduce the final temperature after inflation, thus helping to mitigate gravitino
constraints.
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I. INTRODUCTION

In recent times, the idea of inflation being driven by the
bosonic supersymmetric partner to a neutrino field has
generated interest [1,2]. The idea is not new [3,4], but
impetus has been gained after the experimental discovery
of neutrino masses and mixing and an explanation through
the seesaw mechanism [5]. In supersymmetric realizations
of the seesaw mechanism, the right-handed neutrinos have
bosonic partners, sneutrinos, which are singlet fields, thus
possible inflaton candidates. Model building typically pro-
ceeds by simply adding on the additional right-handed
neutrino fields to an existing model. Thus the simplest
supersymmetric model that emerges is an extended version
of the MSSM, with now three families of right-handed
neutrinos added on.

Two types of sneutrino inflation models have been ex-
amined, chaotic [1] and hybrid [2] sneutrino inflation. The
chaotic model is the simplest to construct, since all it
requires is a monomial potential which can easily be
obtained directly from the sneutrino fields. However this
model suffers from the large field problem, in that the
sneutrino field that drives inflation will have to have a field
amplitude above the Planck scale. In the effective field
theory interpretation of global Supersymmetric models,
they are regarded as low-energy limits of some more
complete supergravity (sugra) theory. However, for ex-
ample, in ‘‘minimal’’ sugra the exponential factor in front
of the potential would prevent any scalar field from getting
a value larger than mP. Chaotic inflation would be possible
with other more involved choices of the Khaler potential
[4] such that sugra corrections are kept under control. Still,
in general in these models there are an infinite number of
nonrenormalizable operators suppressed by the Planck
scale. As such, once the field amplitude exceeds this scale,
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an infinite number of parameters would require fine-tuning,
so leaving no predictability in the theory. It is for this
reason that chaotic inflation models are not amenable to
particle physics model building. Hybrid inflation scenarios
overcome the large field problem, since all field amplitudes
are well below the Planck scale. However for sneutrino
inflation, these models require introducing two additional
superfields aside from the right-handed neutrino fields [2].
As such, this model is more contrived than the chaotic
model. Nevertheless, up to now the hybrid model appears
to be the simplest model in which to implement sneutrino
inflation and be amenable to particle physics model
building.

In this paper an even simpler model of sneutrino infla-
tion is presented. In particular we show that monomial
potentials, which can be constructed with only the right-
handed sneutrino fields, when coupled to the MSSM, real-
ize warm inflationary regimes. We show that in such
regimes, due to the effect of strong dissipation, the field
amplitudes of all sneutrino fields are well below the Planck
scale, thus allowing such models to be consistent with
particle physics model building.

The paper is organized as follows. The basic model is
presented in Sec. II. The dissipative effects and basic
equations of warm inflation for this model are obtained
in Sect. III. The results of the sneutrino warm inflation
scenario, which incorporates leptogenesis, are given in
Sec. IV. An issue that emerges in Sect. IV is that the final
temperature after inflation is too large to adequately con-
trol gravitino constraints. To improve this situation, in
Sec. V a new warm inflation scenario is presented. In
Sec. 4 neutrino mass generation from this scenario are
examined. Finally in Sec. VII we summarize our results.
II. MODEL

We consider the model of three generations of right-
handed neutrinos, Ni, coupled to the MSSM with the
-1 © 2005 The American Physical Society
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superpotential

W �
MNi

2
NiNi � �hN�ijHuLiNj � �hL�ijHdLiE

c
j

� �hu�ijHuQiU
c
j � �hd�ijHdQiD

c
j : (1)

The above model contains all the usual MSSM matter
superfields, Hu, Hd the Higgs doublets giving masses to
the up and down quarks, respectively, Qi, the left-handed
quarks, Ui, Di, the right-handed up and down quarks,
respectively, and Li, Ei the left-handed and right-handed
leptons. During inflation, assuming that at least one of the
sneutrinos has got a nonzero vacuum expectation value
(vev), the relevant terms in the potential are:

V � M2
NijNij

2 � j�hN�ijj2jLiHuj
2

� 2Re��h�N�ijMiNjL
�
i H
�
u� � j�hN�ijj

2�jHuj
2

� jLij2�jNjj2 � . . . : (2)

For a large value of Ni we do not have to worry about soft
SUSY breaking terms, and then all the spectrum remains
massless ( Hu � Hd � 0), except for the fields that couple
directly to the sneutrinos, i.e., Hu and the lepton doublets
Lj. With hNii � �Ni=

���
2
p

, the scalars, for example, get
masses

m2
Hu
�

1

2

X
j

h2
Nj�

2
Nj (3)

and similarly for the sleptons, where

h2
Nj
�
X
i

j�hN�ijj
2: (4)

III. DISSIPATIVE INFLATIONARY DYNAMICS

The interaction of the inflaton with other fields leads in
general not only to modifications of the inflaton effective
potential, but also to dissipative effects [6,7]. These effects
result in radiation production during inflation as well as
modify the inflaton evolution equation with energy non-
conserving terms. If these dissipative effects are ade-
quately large, they can alter the standard picture of
inflation, leading to warm inflation [8].

An analysis of various interaction configuration [6,7]
has shown that warm inflation occurs generically in
many typical inflaton models. For example recently we
showed in [9] that the popular SUSY hybrid inflation
model has a sizable parameter regime of warm inflation.
In this section we show that warm inflation occurs in the
sneutrino-MSSM model Eq. (1).

A basic interaction structure that has been shown in
[6,7,10] to produce sizable dissipative effects has the
form of the bosonic inflaton field coupled to a heavy
bosonic field which in turn is coupled to a light fermionic
field. Such a structure can easily be identified in the
sneutrino-MSSM model Eq. (1). For this consider the
103526
simplest case where only one sneutrino dominates the
energy density during inflation, say N1, thus acting the
role of the inflaton field. Then from Eq. (1) the following
relevant interaction configuration can be extracted

L I � �jhNj2jN1j
2jHuj

2 � htHu �tRtL � h:c:; (5)

thus the inflation N1 couples to the up Higgs field, and for a
large amplitude for N1, the Hu field then becomes heavy.
This Higgs field in turn is coupled to the top fermion fields,
which are massless during inflation. Dissipative effects
occur because as the inflaton amplitude changes, it implies
a change to the Hu mass. This results in a coherent exci-
tation of the Hu field, which then decays into the light top
fermions with decay rate

�t �
3h2

t

16�
mHu

: (6)

From the dissipative calculations in Refs. [6,7] this sort of
interaction leads to the effective inflaton evolution equa-
tion

��N � �3H ��N� _�N � V 0 � 0; (7)

where _�N ( ��N) is the first (second) time derivative of the
field, and a ‘‘prime’’ denotes the derivative of the potential
with respect to the inflaton field. The dissipative coeffi-
cient, based on the results in [6,7], can be determined to be

�N ’

����
�
p

20
Y3=2
N Yt�N; (8)

with YN 	 h2
N=�4�� and Yt � h2

t =4�. Also in Eq. (7) the
potential and the Hubble parameter are

V ’
1

2
M2
N�

2
N (9)

and

H2 ’
M2
N�

2
N

6m2
P

: (10)

The dissipative term in Eq. (7) leads to radiation pro-
duction which in the expanding spacetime obeys the equa-
tion

_� R � 4H�R � �N
_�2
N: (11)

Although the basic idea of interactions leading to dissipa-
tive effects during inflation is generally valid, the above set
of equations has strictly been derived in [6,7] only in the
adiabatic-Markovian limit, i.e., when the fields involved
are moving slowly, which requires

_�N

�N

< H < �t; (12)

with �t being the decay rate Eq. (6). The second inequality,
H < �t is also the condition for the radiation (decay prod-
ucts) to thermalize.
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Thus in general any inflation model could have two very
distinct types of inflationary dynamics, which have been
termed cold and warm [6–8]. The cold inflationary regime
is synonymous with the standard inflation picture [11–13],
in which dissipative effects are completely ignored during
the inflation period. On the other hand, in the warm infla-
tionary regime dissipative effects play a significant role in
the dynamics of the system. A rough quantitative measure
that divides these two regimes is �1=4

R 
 H, where �1=4
R >

H is the warm inflation regime and �1=4
R & H is the cold

inflation regime. This criteria is independent of thermal-
ization, but if such were to occur, one sees this criteria
basically amounts to the warm inflation regime corre-
sponding to when T > H. This is easy to understand since
the typical inflaton mass during inflation ism� 
 H and so
when T > H, thermal fluctuations of the inflaton field will
become important. This criteria for entering the warm
inflation regime turns out to require the dissipation of a
very tiny fraction of the inflaton vacuum energy during
inflation. For example, for inflation with vacuum (i.e.
potential) energy at the GUT scale�1015�16 GeV, in order
to produce radiation at the scale of the Hubble parameter,
which is 
 1010�11 GeV, it just requires dissipating one
part in 1020 of this vacuum energy density into radiation.
Thus energetically not a very significant amount of radia-
tion production is required to move into the warm inflation
regime. In fact the levels are so small, and their eventual
effects on density perturbations and inflaton evolution are
so significant, that care must be taken to account for these
effects in the analysis of any inflation models.

The conditions for slow-roll inflation ( _�2
N � V, ��N �

H _�N) are modified in the presence of the extra friction
term �N , and the slow-roll parameters are given now by:

�� �
�H

�1� r�2
; (13)

�� �
�H

�1� r�2
; (14)

where

r 	
�N

3H
�

�������
6�
p

60
Y3=2
N Yt

mP

MN
� C�

mP

MN
: (15)

and �H 	 m2
PV
02=�2V2�, �H 	 m2

PV
00=V are the standard

cold inflation slow-roll parameters, in which there are no
dissipation effects. Therefore, when �N 
 3H (r
 1),
we have:

�� ’
2

C2
�

�
MN

�N

�
2
; (16)

�� ’
2

C2
�

�
MN

�N

�
2
: (17)

In the slow-roll regime, when �� < 1 and �� < 1, Eqs. (7)
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and (11) are well approximated by:

_�N ’ �
V 0

3H
1

1� r
; (18)

�R ’
�N

4H
_�2
N ’

1

2

r

�1� r�2
�HV; (19)

and the number of e-folds is given by:

Ne ’ �
Z �Ne

�end

3H2

V 0
�1� r�d�N ’

�1� r�

4m2
P

��2
Ne ��

2
end�;

(20)

where �Ne��end� is the value of the field at 60 e-folds (end
of inflation). Inflation ends when �� ’ �� ’ 1 or when
�R ’ �N , whatever happens first. In the former case we
have �2

end ’ 2m2
P=�1� r�

2, whereas for �R ’ �N then
�2

end ’ m
2
Pr=�1� r�

2. In either case, taking r
 1, we get

�Ne ’

������������
4Ne

1� r

s
mP: (21)

If we also want to keep the field below the Planck scale, we
need r > 4Ne ’ 240. From Eq. (15), taking jhNj ’ 1, this
gives the upper bound on the sneutrino mass
MN & 8� 1012 GeV.

The effect of the dissipative term, in addition to produc-
ing a friction term for the inflaton field, leads to radiation
production which can alter density perturbations.
Approximately, one can say that when the radiation pro-
duction leads to T >H, the fluctuations of the inflaton field
are induced by the thermal fluctuations, instead of being
vacuum fluctuations, with a spectrum proportional to the
temperature of the thermal bath. We notice that having T >
H does not necessarily require �N > 3H. Dissipation may
not be strong enough to alter the dynamics of the back-
ground inflaton field, but it can be enough even in the weak
regime to affect its fluctuations, and therefore the spec-
trum. Depending on the different regimes, the spectrum of
the inflaton fluctuations P1=2

�� is given for cold inflation
[14], weak dissipative warm inflation [15,16], and strong
dissipative warm inflation [17] respectively by

T <H:P1=2
�� jT�0 ’

H
2�

; (22)

�N < H < T:P1=2
�� jT ’

��������
TH
p

�

�����
T
H

s
P1=2
�� jT�0; (23)

�N > H:P1=2
��

���������
’

�
��N

4H

�
1=4 ��������

TH
p

�

�
��N

4H

�
1=4

�

�����
T
H

s
P1=2
��

��������T�0
; (24)

with the amplitude of the primordial spectrum of the
curvature perturbation given by:
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P1=2
R �

��������H_�S

��������P1=2
�� ’

��������3H2

V 0

���������1� r�P1=2
�� : (25)

Given the different ‘‘thermal’’ origin of the spectrum, the
spectral index also changes with respect to the cold infla-
tionary scenario [18–21], even in the weak dissipative
warm inflation regime when the evolution of the inflaton
field is practically unchanged. General expressions for the
spectral index are given in [9] and those relevant to the
model in this paper will be given in the sections that follow.
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FIG. 1 (color online). Values of the parameters MN , r and �60

with respect to the sneutrino Yukawa coupling jhNj, for cold
inflation (T <H), weak dissipative regime (T >H, �N < 3H),
and strong dissipative regime (T;�N=3>H).

1This bound does not apply if gravitinos are the lightest stable
SUSY particles [26], like in gauge mediated susy breaking
models [27,28]. Also the constraint can be relaxed for very
massive gravitino, like, for example, in anomaly mediated susy
breaking models [29].
IV. SNEUTRINO WARM INFLATION

As we have seen, depending on the value of the dissi-
pative coefficient �N , and therefore that of the ratio r �
�N=�3H�, we can have standard cold inflation or warm
inflation (with weak or strong dissipation). In sneutrino
inflation with the minimal matter content of the MSSM
plus 3 generations of RH (s)neutrinos as shown in Eq. (1),
there is a well define dissipation channel during inflation
due to the coupling of the RH sneutrinos to the Higgs Hu,
and the coupling of Hu to the top sector. From the experi-
mental value of the top quark mass, mt � 174�178� GeV
[22], the value of the top Yukawa coupling ht at the
electroweak scale has to be close to 1, with mt ’

ht�mt�v sin�, v �
�����������������
v2
u � v2

d

q
� 174 GeV being the

Higgs vacuum expectation value (vev), and tan� �
hHui=hHdi the ratio of the Higgs vevs. The top Yukawa
coupling increases due to the running with the scale, and
depending on the value of tan� it can reach the perturbative
bound ht�MX� ’

�������
4�
p

at the unification scale MX. Thus,
although slightly model dependent, its value at the infla-
tionary scale will be in the range �1;

�������
4�
p

�. Then, without
lost of generality we can take its value close to the pertur-
bative bound Yt � h2

t =�4�� ’ 1, so that the dissipative
coefficient Eq. (8) becomes �N 


���
�
p

20 Y
3=2
N �N . The free

parameters in the model are then the sneutrino-inflaton
mass MN and its Yukawa coupling jh2

Nj defined in
Eq. (4). Imposing the COBE normalization on the ampli-
tude of the primordial spectrum of perturbations [23,24]
generated during inflation, we can fix one of these parame-
ters, say the mass MN , as dependent on the value of the
coupling hN . This is plotted in Fig. (1), where we have
included in addition to the value ofMN (GeV) the values of
the dissipative ratio r � �N=�3H�, the field value in mP
units at 60 e-folds, the temperature of the thermal bath at
the end of inflation Tend, and the ratio T=H during infla-
tion. We can clearly distinguish the different regimes in the
plot depending on the sneutrino Yukawa value. For very
small values jhNj< 10�3 we recover the standard cold
inflation predictions, with �N >mP and MN ’
2� 1013 GeV. In this regime, the Yukawa coupling plays
no role during inflation, and the normalization of the
spectrum is set by the RH sneutrino mass, with
MN ’ 2� 1013 GeV [3]. The value of the Yukawa cou-
103526
pling fixes the decay rate of the sneutrino and therefore the
final reheating T. In the simplest scenario where the in-
flaton is the lightest RH sneutrino, we would need jhNj<
O�10�7 � 10�6� if we want to keep TRH � 107 � 108 GeV
in order not to have problems with thermal production of
gravitinos [25]. We remark that Tend in Fig. 1 is the
temperature associated to the radiation energy density at
the end of inflation due to dissipative effects, but this is not
necessarily the reheating T typically defined as the T at
which the inflaton completely decays and the Universe
becomes radiation dominated. In the cold inflation scenario
the radiation energy density at the end of inflation is always
subdominant, and then reheating would proceed as usual
by the subsequent decay of the sneutrino.

On the other hand, for a coupling 10�3 < jhNj< 10�1

inflation takes place in the weak dissipative regime, which
would require a sneutrino mass of the order of
1012 � 1011 GeV in order to fit the COBE amplitude of
the spectrum. We notice that for these coupling and mass
values, jhNj> 10�3 and MN < 1013 GeV, the adiabatic-
Markovian approximation Eq. (12) holds. Still, the field
values are larger than mP. Again, the energy density in
radiation is not dominant at the end of inflation, and Tend is
not necessarily the final TRH. However, given that now we
have a larger value of the coupling jhNj, the standard
estimation of TRH � �90=��2g���1=4

�������������
�NmP

p
in this regime

would give a value O�1012 GeV�, beyond the gravitino
constraint1.
-4



2The value of jhNj in Eq. (30) depends on the value of the top
Yukawa coupling as jhNj / Y

�1=3
t . For example, for Yt ’ 1=

�������
4�
p

we get jhNj ’ 0:2 for MN � 1010 GeV.
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More interesting is the strong dissipative regime with
r > O�100� for jhNj * 0:1. In this regime field values are
always kept below the cut-off scale mP, which render the
theory more attractive from the point of view of particle
physics. The model can be considered as an effective
model valid below the cut-off scale mP, without the need
of worrying about sugra corrections. Those are kept neg-
ligible for field values below the Planck scale. In addition,
even with the choice of minimal Kahler potential the sugra
model can fulfil the conditions for slow-roll inflation and it
does not suffer from the so-called ‘‘eta problem’’ [30].
Even if the exponential factor in the sugra potential gives
rise to a mass term contribution of the order of the Hubble
parameter for the sneutrino, the friction term in the evolu-
tion of the inflaton field is controlled now by the dissipative
coefficient with �N > 3H, and the slow-roll parameter
parameter is given by �� ’ 3V 00=�2

N . The role of the
Hubble expansion rate in the slow-roll conditions is now
played by �N , and slow-roll inflation is still possible for
masses larger than H but smaller than �N .

More specifically, with minimal Kahler potential for the
sneutrino field, K � �2

N=2, the sugra potential during in-
flation (setting the Higgs and slepton fields to zero) is given
by:

V � eK�jKNW �WNj
2 � 3jWj2�

� e�
2
N=�2m

2
P�
M2
N

2
�2
N

�
1�

�2
N

8m4
P

�
�4
N

16m4
P

�
; (26)

and the exponential factor in front of the sugra potential
generates a mass term of the order of the Hubble parameter
and other contributions coming from the higher order terms
in the potential, i.e.,

V 00 � 3H2 �M2
Ne

�2
N=�2m

2
P�

�
1�

11

4

�2
N

m2
P

�
31

16

�4
N

m4
P

�
�6
N

2m6
P

�
�8
N

32m8
P

�
: (27)

In the strong dissipative regime we have that the amplitude
of the inflaton field is below the Planck scale, �N <mP, so
that we can neglect the high order contributions in the
potential and derivatives,

V 00 ’ 3H2 �M2
N � � � � ’ M

2
N

�
1�

�2
N

2m2
P

� � � �

�
’ M2

N;

(28)

and the slow-roll parameters reduce to those given in
Eqs. (16) and (17).

In this regime, the sneutrino mass value varies between
1010 GeV and 2� 105 GeV, decreasing with the value of
the coupling, as seen in Fig. 1. In particular, using Eqs. (24)
and (25), the amplitude of the spectrum of primordial
curvature perturbation is given by,
103526
P1=2
R ’

1

2

�
15

64g�

�
1=8
�4Ne�

3=4C3=8
�

�
MN

mP

�
3=8
; (29)

and using P1=2
R � 5� 10�5, (and g� � 228:75, the number

of effective degrees of freedom for the MSSM) we have for
jhNj * 0:1

jhNj ’ 8:2� 10�2

�
1010 GeV

MN

�
1=3
: (30)

This equation summarizes the constraint on the coupling
and the sneutrino mass in order to have the strong dissipa-
tive regime2. The larger the coupling jhNj is, the lighter the
RH sneutrino.

In this regime inflation ends when the energy density in
radiation becomes comparable to that of the sneutrino field
and the Universe becomes radiation dominated. Therefore,
in this case Tend ’ TRH, with values that are still larger than
the gravitino bound. Another question is about leptogene-
sis in this scenario. One of the nice and more appealing
features of sneutrino inflation is the possibility of relating
in principle different pieces of physics like inflation, and
neutrino masses and leptogenesis, through the physics of
the RH neutrinos and their couplings. The lepton asymme-
try YL � nL=s is generated by the out-of-equilibrium de-
cay of the RH sneutrinos, and then reprocessed to the
B� L asymmetry by sphaleron processes at a temperature
around T � 100 GeV, generating the observed baryon
asymmetry YB � nB=s ’ �8:7� 0:4� � 10�11 [24].
Successful thermal leptogenesis, with the initial RH sneu-
trino abundance produced out of the thermal bath, requires
[31] TRH � 2� 109 GeV, which is fulfilled for jhNj & 1:8.
It also requires a similar bound for the sneutrino mass,
MN > 2� 109 GeV, although the sneutrino dominating
during inflation need not necessarily be the one originating
the lepton asymmetry. We could have, for example, the
lighter one with the larger Yukawa coupling as the inflaton,
and the next-to-lightest being responsible for YL.
Nevertheless, there are models where these bound can be
evaded [32].

Before closing this section, we comment on the predic-
tions for the spectral index nS, and the running of the
spectral index dnS=d lnk, of the primordial spectrum.
Those do not vary significantly from one regime to another.
In the case of standard cold sneutrino inflation, we have
nS � 1 ’ �4=�2Ne � 1� ’ �0:03 and dnS=d lnk ’
�32=�4Ne � 2�2 ’ �5� 10�4, whereas in the strong dis-
sipative regime we have nS � 1 ’ �3=�2Ne� ’ �0:025
and dnS=d lnk ’ �26=�4Ne�2 ’ �4:5� 10�4. The dis-
tinctive prediction comes from the tensor-to-scalar ratio
rT � PT=PR, with the primordial spectrum of the tensor
modes being PT ’ 2�H=2�mP�

2. Whereas in cold sneu-
-5
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trino inflation, given that the field is larger than mP, we
have [1,3] rT ’ 16� ’ 0:16, in the strong dissipative re-
gime that ratio is highly suppressed, with

rT ’ 0:22
�
0:01

jhNj

�
12
: (31)

Future CMB experiment like Planck [33], and also gravi-
tational wave detectors currently under study [34], are
expected to reach a sensitivity for rT below 0.01.
Therefore, the lack of a signal for the primordial spectrum
of gravitational waves in future experiments will rule out
sneutrino inflation in its more standard version, but not
warm sneutrino inflation.

V. LOWERING THE POST-INFLATION
TEMPERATURE

Having a not too low reheating temperature at the end of
inflation may reintroduced the problem of unwanted relic
particles in the model, like gravitinos [25] and moduli
fields in sugra theories [35], which can be thermally pro-
duced at the end of inflation. Given that they are in general,
relatively long-lived light particles, with only gravitational
interactions with other matter fields, they can decay by the
time of nucleosynthesis and invalidate its predictions, or
come to dominate the energy density in the Universe, over-
closing it. Such problems may be avoided with a low
enough reheating temperature (‘‘low enough’’ depending
on the mass of the particle and its decay rate), or by diluting
its thermal abundance afterwards by entropy production.
Depending on the source for the entropy released, different
solutions to the gravitino and moduli problem can be found
in the literature, like, for example, a period of thermal
inflation [36–39], the decay of a modulus field with the
appropiated mass value [40], or the decay of a network of
domain walls [41] formed at a phase transition after in-
flation, among others. In each case, it is neccessary to
check that the entropy release does not dilute at the same
time the baryon asymmetry below observational bounds, or
if this is case, that it can be generated afterwards.

In the context of sneutrino inflation, maybe the simpler
alternative is considering the decay of a lighter sneutrino
field other than the inflaton, with a larger decay rate, such
that it comes to dominate the energy density before decay
[42]. This scenario can be easily implemented at the end of
warm inflation with strong dissipation, without the need of
having large amplitude values for the fields. Moreover, it is
compatible with generating the right level of baryon asym-
metry by nonthermal leptogenesis.

Let us denote by �N2,MN2 the field and mass parameter
of the RH sneutrino dominating the energy density during
inflation, and �N1, MN1 those of a lighter RH sneutrino.
The dominant contribution during inflation is given by
�N2, V ’ M2

N2�
2
N2=2, but still the lighter sneutrino can

follow a slow-roll trajectory during inflation for field val-
ues below mP, with the slow-roll parameter for �N1 being
103526
�1 ’ 2
M2
N1

M2
N2

m2
P

�2
N2

; (32)

�1 ’ �1

�
�N1

�N2

�
2
: (33)

In order to have �1 < 1, �1 < 1, we only need to assume
that the field values during inflation are comparable,�N1 ’

�N2 <mP, and require MN1=MN2 < ��N2=mP�end ’

1=
�����
2r
p

, which in terms of the coupling reads:

MN1

MN2
& 1:6� 10�5jhN2j

�3: (34)

Having a second slow-rolling field does not change the
primordial spectrum during or after inflation, so the esti-
mation given in Eq. (29) applies, and the spectrum is
dominated by thermal effects. Moreover, it does not matter
what is the amplitude of the curvature perturbation gener-
ated by �N1 during inflation, by the end of inflation it has
leveled to that of�N2. The constraint on the sneutrino mass
dominating during inflation, MN2 & 1010 GeV, obtained in
the previous section still applies.

During inflation the lightest sneutrino �N1 energy den-
sity is subdominant. When inflation ends for�N2 it does so
for �N1. Then, this field, weakly coupled, starts oscillating
and its energy density on average behaves like matter.
Therefore, if its decay rate is small enough, it will end up
dominating over the radiation energy density dissipated by
�N2 during warm inflation. Later the field decays, and it is
at this point that we define the final reheating T. Thus, the
inflationary period is controlled by �N2, but the reheating
phase is controlled by �N1, with

TRH ’
�

90

�2g�

�
1=4 ������������

�1mP

p
; (35)

where �1 ’
jhN1j

2

16� MN1, and then

jhN1j ’ 0:86� 10�6 �

�
TRH

106 GeV

��
108 GeV

MN1

�
: (36)

Leptogenesis can now proceed through the out-of-
equilibrium decay of the lightest sneutrino �N1 during
the reheating period. Any previous lepton asymmetry
would be diluted by the entropy produced by the �N1

decay. The lepton asymmetry at the end of reheating is
then given by [3,4],

nL
s
jRH ’ j�1j

3TRH
4MN1

; (37)

with �1 being the CP asymmetry generated by the decay,
given by the interference of the tree level with the one-loop
amplitude,

j�1j ’
3

8��hyNhN�11

X
i�1

Im��hyNhN�1i�
2 MN1

Mi
: (38)
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The asymmetry parameter is bounded by3 [31]

j�1j �
3

8�

�����������
�m2

A

q MN1

v2
u
’ 2� 10�8

�
MN1

108 GeV

�
; (39)

where �m2
A ’ �1:3� 4:2� � 10�3 eV2 is the the atmos-

pheric neutrino mass squared difference [43,44]. From
Eqs. (37) and (39) we have then the bound [1,45],

nL
s

��������RH
� j�1j

3TRH
4MN1

’ 1:5� 10�10 TRH
106 GeV

; (40)

and the baryon asymmetry:

nB
s

��������RH
�

8

23

nL
s
jRH ’ 5� 10�11 TRH

106 GeV
; (41)

and hence TRH � 2� 106 GeV in order to match the
observed baryon asymmetry. On the other hand, in order
to ensure the out-of-equilibrium decay of �N1 and avoid
thermal washout of the asymmetry, we require MN1 �
TRH. Using Eqs. (30) and (34), the limiting value [1]
TRH ’ MN1 ’ 106 GeV is reached for jhN2j & 0:24.

Therefore, we have a narrow window of values 0:1 &

jhN2j & 0:24, for which inflation happens in the strong
dissipative regime with MN2 ’ 1010 � 109 GeV, but re-
heating with TRH ’ 106 GeV and nonthermal leptogenesis
is given by the decay of a lighter sneutrino with parameters
5� 108GeV * MN1 * 106 GeV and 2� 10�7 & jhN1j &

8:6� 10�5. For having warm inflation with a larger
Yukawa coupling hN2 * 0:24, the second lighter and
long-lived sneutrino with MN1 < 106 GeV can lower the
final reheating T below the gravitino bound, but it does not
seem consistent with nonthermal leptogenesis as we cannot
satisfy at the same timeMN1 * TRH and TRH ’ 106 GeV. It
would remain to check whether thermal leptogenesis could
be viable during the reheating period in this case, for which
one would need to set and study the Boltzmann equations
describing the evolution of the different number densities,
which is beyond the scope of this paper.
VI. WARM INFLATION AND LIGHT NEUTRINO
MASSES

In this section we briefly want to comment on the issue
of light neutrino masses with a not too heavy sneutrino
MN � 1010 GeV but large Yukawa couplings jhNj � 0:1.
Over the recent years, different neutrino experiments have
established the existence of neutrino oscillations driven by
nonzero neutrino masses and neutrino mixing [46].
Atmospheric neutrino oscillation parameters read:
3The bound is given by j�1j � 3�m3 �m1�MN1=�8�v
2�, with

m3;1 being the light neutrino masses. We have taken for simp-
licity m1 <m3 ’

�����������
�m2

A

q
’ O�0:05� eV, although we could have

for example m1 <m3 
 O�1� eV.

103526
j�m2
Aj � �1:3� 4:2� � 10�3 eV2;��������������

j�m2
Aj

q
’ 0:05 eV; sin2�A � 0:85;

(42)

while solar neutrino oscillation parameters lie in the low-
LMA (large mixing angle) solution with:

j�m2
sunj � �8:5� 7:4� � 10�5 eV2;

tan�sun � 0:4�0:09
�0:07:

(43)

On the other hand, a combined analysis of the solar neu-
trino, CHOOZ and KamLAND data gives sin2�13 < 0:055.
An upper limit on the absolute value of the masses is
obtained from WMAP data as

P
jmj < �0:7� 2:0� eV.

Given the superpotential Eq. (1), light neutrino masses
are given by diagonalizing the seesaw mass matrix [5]:

mLL � v2
uhNM�1

RRh
T
N � U	Ldiag�m1; m2; m3�UT

	L; (44)

where4 vu � hHui � 174 GeV, mi the light LH neutrino
masses, and U	L the rotation matrix. In the Yukawa matrix
hN , each column define a vector hNi with modulus jhNij as
given in Eq. (4). In the eigenmass basis for the RH neu-
trinos we have:

TrmLL �
X

i�1;2;3

mi ’ v
2
u

X
i�1;2;3

hNi � hNi

MNi
< O�1� eV: (45)

For the parameters of the strong dissipative regime
we clearly exceed the WMAP bound, with
hN2 � hN2=MN2 >O�30� eV.

However, this applies when assuming a diagonal mass
matrixMRR in Eq. (44). We can work instead with [47] (see
also [32])

MRR �

0B@ 0 MN2 0
MN2 0 0

0 0 MN1

1CA; (46)

where

TrmLL �
X

i�1;2;3

mi

’ v2
u

�
2hN3 � hN2

MN2
�

hN1 � hN1

MN1

�
<O�1� eV; (47)

such that the large contribution coming from the large
Yukawa coupling hN2 can be canceled out by choosing
an appropriate smaller coupling hN3 � hN2. This kind of
scheme gives rise to light neutrino masses with an inverted
hierarchy, m2

1 
 m2
2 
 m3

3. For example, taking hN1 �
hN1=MN1 � hN3 � hN2=MN2. We have then 2 almost de-
generate light neutrino masses, with jm1j ’ jm2j ’��������������
j�m2

Aj
q

, and a massless one m3 ’ 0, (small corrections
4Strictly speaking we have hHui � v sin�, with v � 174 GeV
and tan� � hHui=hHdi. We are setting sin� 
 1 for order of
magnitude estimations.
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from the Yukawas hN1 gives a nonzero m3 value).
Atmospheric neutrino oscillations are given by oscillations
among ‘‘13’’ and ‘‘23’’, while solar data is explained by the
oscillation between ‘‘12’’, with m2

1 �m
2
2 ’ �m2

sun [47].
The mass parameter MN1 can be larger or smaller than

MN2 as far as light neutrino masses are concerned.
Nevertheless, if we choose the hierarchy MN2 >MN1, the
asymmetry parameter corresponding to the decay of the
lightest sneutrino is given by:

j�1j ’
3

16��jhN1j
2�
Im��h�N3 � hN1��h�N2 � hN1��

MN1

MN2

’
3

8�

��������������
j�m2

Aj
q MN1

v2
u
; (48)

where in the second line we have just assumed that there is
no hierarchy among the different components of hN1 and
that phases are such that Im�� is maximal and we saturate
the upper bound on the asymmetry parameter.
VII. CONCLUSION

The most important new feature for sneutrino inflation
found in this paper is a model in which inflation is driven
by just a single sneutrino field that creates a monomial
inflationary potential, similar to chaotic sneutrino inflation
[1,3,4], but with the key difference that in the model of this
paper the inflaton amplitude is below the Planck scale. For
particle physics model building, this is an important fea-
ture, since this model is then not susceptible to large effects
from higher dimensional operators. In particular, it can be
embedded in a sugra potential even with minimal Kahler
potential for the fields, with the exponential sugra correc-
tion in front of the potential remaining small and under
control. The chaotic inflation scenario of the cold inflation
picture has always been attractive for its simplicity, since it
103526
requires just a monomial potential to realize inflation.
However the downside of this model for model building
has been that the inflaton field amplitude necessary for
inflation must be larger than the Planck scale, thus making
the model highly susceptible to higher dimensional opera-
tor corrections. Now, taking into account dissipation, this
simple model with a monomial potential can be regarded as
an effective model truly valid below the cut-off scale mP.

Before the results of this paper, the simplest sneutrino
model that could maintain field amplitudes below the
Planck scale was a version of hybrid inflation [2]. But
this model is more contrived since it requires additional
fields aside from the RH neutrino fields. Thus the model of
this paper is the simplest realistic realization of sneutrino
inflation, in the sense that it is the minimal SUSYextension
of the standard model to incorporate supersymmetry and
RH neutrinos, it requires no additional fields beyond these
to realize inflation, and all higher dimensional operators
which inevitably also exist are all suppressed.

The key feature of our model that allowed the inflaton
amplitude below the Planck scale with a monomial infla-
tion potential was the presence of large dissipation in the
inflaton evolution equation. Moreover as shown in Sec. III,
the origin of these dissipative effects arise automatically at
a first principles level for this model of RH neutrinos
coupled to the MSSM. Thus we believe the model in this
paper has several attractive features for building a com-
plete model that is able to describe both particle physics
and cosmology.
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