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This paper examines the classical dynamics of false-vacuum regions embedded in surrounding regions
of true vacuum, in the thin-wall limit. The dynamics of all generally relativistically allowed solutions—
most but not all of which have been previously studied—are derived, enumerated, and interpreted. We
comment on the relation of these solutions to possible mechanisms whereby inflating regions may be
spawned from noninflating ones. We then calculate the dynamics of first-order deviations from spherical
symmetry, finding that many solutions are unstable to such aspherical perturbations. The parameter space
in which the perturbations on bound solutions inevitably become nonlinear is mapped. This instability has
consequences for the Farhi-Guth-Guven mechanism for baby universe production via quantum tunneling.
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I. INTRODUCTION

Nearly two decades ago, a series of papers [1–3] began
to investigate the possibility of creating an inflationary
universe ‘‘in a laboratory’’—that is, inside a surrounding
region of much lower vacuum energy. The spacetime of
such a ‘‘bubble universe’’ was modeled as a spherically
symmetric de Sitter region (the false vacuum) joined to a
surrounding Schwarzschild geometry (the true vacuum) by
an infinitesimally thin domain wall.

These studies found that the inflating (false-vacuum)
region could not avoid collapse unless either the null
energy condition or cosmic censorship were violated in
the full spacetime [1], but that the creation of an enduring
inflating region might be possible via quantum tunneling
[2,3]. In this picture, henceforth denoted the Farhi-Guth-
Guven (FGG) mechanism, a classically constructable ex-
panding bubble, which would classically recollapse (from
both the inside and the outside perspectives [4]), instead
tunnels to a new solution in which the inflating interior
expands forever, while an outside observer sees a black
hole [5]. The probability of this occurring can be calculated
using the techniques of semiclassical quantum gravity, and
is extraordinarily small.

Though nearly miraculous, this process has garnered
new interest recently, primarily because of evidence that
our Universe may have a fundamental positive cosmologi-
cal constant. If so, it will asymptotically approach ever-
lasting equilibrium as de Sitter spacetime. Given eternity,
even the most unlikely process—such as the creation of
inflating bubble universes—will eventually occur. Taking
this one step further, our observable Universe could in fact
be such a bubble universe, which arose from equilibrium
de Sitter space and is currently returning to it. This would
realize the old idea of Boltzmann that the Universe is
fundamentally in equilibrium, but that extremely rare
downward fluctuations in entropy periodically occur and
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allow the transitory existence of nonequilibrium regions
that see entropy steadily increasing.

The classic problem with this idea was pointed out in its
new context by Dyson, Kleban, and Susskind [6]: If our
observable Universe resulted from a downward entropy
fluctuation that evolved with increasing entropy to the
present time, then it is vastly more likely for this to have
occurred by a fluctuation to our observable Universe ten
minutes ago (replete with incoming photons and memories
in our brains to convince us that it is older) than by a
fluctuation all the way to the much lower entropy corre-
sponding to inflation [7]. Albrecht and Sorbo [11], how-
ever, argue that inflation might avoid this problem by
turning a tiny region of low entropy density into a very
large one. Their calculation shows that the FGG mecha-
nism requires a much smaller entropy fluctuation than
directly creating the large post-reheating region that will
result from it, thus resolving the paradox.

There may, however, be reasons to doubt that the crea-
tion of small regions of false vacuum and subsequent
tunneling are plausible events. First, there is no regular
instanton describing either the nucleation of small regions
of false vacuum or the gravitational tunneling event; there
is such an instanton describing tunneling to false vacuum,
but over a huge region, larger than the true-vacuum horizon
(see, e.g., [12,13]). Second, Banks [14] has pointed out that
it is hard to understand the tunneling process holographi-
cally—it appears that the inflating region inside the bubble
has many more states than the black hole it is ‘‘contained
in’’ (see also [15]). Third, Dutta and Vachaspati [16] have
recently (and previously in [17]) argued that general cau-
sality considerations preclude the formation of a small
false-vacuum region inside a large true-vacuum one.

Both in terms of the initial conditions for inflation, and
also the more general issue of what processes can lead to
transitions between vacuum states (as is important in
understanding the string theory ‘‘landscape’’), it is crucial
to understand bubble universes, whether they can form, and
with what probabilities. To this question the present paper
makes the following contributions: First, we organize and
-1 © 2005 The American Physical Society
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interpret all of the thin-walled, spherically symmetric one-
bubble spacetimes. We then show that expanding false-
vacuum bubbles are unstable to nonspherical perturba-
tions; if these bubbles start at a sufficiently small initial
radius, then they inevitably become nonlinearly aspherical
before tunneling might occur in the FGG mechanism. It is
unclear in this case whether tunneling to an inflationary
universe inside the bubble can occur at all, or with what
probability.

The plan of the paper is as follows. In Sec. II, the
allowed solutions to the junction conditions are enumer-
ated, putting the previous work into context. We provide a
concise reference for all of the possible spacetimes with
one false-vacuum bubble and arbitrary positive cosmologi-
cal constant, then discuss the existing, and some new,
interpretations of these solutions. In Sec. III we derive
the first-order perturbation equations, and demonstrate
the existence of an instability in bound solutions. In
Sec. IV we integrate the equations to investigate the pa-
rameter space for which nonlinear perturbations are un-
avoidable, and we conclude in Sec. V.

II. JUNCTION CONDITIONS

The dynamics of inflating regions has been discussed by
a number of authors [4,18–21] using the junction condition
formalism. These works study a spherically symmetric
region of false vacuum (high energy density) in a surround-
ing region of true vacuum (lower energy density). The wall
separating the regions is assumed to be very thin compared
to the radius of the region of false vacuum. One can obtain
the dynamics of the wall by requiring metric continuity
across the wall and then solving Einstein’s equations.
Under spherical symmetry, the dynamics of the problem
then reduce to those of the bubble wall’s radius. This radius
is a gauge invariant quantity because it simply quantifies
the curvature of the bubble wall world sheet, and any
observer can measure it by comparing the normal to the
wall at two nearby points.

A. Interior and exterior spacetimes

Let �� be the cosmological constant in the true-vacuum
region. Then if �� > 0, the region is Schwarzschild–
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de Sitter (SdS) spacetime with metric

ds2
� � �aSdSdt

2 � a�1
SdSdr

2 � r2d�2; (1)

aSdS � 1�
2M
r
�

��
3
r2 (2)

in the static foliation. Fixing ��, there are then three
qualitatively different casual structures characterized by
the value of M (see [22]), due to the nature of the three
roots of aSdS�r�.

For 3M<��1=2
� , there are three distinct real roots of

form:

rn � 2����
�1=2 cos

�
�
3
�

2�n
3

�
; (3a)

where

cos� � �3M����
1=2; (3b)

and �< � < 3�=2. We can label them as

rBH � r0; rneg � r1; rc � r2;

and the range of � means that they lie in the ranges rneg <
0< 2M< rBH < 3M< rc.

The two positive roots correspond to the black hole and
cosmological horizons. The conformal diagram for this
spacetime is shown in Fig. 1. (See [23] for a demonstration
of the explicit form of the metric in global coordinates.)
Surfaces of constant coordinate time t are drawn, with the
circulating arrows denoting the direction of increasing t.
We will consider region I to be the ‘‘causal patch’’ of a
hypothetical observer (i.e., the region lying in both the
causal past and causal future of the observer’s world line)
in what follows.

For 3M � ��1=2
� , there are also three real roots: a

double positive root rh and a negative rneg, given by:

rh � ��1=2
� ; rneg � �2��1=2

� : (4)

This mass is known as the Nariai mass, and in this space-
time there is only one horizon at the positive root. The
conformal diagram for this spacetime is shown in Fig. 2
[22]. There is also a time-reverse solution, starting at past
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Schwarzschild–de Sitter geometry when 3M � ��.
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null infinity and ending at r � 0. For 3M>��1=2
� , there is

one real negative root, and therefore no horizons in the
spacetime. The conformal diagram for this case is like
Fig. 2, but with the horizon lines excised.

Inside the false-vacuum region the spacetime is de Sitter
space, with metric

ds2
� � �adSdt2 � a�1

dS dr
2 � r2d�2; (5)

adS � 1�
��
3
r2 (6)

in the static foliation. Figure 3 shows the conformal dia-
gram for the de Sitter region. Again, surfaces of constant
coordinate time t are shown, with the arrows denoting the
direction of increasing t. We consider region III to be the
causal patch in which our hypothetical false-vacuum ob-
server resides.

B. Equation of motion

The bubble wall world sheet has metric:

ds2 � �d�2 � r���2d�2; (7)

where � is the proper time in the frame of the wall, and
(�;�) are the usual angular variables.

The coordinates in the full 4D spacetime are chosen to
be Gaussian normal coordinates constructed in the neigh-
borhood of the bubble wall world sheet. Three of the
coordinates are ��; �;�� on the world sheet, and the fourth,
�, is defined as the proper distance along a geodesic
103525
normal to the bubble world sheet, with � increasing in
the direction of SdS (true vacuum).

The transformation from the static coordinate systems of
SdS and dS to the Gaussian normal system can be con-
structed in closed form using the methods of [2], and the
full metric takes the form:

ds2 � g����; ��d�
2 � d�2 � R��; ��2d�2; (8)

where� � 0 defines the wall and therefore g����; 0� � �1
and R��; 0� � r���.

The energy-momentum tensor on the wall is

T��wall � ��	
��
��� (9)

where 	�� is the metric on the world sheet of the wall for
� � � � �; �; � and zero otherwise, and � is the energy
density of the wall.

Using the metric (8) and the energy-momentum tensor
(9) together with the contributions from the dS interior and
SdS exterior in Einstein’s equations yields an equation of
motion for the bubble wall of [2,4]:

Ki
j���� � K

i
j���� � �4��r
ij; (10)

where Ki
j���� is the extrinsic curvature tensor in SdS and

dS, respectively. In the Gaussian normal coordinates, this
takes the form:

Kij �
1

2

d
d�

gij: (11)

Evaluating this in metric (8), the �� and �� compo-
nents of Eq. (10) reduce to:

�dS � �SdS � 4��r; (12)

with the definitions

�dS � �adS
dt
d�
; �SdS � aSdS

dt
d�
: (13)

Here, a is the metric coefficient in dS or SdS. The sign of�
is fixed by the trajectory because dt=d� could potentially
be positive or negative (motion can be with or against the
direction of increasing coordinate time indicated in Figs. 1
and 3).

A set of dimensionless coordinates can be defined, in
which Eq. (12) can be written as the equation of motion of
a particle of unit mass in a one-dimensional potential [20].
Let

z �
�
L2

2M

�
1=3
r; T �

L2

2k
�; (14)

where M is the mass appearing in the SdS metric coeffi-
cient, and

k � 4��; (15)

L2 � 1
3�j��� ��� � 3k2�2 � 4����j	

1=2: (16)
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With these definitions, Eq. (12) becomes
�
dz
dT

�
2
� Q� V�z�; (17)

where the potential V�z� and energy Q are

V�z� � �
�
z2 �

2Y
z
�

1

z4

�
; (18)

with

Y �
1

3

�� ��� � 3k2

L2 ; (19)

and

Q � �
4k2

�2M�2=3L8=3
: (20)

Note that a small negative Q corresponds to a large mass,
so that even between �1<Q< 0 the mass will vary by
many orders of magnitude.

The parameter space allowed by the junction conditions
is characterized by the value of the cosmological constant
inside and outside the wall. For 0 
 �� <��, we have
�1 
 Y 
 1. The maximum Vmax of the potential V�z�
then satisfies �25=3 � 2�4=3 
 Vmax 
 0. The potential
curves over the entire range of Y are shown in Fig. 4.

The interior and exterior cosmological constants can be
expressed in terms of k2 as �� � Ak2 and �� � Bk2.
With these choices, the dynamics of the bubble wall are
entirely determined by A, B, and Q.

Let us now discuss some realistic values for the parame-
ters in this theory. The interior cosmological constant
(�� � M4

I =M
4
pl) and the bubble wall surface energy den-

sity (k � 4�M3
I =M

3
pl) will be set by the scale of inflation

(MI). The exterior cosmological constant (�� � M4
�=M

4
pl)

will be set by a scale M�. These yield

A �
M4

�M
2
pl

�4��2M6
I

; B �
M2

pl

�4��2M2
I

: (21)

We will consider three representative energy scales,
covering the interesting range of energy scales for infla-
tion. For weak-scale inflation (100 GeV), k ’ 4�� 10�51,
A ’ 0, and B ’ 1032. For an inflation scale near the grand
unified theory (GUT) scale (1014 GeV� M�), we have
k ’ 4�� 10�15, A ’ 0, and B ’ 107. Near-Planck-scale
inflation (1017 GeV) yields k ’ 4�� 10�6, A ’ 0, and
B ’ 63. The most massive bound solution (that which
just reaches the top of the potential) is given by converting
from Q to M using Eq. (20). This maximal mass is
very different in each case, ranging from an ant mass of
Mmax ’ 103Mpl ’ 10�2 grams for MI � 1017 GeV to an
Earth mass of Mmax ’ 1033Mpl ’ 1028 grams, for MI �

100 GeV.
103525
C. Allowed solutions

A bubble wall trajectory is characterized by Q � const,
and there are three general types:
(i) B
-4
ound solutions with Q< Vmax. These solutions
start at z � 0, bounce off the potential wall and
return to z � 0.
(ii) U
nbound solutions withQ< Vmax. These solutions
start at z � 1, bounce off the potential wall and
return to z � 1.
(iii) M
onotonic solutions with Q> Vmax. These solu-
tions start out at z � 0 and go to z � 1, or execute
the time-reversed motion.
The qualitative features of a generic potential can be
shown by considering the four illustrative (but unrealistic;
see above) cases of (A � 9, B � 15) shown in Fig. 5, (A �
1, B � 6) shown in Fig. 6, (A � 1, B � 2) shown in Fig. 7,
and (A � 2:9, B � 3) shown in Fig. 8. The important
features are
(i) A
s one follows a line of constant Q in Figs. 5–8
every intersection with the dashed line QSdS (which
is obtained by solving aSdS � 0 for Q) represents a
horizon crossing in the SdS spacetime (this could
represent either the black hole or cosmological
horizons).
(ii) I
ntersections with the dashed line QdS (which is
obtained by solving adS � 0 for Q) as one moves
along a line of constant Q represent the crossing of
the interior dS horizon.
(iii) T
he vertical line on the right denotes the position at
which �dS changes sign. �dS > 0 if tdS is decreas-
ing along the bubble wall trajectory and is negative
if tdS is increasing. For there to be a �dS sign
change, Y in Eq. (19) must be in the range �1 

Y < 0 [20], which yields the condition that B>
A� 3 for a sign change to occur.
(iv) T
he vertical dotted line on the left denotes the
radius at which �SdS changes sign. Recall that
�SdS > 0 if tSdS is increasing along the bubble
wall trajectory, and �SdS < 0 if it is decreasing.



FIG. 7. Potential for A � 1 and B � 2. For this choice of
parameters, the sign change in �SdS occurs to the left of the
maximum in the potential and there is no �dS sign change.
Various trajectories are noted.

FIG. 6.
paramet
maximu

FIG. 5. Potential for A � 9 and B � 15. The two dashed lines
labeled QSdS and Qs represent the exterior and the interior
horizon crossings, respectively. The vertical dotted lines denote
the regions in which �SdS and �dS are positive and negative.
Various trajectories are noted.
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For the parameters in Figs. 5 and 8, or (one can
show) whenever B< 3�A� 1�, the sign change
occurs to the right of the maximum of V. When
B> 3�A� 1� it occurs to the left [24], as shown in
Figs. 6 (note that this is the interesting case where
��  ��) and 7.
The potential diagram contains all of the information
needed to determine the conformal structure of the allowed
one-bubble spacetimes. A complete set of the qualitatively
different trajectories for arbitrary interior and exterior
positive definite cosmological constants (with �� <��)
and M � 0 is denoted in Figs. 5–8. Figures 9 and 10
display the conformal structure of these solutions [25].
The conformal diagrams in each row are matched along
the bubble wall (solid line with an arrow) and the physical
regions are shaded. For solutions with qualitatively similar
SdS diagrams, the various options for the dS interior are
listed. The naming scheme in Figs. 5–8 is chosen to reflect
Potential for A � 1 and B � 6. For this choice of
ers, the sign change in �SdS occurs to the left of the
m in the potential. Various trajectories are noted.
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the structure of the conformal diagrams. The first numbers
are the regions of the SdS conformal diagram that the
bubble wall passes through. The numbers following the
slash are the regions of the dS conformal diagram that the
bubble wall passes through.

For example, consider the IV-I-II/III solution (solution 1
of Fig. 9). These start at r � z � 0, corresponding to the
singularity in region IV of the SdS conformal diagram and
the r � 0 surface in region III of the dS conformal dia-
gram. �SdS and �dS are both greater than zero over the
entire trajectory. Therefore, the wall on the SdS side must
follow a path of increasing tSdS, pushing it into region I
(crossing the black hole horizon). The wall on the dS half
must follow a path of decreasing coordinate time, and thus
remain in region III. The wall then reaches a turning point,
falls through the black hole event horizon, and ends up
back at r � z � 0 (the singularity in region II of the SdS
diagram, and the r � 0 surface in region III of the dS
FIG. 8. Potential for A � 2:9 and B � 3. For this choice of
parameters, the sign change in �SdS occurs to the right of the
maximum in the potential and there is no �dS sign change.
Various trajectories are noted.
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FIG. 9 (color online). Conformal diagrams for the allowed one-bubble spacetimes. The dS and SdS diagrams are matched across the
bubble wall (line with arrow), and the physical regions shaded. Solutions 3 and 4 share the same SdS diagram. Regions which do not
contain antitrapped surfaces are shaded green (light), regions which do are shaded blue (dark).
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diagram). The construction of the other diagrams in Figs. 9
and 10 proceeds similarly.

Based on the inward pressure gradient, the IV-I-II/III
solution is what one might expect the junction conditions
to yield: a sphere of false vacuum which expands and then
contracts. Relativistic effects, however, lead to the quali-
tatively different behavior exhibited by the other solutions
in Figs. 9 and 10. For instance, the evolution of the IV-III-
II/III (solution 2) solution is qualitatively similar to the IV-
I-II/III solution, but is so massive that its evolution is
always hidden behind the black hole event horizon. The
IV-I-II0/III-II (solutions 3 and 4) solution is a bubble which
has enough kinetic energy to escape collapse by expanding
through the cosmological horizon; observers inside (or
who travel inside from region I) the false-vacuum region
will find themselves in an inflationary universe at late
times. In the time-reverse of this solution, a bubble implo-
des from infinity into the black hole horizon, and the
interior undergoes collapse.

Note that there are two options for the IV-I-II0/III-II
solution. Solution 3 corresponds to the situation A� 3<
B< 3�A� 1�, which contains both �SdS and �dS sign
changes (see Fig. 5). This causes the bubble wall to accel-
103525
erate in the direction of the true vacuum from both the
interior and the exterior perspectives. Solution 4 corre-
sponds to the situation B< A� 3, which does not contain
a �dS sign change (see Fig. 8). This causes the bubble wall
to accelerate in the direction of the false vacuum from the
interior perspective. The reason for the disparity is that
solution 4 exists only when the interior and the exterior
cosmological constants are similar in magnitude, and so
the wall tension can have greater influence on the
dynamics.

The remaining solutions, shown in Fig. 10, have interi-
ors which approach an inflationary universe at late times,
but lie on the opposite side of the wormhole in the exterior
SdS spacetime. To an observer in region III of the SdS
diagram, the IV0-III-II0/IV-I-II (solution 5) and IV0-III-II0/
IV-III-II solutions (solutions 6 and 7) would appear as a
‘‘sky’’ of false vacuum that encroaches from infinity,
reaches a minimum radius and then expands back out. It
has been pointed out by Bousso [15] that at late times (in
an asymptotically flat spacetime) the wall trajectory ac-
cording to the observer in region III of the SdS diagram
approaches that of a true-vacuum bubble [26–28].
Amusingly, the SdS observer will think he is in a true-
-6



FIG. 10 (color online). Conformal diagrams for the allowed one-bubble spacetimes. The dS and SdS diagrams are matched across
the bubble wall (line with arrow), and the physical regions shaded. For solutions with qualitatively similar SdS diagrams, the various
options for the dS interior are listed.
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vacuum bubble surrounded by a large region of false
vacuum, while the dS observer will think she is in a
false-vacuum bubble surrounded by a large region of true
vacuum.

This symmetry between true- and false-vacuum bubbles
is made manifest in the analysis of the Coleman-De Luccia
[28] instanton, which describes the production of both true-
and false-vacuum bubbles [12]. These are zero energy
solutions, and so we should look for an M � 0 unbound
solution; this corresponds [via Eq. (20)] to Q! �1, and
we see from Figs. 5–8 that the IV0-III-II0/IV-I-II solution
(solution 5) or the IV0-III-II0/IV-III-II solution (solution 6),
depending on the values of �� and ��, can be identified as
the analytically continued false-vacuum instanton. The
radius of the bubble wall at the turning point is found by
considering the limit as the potential [Eq. (18)] goes to
�1, where on the right (unbound) side of the potential
hump the z2 term dominates. Solving for r using Eq. (14),
we find the radius at turnaround to be

r � 6k�j��� ��� � 3k2�2 � 4����j	
�1=2; (22)

which agrees with the previous literature [18] (see also
[13]). Since the Schwarzschild mass is zero, we are now
matching two pure de Sitter spacetimes across the bubble
wall. The conformal diagram for the exterior dS region
(right) only contains the area between the vertical dashed
103525
lines (which are now identified as r � 0 surfaces) in solu-
tions 5 and 6 of Fig. 10. The interior half (left) of the
diagram remains unchanged. It can be seen that at turn-
around, the bubble will be larger than both the interior
horizon size and the (exterior) horizon size of the region it
has replaced.

In the IV-III-II0/III-II solution (solutions 12 and 13), the
region of false vacuum surrounding the observer in
region III of the SdS diagram would begin very small
and then expand out of the cosmological horizon. This
solution will also have a time-reversed version in which
the surrounding region of false vacuum implodes. For the
IV0-III0-II0/IV-III-II solution (solutions 8 and 9), the sky of
false vacuum would forever reside outside of the horizon of
a region III observer. Finally, the N/III-II solution (solu-
tions 10 and 11), which we will define as solutions with
mass greater than or equal to the Nariai mass, will be an
exploding (or imploding in the time-reversed solution)
bubble of false vacuum centered on r � 0.

In a series of papers, Farhi et al. [1,2] discussed the
application of the Penrose theorem [29] to the one-bubble
spacetimes discussed above. If the null energy condition
(NEC) holds (as it does for the postulated energy-
momentum tensor) and there exists a noncompact
Cauchy surface (as in the full SdS spacetime), then the
existence of a closed antitrapped surface in the spacetime
-7
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implies the presence of an initial singularity. Since each
point on the conformal diagrams in Figs. 9 and 10 repre-
sents a two-sphere, such an antitrapped surface exists if the
ingoing and outgoing future-directed null rays both di-
verge. For example, the two-sphere represented by point
P1 shown in Fig. 9, solution 1, is a closed antitrapped
surface. This can be seen by following the null ray (null
rays are denoted by the dashed lines in Fig. 9) from r � 0
in region III of the dS diagram to P1 and noting that r
increases monotonically as P1 is approached (the null rays
are diverging). But following the future-directed null rays
in the opposite direction from r � 0 in region IVof the SdS
diagram, across the bubble wall, and into the false-vacuum
region, shows that they also diverge. Thus, an initial sin-
gularity is necessary for this solution to exist at and near
P1. This spacetime also, however, contains regions without
antitrapped surfaces. Following the future-directed null
rays to point P2, for example, we see that the ingoing
rays diverge, but the outgoing rays converge. For ex-
amples, see solutions 1–4 in Fig. 9, where regions which
contain antitrapped surfaces are shaded blue (dark) and the
regions which do not are shaded green (light).

If we cut the IV-I-II/III solution (solution 1) in the
expanding phase on a spacelike hypersurface at a time
where the radius of the bubble wall satisfies r > rBH,
then the spacetime would not necessarily contain an initial
singularity [30]. We can remove the initial singularity from
the IV-I-II0/III-II (solutions 3 and 4) solution as well by
cutting on the same surface. Both the IV-I-II/III (solution 1)
and IV-I-II0/III-II (solutions 3 and 4) solutions are therefore
classically buildable. The IV-I-II0/III-II solution (solu-
tions 3 and 4) is the only example where it is possible to
form an inflationary universe from classically buildable
initial conditions, but only exists when the interior and
the exterior cosmological constants are almost equal [B<
3�A� 1�]. This solution might be of interest in understand-
ing transitions between nearly degenerate vacua, for ex-
ample, in the context of eternal inflation.

Given the existence of a classically forbidden region in
Figs. 5–8, one might ask if tunneling is allowed from one
of the recollapsing solutions (solutions 1 and 2) to one of
the expanding solutions (solutions 5–9) on the other side
of the potential hump. This event, shown in Fig. 11, would
constitute a violation of the NEC, and so the Penrose
theorem would no longer apply to the antitrapped surfaces
that exist after the tunneling event. Such a process is indeed
apparently allowed [2,3], and would describe the quantum
C
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FIG. 11 (color online). Tunneling spacetime.
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creation of an inflationary universe from classically build-
able initial conditions (if the initial condition is the IV-I-II/
III solution in solution 1).

This is a rather strange transition, however, as the un-
bound solution is behind the wormhole in SdS (see
Fig. 11). An observer in region I would see the bubble
expand, reach its turning point, and then disappear, only to
be replaced by a black hole. An observer inside the bubble
would see the wall expanding away and—just as it is about
to turn around and start collapsing—instead disappear
behind the cosmological horizon. This observer will be
inside an inflationary universe, but forever disconnected
from region I. If the black hole in the SdS spacetime then
evaporates, the baby universe will become completely
topologically disconnected.

Having considered one circumstance in which an NEC
violation precipitates the creation of an inflationary uni-
verse, one might ask if there are others. Quantum fluctua-
tions of a scalar field in de Sitter space can violate the NEC,
and so one might imagine that any of the solutions that we
have discussed which allow inflation inside the bubble
could be spontaneously created somewhere along their
trajectories. One example of this direct production of
baby universes is a fluctuation into one of the unbound
solutions (solutions 5–9). Such scenarios have been con-
sidered in the context of the stochastic approach to baby
universe production by Linde [31] and in reference to
eternal inflation by Carroll and Chen [8].

Another example of the direct fluctuation into an infla-
tionary universe is the thermal decay of de Sitter vacua
discussed by Garriga and Megevand [32] (Ref. [33] dis-
cusses a related mechanism). This process consists of the
fluctuation from empty de Sitter of a bubble in unstable
equilibrium between expansion and collapse. This static
solution is identified as the set of spacetimes which sit on
top of the potentials in Figs. 5–8. The two possible con-
figurations are shown in Fig. 12, where it can be seen that
the bubble wall can lie on either side of the wormhole
depending on the sign of �SdS at the top of the potential. It
can be shown that the ‘‘Nariai limit’’ in Ref. [32] corre-
FIG. 12 (color online). Conformal diagrams for the thermal
decay of de Sitter vacua. The upper diagram corresponds to B<
3�A� 1�, the lower diagram corresponds to B> 3�A� 1�.
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sponds to B � 3�A� 1�, where the �SdS sign change oc-
curs at the max of the potential.

With these considerations, there are at least three com-
peting channels for the formation of baby universes: direct
production, the FGG mechanism, and the zero-mass false-
vacuum instanton. It would be desirable to develop a
scheme to directly compare the relative probabilities of
each of these processes, and this is currently being
explored.

Our full catalog of solutions is also interesting in regards
to a recent proposal [16,17] that false-vacuum regions,
assumed to be larger than the interior horizon, must at all
times be larger than the exterior, true-vacuum, horizon.
The basis of this conjecture is the condition that the diver-
gence of a congruence of future-directed null geodesics
(defined as �) must satisfy

d�
dT

 0; (23)

where T is an affine parameter, if the NEC holds for all T.
Null rays in the dS and SdS spacetimes satisfy this inequal-
ity (in dS, the inequality is exactly zero), but we should
check that the junction conditions do not violate it. One
requirement imposed by Eq. (23) is that the divergence of
the null rays does not increase at the position of the wall as
they go from a true-vacuum region into a false-vacuum
one. Along any given null geodesic in the bubble interior or
exterior, the value of r is either increasing or decreasing
monotonically as a function of T. We can therefore state
the condition Eq. (23) as: One cannot have a null ray along
which dr=dT 
 0 outside the bubble and dr=dT � 0 in-
side the bubble. Surveying the solutions in Figs. 9 and 10,
we see that this is indeed always true.

The authors of Refs. [16,17] intended to demonstrate
that if one requires the false-vacuum region to be larger
than the interior horizon size at all times (so that inflation is
unstoppable), it is necessarily larger than the exterior hori-
zon size. Although all of the allowed one-bubble space-
times satisfy the condition Eq. (23), there are only two
examples in which all observers agree that this requirement
is met: the false-vacuum instanton [IV0-III-II0/IV-I-II solu-
tion (solution 5), with M � 0] and the IV-I-II0/III-II solu-
tion (solutions 3 and 4, after turnaround). In every other
case (including the FGG spacetime in Fig. 11), the observ-
ers in region I of the SdS conformal diagram will see only a
black hole horizon sized volume replaced by the false-
vacuum bubble. We therefore conjecture that if one re-
quires the false-vacuum region to be larger than the interior
horizon size at all times, then it will replace a volume
larger than the exterior horizon size according to only
some observers. If one relaxes this requirement, then there
are a diverse range of solutions which might describe the
spawning of an inflationary universe. For example, the
bubbles in solutions 3, 4 and 10–13 of Figs. 9 and 10
grow from an arbitrarily small size.
103525
Having discussed the character of the various solutions,
we turn now to a potentially dangerous detail, which is
particularly important for the FGG mechanism: There ex-
ists a classical instability against aspherical perturbations
in the spherically symmetric solutions to the junction
conditions.
III. PERTURBATIONS

The solutions described in Sec. II C assume that the
region of false vacuum is spherically symmetric. The
stability of these solutions against aspherical perturbations
has important consequences, especially if one hopes to
build plausible cosmologies. That there might be an insta-
bility in domain walls was first discussed by Adams, Freese
and Widrow [34]. The bubble wall can trade volume energy
for surface energy and wall kinetic energy locally as well
as globally, and so the bubble wall will become distorted if
different sections of the wall have different kinetic ener-
gies. As long as the local distortions of the wall remain
small compared to the size of the background solution’s
radius, this process can be formulated quantitatively as
perturbation theory around a background spherically sym-
metric solution.

Previous authors [34–36] have considered perturbations
on expanding bubbles of true vacuum [26–28], which have
zero total energy (surface, volume, and kinetic energies
canceling), and so can expand asymptotically. As was first
pointed out by Garriga and Vilenkin [35], even though
local observers on the bubble wall see perturbations
grow, external observers see them freeze out because
they do not grow faster than bubble radius.

The story is different for the bound (solutions 1 and 2)
and unbound (solutions 5–9) false-vacuum bubbles: Since
they reach a turning point, the perturbations have a chance
to catch up to the bubble’s expansion and become non-
linear. This also presumably has implications for the ther-
mal decay mechanism of Garriga and Megevand [32],
depending on the duration of time the bubble wall sits in
unstable equilibrium between expansion and collapse (see
discussion in Sec. II C). The remainder of this work will
focus on the instability of the bound IV-I-II/III solution
(solution 1), since physically plausible initial conditions
may be clearly formulated. There is no obvious set of
initial conditions for the perturbations on the unbound
solutions, and so we simply observe that the results we
will obtain for the bound solutions apply qualitatively here
as well.

To simplify the problem, we assume that the full gravi-
tational problem described in the previous sections can be
treated as motion of the bubble wall in a fixed SdS back-
ground. This assumption must be validated (as we do
below), but we are mainly interested in the low-mass
bound solutions for which we might expect the gravita-
tional contributions to be small. Assuming that a thin
spherically symmetric bubble wall separates an internal
-9
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dS from an external SdS spacetime, we can employ the
action [34–36]:

S � ��
Z
d3�

��������
�	
p

� 
Z
d4x

�������
�g
p

; (24)

where � is the surface energy density on the bubble wall,
	ab (a; b � 1; 2; 3) is the metric on the world sheet of the
bubble wall,  is the difference in volume energy density
on either side of the bubble wall:

 �
�� ���

8�
; (25)

and g�� is the metric of the background spacetime.

A. Wall equation of motion

The equation of motion resulting from Eq. (24) is [36]

gabKab � �

�
; (26)

where Kab is the extrinsic curvature tensor of the world
sheet of the bubble wall,

Kab � �@ax�@bx�D�n�; (27)

andD� is the covariant derivative and n� is the unit normal
to the bubble wall world sheet.

We will use the static foliation of the SdS spacetime [see
Eq. (1)] as the coordinates x� for the background space-
time. The world sheet is given coordinates ��; �;�� as in
Eq. (7), and has metric:

	ab � g��@ax
�@bx

�; (28)

with the gauge freedom in choosing � fixed by

dt
d�
� t0 �

���������������
a� r02
p

a
; (29)

so that 	�� � �1. Here and henceforth primes will denote
derivatives with respect to �. The other nonzero compo-
nents of 	ab are 	�� � r2 and 	�� � r2 sin2�.

The first task at hand is to find the world sheet’s unit
normal, which by spherical symmetry has only r and t
components. Requiring orthogonality to the world sheet
(g��n�@ax� � 0) and unit norm (g��n�n� � 1) yields its
components:

nt � �r
0; nr � t0: (30)

The components of Kab are given by
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K�� �
�
r00 �

1

2

da
dr

�
�a� r02��1=2; (31a)

K�� � �rat0 sin2� � K�� sin2�: (31b)

Substituting Eq. (31) into Eq. (26) gives the equation of
motion for the bubble wall:

r00 �

�

���������������
a� r02

p
�

2

r
�a� r02� �

1

2

da
dr
: (32)

Equation (18) supplies the velocity of the bubble at some
position along its trajectory

z0 � �Q� V�z0�	
1=2: (33)

Choosing this boundary condition is effectively restricting
ourselves to the IV-I-II/III (solution 1) or IV-III-II/III (so-
lution 2) solutions. Since the solutions to Eq. (32) approxi-
mate the dynamics of the junction condition problem, we
should parametrize by A, B, and Q. This can be done by
using the conversions defined in Sec. II B, and gives

z00 � �
3�B� A�

c

��������������������������
a��Q� � z02

q
�

2

z
�a��Q� � z02�

�
��Q�

2

da
dz
; (34)

where a is written in terms of z as

a � 1�
12

cz��Q�
�

12A

c2��Q�
z2; (35)

and

c � �j�A� B� 3�2 � 4ABj	1=2: (36)

To justify the use of the simplified dynamics described
above, Eq. (34) was numerically integrated, and the posi-
tion of the turning point compared to the corresponding
point on the full junction condition potential. Over the
range of Q corresponding to the bound solutions, we find
excellent quantitative agreement (well within 1%) between
the turning points of the solutions to Eq. (34) and the
junction condition potential. This was repeated with
equally good results for the weak-, GUT-, and Planck-scale
potentials and also for various initial positions between the
black hole radius and the potential wall (turning point).
This shows that to zeroth order, dynamics as motion in a
background is valid, and strongly suggests that it will be at
higher orders as well.

B. Perturbations

We are now in a position to discuss the first-order
perturbations on the spherically symmetric background
solutions discussed in Sec. III A. Physical perturbations
are normal to the world sheet of the (background) bubble
wall, and can be described by scalar field ��x� by taking
the position of the perturbed world sheet to be
-10
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�x � � x� ���x�n�; (37)

where x� is the spherically symmetric solution, and n� is
the unit normal to the world sheet. It is assumed that � is
much smaller than the bubble wall radius, so that a pertur-
bative analysis can be made.

The equation of motion for the perturbation field��x� in
a curved spacetime background can be derived from the
action Eq. (24) after expanding to second order in ��x�
[36]

4��
�
�R��h�� � R�3� �

2

�2

�
� � 0; (38)

where

4� �
1��������
�	
p @a�

��������
�	
p

	ab@b��; (39)

and h�� is

h�� � g�� � n�n�: (40)

To solve the equation of motion, we can decompose
��x� into spherical harmonics

��x� �
X
l;m

�lm���Ylm��;��; (41)

and separate variables to get an equation for �lm���. The
geometrical factors in Eq. (38) become dependent on � or
� only at second order, so we will always be able to make
this decomposition.
4� is then given by:

4�lm � �

�
@2
� �

2r0

r
@� �

l�l� 1�

r2

�
�lm: (42)

The components of h�� are

htt � �
a� r02

a2 ; hrr � �r02; (43a)

h�� � h�� sin2� �
1

r2 : (43b)

The components of the Ricci tensor are given by:

Rtt �
a
2
@2
ra�

a
r
@ra � �a2Rrr; (44a)

R�� � R�� sin2� � �1� a� r@ra�: (44b)

Contracting Eqs. (43) and (44) gives

R��h
�� �

2�1� a�

r2 �
3@ra
r
�
@2
ra
2
� 3��: (45)

The Ricci scalar on the world sheet is

R�3� �
2

r2 �1� r
02 � 2rr00�; (46)

where r00 is given by Eq. (32).
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After substituting Eqs. (42), (45), and (46) into Eq. (38),
the equation of motion for �lm��� is

�00lm �
�
2

�2 �
4
�r
�a� r02�1=2 � 3�� �

2

r
da
dr
�

6r02

r2

�
2�1� 4a�

r2 �
l�l� 1�

r2

�
�lm �

2r0�lm0

r
: (47)

In terms of the dimensionless variables of the junction
condition problem this reads:

�00lm � �
2z0

z
�0lm �

�
108A

c2 �
9�A� B�2

c2

�
12�B� A�

cz
�a��Q� � z02�1=2 �

2��Q�

z2 �4a� 1�

�
6z02

z2 �
2��Q�
z

da
dz
�
l�l� 1���Q�

z2

�
�lm; (48)

where � is the dimensionless perturbation field defined
similarly to z [see Eq. (14)]. The first term acts as a
(anti)drag on (shrinking) growing perturbations. The last
term in this equation is always negative, acting as a restor-
ing force. Perturbations will grow when the other terms
(which are positive over most of the trajectory in the
expanding phase) in this equation dominate. Further, the
last term indicates that lower l modes will experience the
largest growth. The full details of the solutions, however,
require a numerical approach, to which we now turn.

IV. APPLICATION TO THE FARHI-GUTH-GUVEN
MECHANISM

The possibility of creating an inflating false-vacuum
region via quantum tunneling (described in Sec. II C) has
been investigated only under the assumption of spherical
symmetry, and this would be grossly violated if perturba-
tions on the bubble wall become nonlinear. In this section,
we investigate the circumstances under which this is the
case. The two basic questions at issue are, first, when do
perturbations go nonlinear for some given set of initial
perturbations, and second, what initial perturbations can
be expected.

A. Dynamics of the perturbation field

Let us begin with the first issue. Since Eq. (48) is a
second-order ordinary differential equation, it can be de-
composed into the sum of two linearly independent solu-
tions

�lm�T� � �lm�T � 0�f�l; z0; Q; T�

��0lm�T � 0�g�l; z0; Q; T�: (49)

The functions f�l; z0; Q; T� and g�l; z0; Q; T� can be found
numerically by alternately setting �lm�T � 0� and
�0lm�T � 0� to zero, then evolving the coupled Eqs. (34)
and (48) numerically for a time T with initial conditions for
-11



FIG. 14 (color online). f�l; z0 � 0:5; Q � �10�4; T� for vari-
ous l. The inset shows the oscillatory behavior of f for large l.

FIG. 13 (color online). Contour plot of log10�f�l � 1; z0; Q; Tmax�	 (left) and log10�g�l � 1; z0; Q; Tmax�	 (right) for MI � 1014 GeV
(top) and MI � 100 GeV (bottom).
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Q, z0, and l. If the bubble is to tunnel, it will do so at the
time Tmax, when the bubble reaches its maximum radius
and begins to recollapse. Given f and g at time Tmax, the
size of the perturbations at the turning point for any z0, Q,
l, �lm�T � 0�, and �0lm�T � 0� can be determined. A 4th
order Runge-Kutta algorithm with adaptive step size was
used to solve for f and g, with numerical errors well within
the 1% level.

The results of this analysis for l � 1 and for the low
(weak) and intermediate (GUT) inflation scales discussed
below Eq. (21) are shown in Fig. 13. The solid lines show
contours of constant (log) amplification factor f (left) and
g (right) versus the bubble starting radius z0 and mass
parameter Q, with bubble mass increasing toward the
top. The shaded regions indicate regions which we have
disallowed as bubble starting radii because the bubble
would not be classically buildable for r < rBH (marked
as Q>QBH), or the bubble is in the forbidden region Q<
V�z� of the effective 1D equation of motion Eq. (17), or the
bubble would be too small to be treated classically. We
choose the latter radius as 50 times the Compton wave-
length zCompton of a piece of the bubble wall [37]. The
choice of 50 Compton wavelengths is rather arbitrary;
the effect of a larger bound would be to exclude more of
the parameter space in Fig. 13. This (unshaded) parameter
space includes all classical initial conditions which could
be set up by the observer in region I of the SdS conformal
diagram.
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It can be seen in Fig. 13 that the growth of the perturba-
tions is in general larger for higher-mass bubbles [smaller
jQj, larger�log10��Q�]. The lower the inflation scale, the
closer to zero the peak in the potential function becomes,
and the smaller jQj (higher-mass) bubbles are allowed, so
at low inflation scales f and g can be very large. Growth for
the Planck-scale inflation bubbles is very small, with f of
order 10 and g of order 1, and is not plotted.

The enhanced growth at small jQj is due to the suppres-
sion of the term in Eq. (48) proportional to l�l� 1���Q�,
which always acts to stabilize the perturbations. Another
consequence of this suppression is that the range in l over
which solutions are unstable depends on Q; as a general
-12
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rule of thumb, approximately a few times ��Q��1=2 l
modes are unstable (note that this is unlike the case true-
vacuum bubbles, for which only the l � 0; 1 modes are
unstable). An example of the f function for Q � �10�4

with the intermediate (GUT) inflation scale parameters is
shown in Fig. 14. The f functions for very large lmodes are
stable and approach sinusoids with amplitudes less than
one (see the inset in Fig. 14), meaning that the perturba-
tions are never larger than their initial size.

B. Initial conditions and evolution to the turning point

Having fully characterized the growth of the perturba-
tions, we now require an estimate for their initial values
when the bubble is formed. There is no reason to expect
that a region of false vacuum will fluctuate into existence
with anything near spherical symmetry, nor is it likely to
have thin walls (there is no instanton or other mechanism
to enforce these symmetries). Since low-l [relative to
��Q��1=2] modes are unstable, an initially aspherical bub-
ble will only become more aspherical; this is in marked
contrast to true-vacuum bubbles, which both start spheri-
cal, and tend to become more spherical as they expand.

Suppose, however, that we consider the best-case sce-
nario in which a bubble is, by chance or design, spherically
symmetric. It will nevertheless inevitably be dressed with
zero-point quantum fluctuations of the perturbation field.
We may then check whether these fluctuations alone, con-
sidered as initial values for the perturbations of a bubble
starting with a given Q and z0, suffice to make the bubble
nonlinearly aspherical by turnaround.

We assume that the ensemble average of the quantum
fluctuations at the time of nucleation is zero; but the
ensemble average of the square of the field [the spacelike
two-point function h���;����~�; ~��i � h� ~�i] will not
generally vanish. We can write the mode functions
[Eq. (41)] in terms of it as:

h�2
lmi �

Z
d�d ~�h� ~�iYlm��;��Y�lm�~�; ~��: (50)

By spherical symmetry, the two-point function can be
written as a function of the angular separation � between
��;�� and �~�; ~��, and decomposed into Legendre polyno-
mials:

h� ~�i �
X
l

ClPl�cos��: (51)

Using the addition theorem for spherical harmonics, we
can write this as

h� ~�i �
X
l0m0

4�
2l0 � 1

Cl0Y
�
l0m0 ��;��Yl0m0 �

~�; ~��: (52)

Substituting this into Eq. (50) and using the orthogonality
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of the spherical harmonics yields the relation:

h�2
lmi �

4�Cl
2l� 1

: (53)

Given some spacelike two-point function at the time the
bubble is nucleated, we can obtain the Cl from

Cl �
2l� 1

4�

Z 1

�1
d�cos��h� ~�iPl�cos�� (54)

and therefore set the typical initial amplitudes of the mode
functions as the rms value h�2

lmi
1=2 from Eq. (53). The

velocity field can be decomposed into spherical harmonics
just as � was, and the analysis performed above carries
over exactly. The typical initial size of the velocity mode
functions is then given by

h�02lmi �
4�Al
2l� 1

; (55)

with

Al �
2l� 1

4�

Z 1

�1
d�cos��h�0 ~�0iPl�cos��: (56)

The initial amplitudes in Eqs. (53) and (55) can now be
evolved to the turning point, and the mode functions re-
summed. The ensemble average of the rms fluctuations in
� at any time at a given point will then be

h��T�2i �
X
l

2l� 1

4�
h�lm�T�

2i

�
X
l

�C1=2
l f�l; z0; q; T� � A

1=2
l g�l; z0; q; T�	

2;

(57)

which can be evaluated at T � Tmax.
A full model of the two-point functions h� ~�i and

h�0 ~�0i would involve quantizing the mode functions on
the curved spacetime of the bubble wall world sheet, which
has a metric depending on z�T�. Further, to treat large
fluctuations, we would need to include nonlinear terms in
the equation of motion. The exact two-point function is
therefore a rather formidable object to compute. As a
simplified model, we will employ the two-point functions
of a massless scalar field in flat spacetime, and replace the
spatial distance r with the distance along the bubble wall
r0�. This massless scalar corresponds to the perturbations
on a flat wall separating domains of equal energy density in
Minkowski space [38]. Corrections to this picture in the
presence of curvature should be small over small regions of
the bubble wall. We are also neglecting the large difference
in energy densities across the bubble wall, which will give
the field a (negative) mass to first order. The apparent
divergence of the correlator due to this negative mass
will be rendered finite by the nonlinear terms which must
be introduced to discuss large fluctuations. In light of all
these difficulties, and several more approximations we will
-13



ANTHONY AGUIRRE AND MATTHEW C. JOHNSON PHYSICAL REVIEW D 72, 103525 (2005)
make below, this should be considered as a first, rough
estimate of the amplitude of the quantum fluctuations on
the bubble at the time of nucleation.

The spacelike two-point function in Minkowski space at
large separations is given by

h��x���y�i �
��1

4�r
; (58)

where r � jx� yj. As in the work of Garriga and Vilenkin
[38], we introduce a smeared field operator to obtain a
well-defined answer at close separations

�s �
1

�s2

Z
jy�xj<s

d2y��y�; (59)

where s is a smearing length, chosen to be the Compton
wavelength s � ��1=3 of a piece of wall, which is a
physically reasonable lower bound on the size of a mea-
surable region. The smeared correlator will then be given
by

h�s�x��s�y�i �
1

�2s4

�
Z
jz�xj<s

d2z
Z
jq�yj<s

d2qh��z���q�i;

(60)

which evaluates at x � y to

h�2
si � �

1
2� G���2=3; (61)

where G � 0:916 . . . is Catalin’s constant. We have been
unable to integrate Eq. (60) to obtain the exact form of the
smeared two-point function for all r. However, it must
smoothly interpolate between the value at r � 0 in
Eq. (61) to the functional form at r� s given by
Eq. (58). We therefore employ the following ‘‘toy model‘‘
smeared field correlator

h��x���y�i �
��1

4�s

�
�2�� 4�G � 1�e�r

2=2s2

�
1

r=s� 1

�
; (62)

which has the correct asymptotics. With r � r0�, the
dimensionless form of the toy correlator is given by:

h� ~�i �
��Q�

�24��2

�
�2�� 4�G � 1�e��R

2=2��2
�

1

R�� 1

�
;

(63)

where R � r0=s.
The velocity-velocity correlator can be calculated using

the Hamiltonian approach. For spacelike separations, this
is given by
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h�0�x��0�y�i � ��1
Z jpjd2p

2�2��2
exp�ip�x� y�	

� ��1
Z �

0

dp
4�

p2J0�pr� (64)

where we have introduced a hard momentum cutoff � to
obtain a finite answer. This cutoff will correspond to the
inverse smearing length, with higher momentum scales
higher accounted for in the smeared operator. The integral
can be evaluated in terms of generalized hypergeometric
functions as

h�0�x��0�y�i �
�3��1

12� 1F2

�
3

2
; 1;

5

2
;�

�2r2

4

�
: (65)

At close separations, we construct a smeared operator
�0s. The expectation value of this operator at zero separa-
tion is

h�02s i �
log�64� � 2	� 4

2�2 ; (66)

where 	 � 0:577 . . . is the Euler-Mascheroni constant.
Smoothly connecting the small r [Eq. (66)] and large r
[Eq. (65)] behavior as in Eq. (62), the �0 (defined similarly
to z0) correlator on the bubble at the time of nucleation is

h�0 ~�0i �
��Q�
12�

�
1F2

�
3

2
; 1;

5

2
;�

R2�2

4

�

�

�
12	� 6 log�64� � 24

�
� 1

�
e��R

2=2��2

�
:

(67)

The integrals [Eqs. (54) and (56)] for the correlators
[Eqs. (63) and (67)] must be evaluated numerically.
Calculation of the coefficients for every l and R is unfortu-
nately unfeasible because of the highly oscillatory behav-
ior of the integrands and sheer number of mode functions
that must be considered. However, we have been able to
deduce sufficiently good approximate fits forCl and Al as a
function of both l and R. In both cases, the power is
dominated by a peak at l ’ R.

The Cl are nicely fit by the function

Cl �
��Q�

�24��2
83

100

���
2
p
l� 1���

2
p
R� 1

� exp
�
�1

4R2 � 2
��

���
2
p
l� 1�2 � �

���
2
p
R� 1�2	

�
: (68)

The proposed fit for the Al consists of two power laws
matched at the R � l peak. For l 
 R, the best fit is Al �
��Q�l5=4=�10R9=4� and for l > R, the fit is Al �
3��Q�R1:8=�200l2:6�. Because these power law indices
are slightly uncertain, we only count the modes with
-14



DYNAMICS AND INSTABILITY OF FALSE VACUUM BUBBLES PHYSICAL REVIEW D 72, 103525 (2005)
l 
 R in the Al. This is conservative, and also justified
because these modes will not contribute significantly to the
sum in Eq. (57).

With these initial conditions, we can now evolve each
mode function using Eq. (49) and then resum in Eq. (57) to
find the average size of the fluctuations at the turning point.
We have calculated f and g up to the l corresponding to
the last unstable mode of the smallest jQj, for all three
inflation scales (MI � 100 GeV, MI � 1014 GeV, and
MI � 1017 GeV). The results for weak- and GUT-scale
inflation are shown in Fig. 13, where the dotted line in-
dicates the boundary of the region over which the pertur-
bations become nonlinear (nonlinear to the left of the line).
It can be seen that in this model, even just quantum
perturbations of the bubble wall grow nonlinear in bubbles
that start at radii less than about one-tenth of the turn-
around radius; this grossly violates the assumption of
spherical symmetry used in tunneling calculations. On
the other hand, none of the parameter space in the high
inflation scale case went nonlinear, and at all scales there is
always a region of initial bubble radii near the turnaround
radius, for which nonlinearity never occurs.
C. Thick walls and radiation

Just as we have no reason to expect a fluctuated region to
be spherically symmetric, we have no reason to assume
that it will have thin walls. An analysis of thick-walled
true-vacuum bubbles was undertaken in Refs. [38,39],
where it was found that the instabilities found in the thin-
walled case are still present in the form of deformations
normal to the bubble profile. In the case of small false-
vacuum bubbles, there is no obvious consideration (such as
a corresponding instanton) to supply the profile of the
bubble wall, and so we can merely conjecture by precedent
that the instability would be retained in the thick-walled
case as well.

Another consideration, applying to bubbles smaller than
the false-vacuum horizon size, is whether inflation is
spoiled by nonvacuum contributions to the energy density.
The perturbations on the bubble wall translate into gravi-
tational waves [40,41], and since the bound bubble solu-
tions remain relatively close to their gravitational radius
and become distorted over many different length scales on
a relatively short time scale (see the quasiexponential
growth in Fig. 14), they will be emitters of copious gravi-
tational radiation. Another problem arises if the kinetic and
gradient energy of the field becomes appreciable in the
bubble interior, either from intrusion of the wall (for ex-
ample, imagine a bubble being pinched in half by some
nonlinear perturbation), or from particle production or
other scalar modes propagating in from the wall. If the
emission of energy into the interior of the bubble from any
combination of these modes makes a significant contribu-
tion to the equation of state, then inflation will not occur.
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V. SUMMARY AND DISCUSSION

In this paper we have examined the feasibility of pro-
ducing inflationary universes from a spacetime with a
small cosmological constant. Reviewing the solutions al-
lowed by the junction conditions, there are several distinct
possibilities if one allows for violations of the null energy
condition. The first is the Farhi, Guth and Guven (FGG)
mechanism, in which (referring to Figs. 9 and 10) the IV-I-
II/III (solution 1) or IV-III-II/III (solution 2) solution is
fluctuated in the expanding phase and then tunnels to an
unbound solution, as shown in Fig. 11. To the outside
observer in region I of the SdS conformal diagram it
appears that the bubble has disappeared behind the hori-
zon, but on the other side of the wormhole, both an infla-
tionary universe and a noninflating universe (an
asymptotically true-vacuum de Sitter region) have come
into existence. In one case, shown in solution 5 of Fig. 10,
we can imagine an observer in region III, then take the
Schwarzschild massm! 0 limit (thus removing regions I,
II and IVentirely) and interpret the spacetime as that of the
analytically continued Coleman-De Luccia instanton.
Since the very same spacetime takes part in both the
FGG mechanism and the Coleman-De Luccia false-
vacuum instanton, there may be some way to smoothly
interpolate between these two processes; we intend to
explore this idea further in future work.

In addition to the FGG and regular instanton mecha-
nisms, there are two more possibilities. First, an inflation-
ary universe might be directly produced by some null
energy condition (NEC) violating fluctuation into one of
the unbound or monotonic solutions shown in solutions 5–
13 of Fig. 10. To the outside observer in region I of the SdS
conformal diagram, these solutions would be indistin-
guishable from the fluctuation of a black hole, but they
would secretly entail the creation of everything on the
other side of the wormhole, as in the FGG tunneling. A
second method of direct production is the fluctuation
(which does not require an NEC violation) of the IV-I-II0/
III-II solution (solutions 3 and 4). These solutions only
exist in the case where the interior and the exterior cosmo-
logical constants are comparable, and so would not corre-
spond to the nucleation of inflation from a universe like
ours, but they might be of interest in understanding tran-
sitions between nearly degenerate vacua.

Examining these classical solutions to first order, we
have shown that an instability to aspherical perturbations
exists in those solutions which possess a turning point. This
includes the bound (solutions 1 and 2) and unbound solu-
tions (solutions 5–9). In the latter case there is no clear
way to set an initial radius or initial perturbation amplitude,
so we can say only that collapsing bubbles are violently
unstable. The bound solutions are amenable to quantitative
investigation, and we have focused on the growth of per-
turbations in the expanding phase that precedes tunneling
in the FGG mechanism. For bound expanding bubbles
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formed by the fluctuations of a scalar field in de Sitter
space, there is no instanton to enforce spherical symmetry,
so we would expect initial aspherical perturbations to be
relatively large. Since there is no detailed model for the
fluctuating scalar field to see how large, we have instead
calculated an estimate of the minimal deviations from
spherical symmetry in light of quantum fluctuations, and
present this as an extremely rare, best-case scenario for
spherical symmetry. These minimal fluctuations were then
evolved to the turning point of the bound solutions, which
is the point in the FGG mechanism where there is a chance
for tunneling to an inflationary universe to occur. Of the
three representative energy scales for inflation (false-
vacuum energy densities) we have studied, the evolved
minimal perturbations on a Planck-scale bubble remain
small over most of the allowed parameter space, while
the perturbations on GUT- and weak-scale bubbles can
grow nonlinear if they start at a sufficiently small
( & 10%) fraction of the turnaround radius. Thus even in
the best-case scenario some bubbles become nonlinear, but
on the other hand there will always in principle be some
that do not.

The instability introduces complications into the use of
the FGG mechanism as a means of baby universe produc-
tion. The existing calculations of the tunneling rate rely
heavily on the assumption of spherical symmetry. It is
unclear how to perform a similar calculation for a (possible
103525
nonlinearly) perturbed bubble, as the number of degrees of
freedom has drastically increased and the assumption of a
minisuperspace of spherically symmetric metrics is no
longer good. Further, the bubble interior will become filled
with scalar gradient and kinetic energy and gravity waves,
possibly upsetting the interior sufficiently to prevent in-
flation. One might argue that in an eternal universe there is
plenty of time to wait around for a fluctuation which is
sufficiently spherical. However, to fully understand the
importance of the FGG mechanism, one must both have
a model of the scalar field fluctuations, which would
predict the distribution of bubble shapes and masses, and
also a model for tunneling in the presence of asphericities.
In addition, one must understand the competition among
the various processes which result in the formation of
inflating false-vacuum regions, and thus show that the
FGG mechanism is not a relative rarity. These problems
represent significant calculations in a theory of quantum
gravity which we do not yet possess, but progress in these
areas would undoubtedly improve our understanding of the
initial conditions for inflation.
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