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Various recent studies proved that cosmological models with a significant contribution from cold dark
matter isocurvature perturbations are still compatible with most recent data on cosmic microwave
background anisotropies and on the shape of the galaxy power spectrum, provided that one allows for
a very blue spectrum of primordial entropy fluctuations (niso > 2). However, such models predict an
excess of matter fluctuations on small scales, typically below 40h�1 Mpc. We show that the proper
inclusion of high-resolution high signal-to-noise Lyman-� forest data excludes most of these models. The
upper bound on the isocurvature fraction � � f2

iso=�1� f
2
iso�, defined at the pivot scale k0 � 0:05 Mpc�1,

is pushed down to �< 0:4, while niso � 1:9� 1:0 (95% confidence limits). We also study the bounds on
curvaton models characterized by maximal correlation between curvature and isocurvature modes, and a
unique spectral tilt for both. We find that fiso < 0:05 (95% C.L.) in that case. For double-inflation models
with two massive inflatons coupled only gravitationally, the mass ratio should obey R< 3 (95% C.L.).

DOI: 10.1103/PhysRevD.72.103515 PACS numbers: 98.80.Cq
I. INTRODUCTION

With the most recent measurements of the cosmic mi-
crowave background (CMB) anisotropies and large-scale
structures (LSS) of the universe as well as various other
astronomical observations, it is now possible to have a
clear and consistent picture of the history and content of
the universe since nucleosynthesis. In particular, it is well
established that the cosmological perturbations which gave
rise to the CMB anisotropies and the LSS of the universe
were inflationary, with a close to scale-invariant Harrison-
Zeldovich spectrum. Moreover, the CMB and LSS data
allow to test the paradigm of adiabaticity of the cosmo-
logical perturbations and hence the precise nature of the
mechanism which has generated them.

The simplest realizations of the inflationary paradigm
predict an approximately scale-invariant spectrum of adia-
batic (AD) and Gaussian curvature fluctuations, whose
amplitude remains constant outside the horizon, and there-
fore allows cosmologists to probe directly the physics of
inflation from current CMB and LSS observations.
However, this is not the only possibility. Models of infla-
tion with more than one field generically predict that,
together with the adiabatic component, there should also
be entropy, or isocurvature perturbations [1–6], associated
with fluctuations in number density between different
components of the plasma before photon decoupling,
with a possible statistical correlation between the adiabatic
and isocurvature modes [7]. Baryon isocurvature (BI) per-
turbations and cold dark matter isocurvature (CDI) pertur-
bations were proposed long ago [8] as an alternative to
adiabatic perturbations. These BI and CDI modes are
qualitatively similar, since they are related by a simple
rescaling factor �2

B=�2
cdm, or �B=�cdm for the cross-
05=72(10)=103515(14)$23.00 103515
correlation: thus, by studying the case of mixed AD�
CDI modes, one implicitly includes the case of AD� BI,
for which the allowed isocurvature fraction is larger
roughly by the above factor evaluated near the maximum
likelihood model. A few years ago, two other modes,
neutrino isocurvature density (NID) and velocity (NIV)
perturbations, have been added to the list [9]. Moreover,
isocurvature perturbations have been advocated in order to
explain the high redshift of reionization claimed by the
WMAP team [10].

Note, however, that in the case all fields thermalize at
reheating, no isocurvature mode will survive [11]. The
simplest assumption for generating observable CDI pertur-
bations is that one of the inflaton fields remains uncoupled
from the rest of the plasma between inflation and its decay
into CDM particles. Since baryons and neutrinos are usu-
ally assumed to be in thermal equilibrium in the early
Universe, it is more difficult to build realistic models for
the generation of BI, NID, and NIV modes than for CDI—
but some possibilities still exist, based on nonzero con-
served quantities and chemical potentials (see e.g. [11–
13]).

Moreover, it is well known that entropy perturbations
seed curvature perturbations outside the horizon [2–4], so
that it is possible that a significant component of the
observed adiabatic mode could be maximally correlated
with an isocurvature mode. Such models are generically
called curvaton models [12,14–16], and are now widely
studied as an alternative to the standard paradigm.
Furthermore, isocurvature modes typically induce non-
Gaussian signatures in the spectrum of primordial pertur-
bations [17].

In the last few years, various models with a correlated
mixture of adiabatic and isocurvature perturbations have
-1 © 2005 The American Physical Society
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been tested by several authors, with different combinations
of data sets and theoretical priors. A crucial difference
between these analyses lies in the assumptions concerning
the scale-dependence of the various modes. Some groups
assumed for simplicity that the adiabatic and isocurvature
mode shared exactly the same scale-dependence [9,18,19],
but enriched the analysis by considering the full mixtures
of several modes at a time (AD, CDI, NID, NIV). Other
groups concentrated on the (correlated) mixture of two
modes only (AD� CDI in [20–22], AD� NID and AD�
NIV in [21]), with a different power law for the three
components (adiabatic, isocurvature and cross-
correlation), as expected in the general case. Finally, an
intermediate approach consists in studying the mixture of
two modes with a scale-independent mixing angle, i.e.,
only two tilts [23–27]. In addition to these references,
some groups studied the case of the curvaton scenario,
which requires some specific analyses [13,26,28,29] since
it involves a maximal correlation/anticorrelation and a
unique spectral index for the adiabatic and isocurvature
modes. Furthermore, two groups have quantified the need
for isocurvature modes through a Bayesian Evidence com-
putation on the basis of current CMB and galaxy power
spectrum data, reaching somewhat different conclusions
due to a different choice of priors [30,31].

In this work, we are particularly interested in mixed
models with AD� CDI modes and three different tilts,
for which it was shown in Refs. [21,22] that a significant
fraction of isocurvature perturbations is still allowed. This
sounds surprising at first sight, since the isocurvature mode
is known for suppressing small-scale CMB anisotropies.
This is true indeed for a scale-invariant spectrum of pri-
mordial isocurvature fluctuations, but not in general: a
significant isocurvature contribution with a very blue tilt
(niso � 3) can contribute to CMB anistropies even on small
scales, and can be compatible to some extent with the CMB
temperature and temperature-polarization spectra, in spite
of the small shift induced in the scale of the acoustic peaks.
These models predict generically an excess of matter fluc-
tuations on small scales. Using the shape and amplitude of
the linear power spectrum derived from galaxy surveys at
wavenumbers k < 0:15 h=Mpc, one can exclude such an
excess for wavelengths � � 2�=k larger than 40h�1 Mpc.
The main goal of this work is to push the constraints down
by making use of Lyman-� forest data, which probe large-
scale structure at redshift z� �2� 3� and on scales �1�
40�h�1 Mpc, in the mildly nonlinear regime. Therefore, in
any comparison between Lyman-� observations and linear
theoretical predictions, it is necessary to take into account
the nonlinear evolution with N-body or hydrodynamical
simulations.

Usually, these simulations are carried under the assump-
tion of adiabaticity. However, it is not difficult to general-
ize them to the case of mixed adiabatic plus isocurvature
models. During matter domination, the perturbations
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seeded by each of the two modes are indistinguishable:
the only difference lies in their scale-dependence, but not
in their nature or time–evolution. So, a given mixed model
is entirely specified by a single matter transfer function,
defined for instance soon after the time of equality.
Therefore, the Lyman-� forest data can be safely applied
to nonadiabatic models provided that one takes into ac-
count the fact that the matter transfer function has more
freedom than in the purely adiabatic case. In the following
analysis, we will carefully take this point into account.

We will use here the linear matter power spectrum
inferred from two large samples of quasar (QSO) absorp-
tion spectra [32,33] using state-of-the-art hydrodynamical
simulations [34] combined with cosmic microwave back-
ground data from the WMAP satellite [35]; as well as from
the small-scale temperature anisotropy probed by VSA
[36], CBI [37], and ACBAR [38]; from the matter power
spectrum measured by the 2-degree-Field Galaxy Redshift
Survey (2dFGRS) [39] and the Sloan Digital Sky Survey
(SDSS) [40]; and finally from the recent type Ia Supernova
(SN) compilation of Ref. [41]. We note that the cosmo-
logical parameters recovered from the data sets used in this
paper are in good agreement with subsequent studies made
by the SDSS collaboration using a different data set and a
very different theoretical modelling ([42–46]). This dem-
onstrates that the analysis of the Lyman-� forest QSO
spectra is robust and that many systematic uncertainties
involved in the measurement are now better understood
than a few years ago.

The plan of the paper is as follows. In section II we
describe the notations we used for the isocurvature sector.
In section III we introduce the Lyman-� data that we are
employing. In section IV we discuss the general bounds on
our full AD� CDI parameter space from Lyman-�, CMB,
LSS, and SN data using a Bayesian likelihood analysis. We
also check explicitly with a hydrodynamical simulation the
robustness of our Lyman-� data-fitting procedure, and we
address the subtle issue of the role of parametrizations and
priors on the isocurvature bounds and in the interpretations
of our results. We also discuss the specific curvaton models
with maximal anticorrelation and equal tilts for both adia-
batic and isocurvature modes, as well as bounds on double-
inflation models. In Sec. V we draw our conclusions.

II. MIXED ADIABATIC/ISOCURVATURE MODELS

A. Primordial spectra

For the theoretical analysis, we will use the notation and
some of the approximations of Ref. [21]. During inflation,
more than one scalar field could evolve sufficiently slowly
that their quantum fluctuations perturbed the metric on
scales larger than the Hubble scale during inflation.
These perturbations will later give rise to one adiabatic
mode and several isocurvature modes. We will restrict
ourselves here to the situation where there are only two
fields, �1 and �2, and thus only one isocurvature and one
-2
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adiabatic mode. Introducing more fields would complicate
the inflationary model and even then, it would be rather
unlikely that more than one isocurvature mode contributes
to the observed cosmological perturbations.

Therefore, the two-point correlation function or power
spectra of both adiabatic and isocurvature perturbations, as
well as their cross-correlation, can be parametrized with
three power laws, i.e. three amplitudes and three spectral
indices,
�2
R�k� �

k3

2�2 hR
2
radi �

k3
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2
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k3
0

2�2 B
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�
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2�2 AB cos�k0

�
k
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�
ncor��1=2��nad�niso��1

:

(1)
Here, R stands for the curvature perturbation, and S �
��cdm � 3��=4� for the CDI perturbation. Both are eval-
uated during radiation domination and on super-Hubble
scales. We also introduced an arbitrary pivot scale k0, at
which the amplitude parameters are defined through A �
hR2

radi
1=2 and B � hS2

radi
1=2. In addition to the fact that

curvature and entropy perturbations are generally corre-
lated at the end of inflation, some extra correlation can be
generated later by the partial conversion of isocurvature
into adiabatic perturbations. The correlation angle ��k� is
in general a function of k, and in the above definitions, we
approximated cos��k� by a power law with amplitude
cos�k0

and tilt ncor. So, we assumed implicitly that the
inequality
j cos�k0
j

�
k
k0

�
ncor

	 1 (2)
holds over all relevant scales. We will enforce this condi-
tion in the following analysis.

B. CMB anisotropy power spectra

The angular power spectrum of temperature and polar-
ization anisotropies seen in the CMB today can be obtained
from the radiation transfer functions for adiabatic and
isocurvature perturbations, �ad

l �k� and �iso
l �k�, computed

from the initial conditions �Rrad�k�;Srad�k�� � �1; 0� and
�0; 1�, respectively, and convolved with the initial power
spectra,
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Then, the total angular power spectrum reads

Cl � A2Cad
l � B

2Ciso
l � 2AB cos�k0

Ccor
l : (3)

In many works (see for instance [23,24]), the following
parametrization is employed:

Cl � A2
Cad
l � f

2
isoC

iso
l � 2fiso cos�k0

Ccor
l �; (4)

where fiso � B=A represents the entropy to curvature per-
turbation ratio during the radiation era at k � k0. We will
use here a slightly different notation, used before by other
groups [7,25,47]:

Cl � �A2 � B2�
�1� ��Cad
l � �C

iso
l

� 2�
��������������������
��1� ��

p
Ccor
l �; (5)

where � � B2=�A2 � B2� represents the isocurvature frac-
tion at k0, and runs from purely adiabatic (� � 0) to purely
isocurvature (� � 1), while � defines the correlation co-
efficient at k0, with � � �1��1� corresponding to maxi-
mally correlated (anticorrelated) modes. There is an
obvious relation between both parametrizations:

� � f2
iso=�1� f

2
iso�; � � cos�k0

: (6)

This notation has the advantage that the full parameter
space of ��; 2�

��������������������
��1� ��

p
� is contained within an ellipse.

The North and South rims correspond to fully correlated
(� � �1) and fully anticorrelated (� � �1) perturba-
tions, with the equator corresponding to uncorrelated per-
turbations (� � 0). The East and West correspond to
purely isocurvature and purely adiabatic perturbations,
respectively. Any other point within the ellipse is an arbi-
trary admixture of adiabatic and isocurvature modes.

We should emphasize that the three amplitude parame-
ters �A2 � B2�, � and � are defined at k � k0, and that
comparing bounds from various papers is straightforward
only when the pivot scale is the same. For instance, in the
simple case where nad � niso, � is independent of k0, but
this is not the case for �: if ncor > 0, points within the
��; 2�

��������������������
��1� ��

p
� ellipse are shifted vertically toward the

edges of the ellipse when one increases k0 and shifted
toward the horizontal � � 0 line when one decreases k0.
When nad � niso, both � and � depend on the pivot scale.
In addition, by changing the prior on the amplitudes, a shift
in the pivot scale affects the niso likelihood quite dramati-
cally [22]. Throughout this paper, we will use
k0 � 0:05 Mpc�1, which is the most frequent choice in
the literature. This value corresponds roughly to the multi-
-3
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FIG. 1 (color online). (Left) Matter power spectrum for a
family of mixed AD� CDI models, with all parameter fixed
except � and � (the global normalization also varies in order to
mantain a fixed amplitude on large scales). In particular, in all
models we kept nad � 0:95, niso � 3, and ncor � 0. The thick
line stands for the pure adiabatic case (� � 0). The thin solid
(red) lines show uncorrelated models (� � 0) with � �
0:1; 0:2; 0:3; 0:4; 0:5; 0:6. The lower blue (upper green) dashed
lines show the maximally correlated models with � � 1 (anti-
correlated with � � �1) for the same values of �. (Right) Same
as the left plot, but with niso reduced to 2.2.
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pole number l0 � 400. Therefore, the ratio Ciso
400=C

ad
400 is

roughly independent of the tilt values. For cosmological
parameters close to the best-fit �CDM model, one finds
Ciso

400=C
ad
400 � 0:01. The smallness of this number comes

from the fact that �iso
l �k� is strongly suppressed with

respect to �ad
l �k� for large wavenumbers. Indeed, the met-

ric perturbations induced by isocurvature perturbations
remain small during radiation domination: so, for small
scales entering early inside the Hubble radius, the ampli-
tude of the photon acoustic oscillations is also small (as can
be seen via its transfer function). As a consequence, even if
during radiation domination one has Srad�k0� �Rrad�k0�
(corresponding to fiso � 1 or �� 0:5) the isocurvature
mode contributes only to 1% of the observed anisotropy
near l0. Of course, if niso is very different from nad, there
could still be a large isocurvature contribution at either
larger or smaller scales.

C. Matter power spectrum

Since in the following we will focus on the constraints
induced on mixed AD� CDI models by the Lyman-�
data, let us give a few details on the shape of the linear
matter power spectrum

P�k� � �A2 � B2�
�1� ��Pad�k� � �Piso�k�

� 2�
��������������������
��1� ��

p
Pcor�k��: (7)

Here Pad and Piso are computed from the initial conditions
�Rrad�k�;Srad�k�� � �1; 0� and �0; 1� respectively, exactly
like �ad

l �k� and �iso
l �k�, and the cross-correlated term is

simply given by

Pcor�k� � ��k=k0�
ncor
Pad�k�Piso�k��1=2; (8)

where the minus sign comes from the fact that with our
definition of S, a positive correlation hRradSradi> 0 in the
early Universe implies a reduction of the matter power
spectrum today, and vice-versa.

In the limit k� keq, where keq corresponds to modes
crossing the Hubble length at the time of equality, it is well
known (see e.g. [48]) that the power spectra obey, to first
approximation,

Pad�k� / �k=k0�
nad�4 ln�k=keq�

2; (9)

Piso�k� / �k=k0�
niso�4; (10)

which shows that for niso ’ nad the isocurvature contribu-
tion to the small-scale power spectrum is generically much
redder than the adiabatic one. The relative amplitude de-
pends on the cosmological parameters. In the vicinity of
the concordance �CDM model, one finds
Piso�k0�=P

ad�k0� � 4 10�3 for CDI. So, like for CMB
anisotropies, we see that even when Srad�k0� �Rrad�k0� in
the early universe (i.e. fiso � 1 or �� 0:5), the isocurva-
ture contribution to the currently observed power spectrum
is only of the per cent order, at least near the pivot scale.
103515
However, for large niso, the contribution may be large on
small scales.

Indeed, a large portion of the parameter region allowed
by previous studies corresponds to a significant isocurva-
ture fraction �> 0:1 and to a very blue tilt niso > 1:5. In
this case, the matter power spectrum is affected or even
dominated by the nonadiabatic contribution on small scales
(typically for wavenumbers k > 0:1 h=Mpc). We illustrate
this behavior on Fig. 1 for a particular set of AD� CDI
models with two different values of the isocurvature tilt,
niso � 3 or niso � 2:2, and many possible values of ��;��.
The impact of the nonadiabatic contribution consists either
in a smooth change of the effective slope on small scales,
or more radically in a sharp feature (a pronounced break or
-4
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a dip). The second situation can occur on relevant scales
for large positive�, and of course large enough values of �
and niso.

III. PROBING THE MATTER POWER SPECTRUM
WITH THE LYMAN-� FOREST IN QSO

ABSORPTION SPECTRA

It is well established by analytical calculation and hy-
drodynamical simulations that the Lyman-� forest blue-
ward of the Lyman-� emission line in QSO spectra is
produced by the inhomogeneous distribution of a warm (�
104 K) and photoionized intergalactic medium (IGM)
along the line-of-sight. The opacity fluctuations in the
spectra arise from fluctuations in the matter density and
trace the gravitational clustering of the matter distribution
in the quasilinear regime [49]. The Lyman-� forest has
thus been used extensively as a probe of the matter power
spectrum on comoving scales of �1� 40�h�1 Mpc
[33,34,45,49].

The Lyman-� optical depth in velocity space u �km=s�
is related to the neutral hydrogen distribution in real space
as (see e.g. Ref. [50]):

��u� �
	0;�c
H�z�

Z 1
�1

dynHI�y�V 
u� y� vk�y�; b�y��dy;

(11)

where 	0;� � 4:45 10�18 cm2 is the hydrogen Ly�
cross section, y is the real-space coordinate (in km s�1),
V is the standard Voigt profile normalized in real-space,
b � �2kBT=mc2�1=2 is the velocity dispersion in units of c,
H�z� the Hubble parameter, nHI is the local density of
neutral hydrogen and vk is the peculiar velocity along the
line-of-sight. The density of neutral hydrogen can be ob-
tained by solving the photoionization equilibrium equation
(see e.g. [51]). The neutral hydrogen in the IGM respon-
sible for the Lyman-� forest absorptions is highly ionized
due to the metagalactic ultraviolet (UV) background radia-
tion produced by stars and QSOs at high redshift. This
optically thin gas in photoionization equilibrium produces
a Lyman-� optical depth of order unity.

The balance between the photoionization heating by the
UV background and adiabatic cooling by the expansion of
the universe drives most of the gas with �b < 10, which
dominates the Lyman-� opacity, onto a power-law density
relation T � T0�1� �b���1, where the parameters T0 and
� depend on the reionization history and spectral shape of
the UV background and �b is the local gas overdensity
(1� �b � 
b= �
b).

The relevant physical processes can be readily modeled
in hydrodynamical simulations. The physics of a photo-
ionized IGM that traces the dark matter distribution is,
however, sufficiently simple that considerable insight can
be gained from analytical modeling of the IGM opacity
based on the so called fluctuating Gunn Peterson approxi-
mation neglecting the effect of peculiar velocities and the
103515
thermal broadening [52]. The fluctuating Gunn Peterson
approximation makes use of the power-law temperature-
density relation and describes the relation between
Lyman-� opacity and gas density (see [33,53]) along a
given line-of-sight as follows,

��z� / �1� �b�z��2T�0:7�z� �A�z��1� �b�z���;

A�z� � 0:433
�
1� z
3:5

�
6
�
�bh

2

0:02

�
2
�

T0

6000 K

�
�0:7



�
h

0:65

�
�1
�
H�z�=H0

3:68

�
�1
�

�HI

1:5 10�12 s�1

�
�1
;

(12)

where � � 2� 0:7��� 1� in the range 1:6� 1:8, �HI the
HI photoionization rate, H0 � h100 km=s=Mpc the
Hubble parameter at redshift zero. For a quantitative analy-
sis, however, full hydrodynamical simulations, which
properly simulate the nonlinear evolution of the IGM and
its thermal state, are needed.

Equations (11) and (12) show how the observed flux
F � exp���� depends on the underlying local gas density

b, which in turn is simply related to the dark matter
density, at least at large scales where the baryonic pressure
can be neglected [54]. Statistical properties of the flux
distribution, such as the flux power spectrum, are thus
closely related to the statistical properties of the underlying
matter density field.

A. The data: from the quasar spectra to the flux power
spectrum

The power spectrum of the observed flux in high-
resolution Lyman-� forest data provides meaningful con-
straints on the dark matter power spectrum on scales of
0:003 s=km< k< 0:03 s=km, roughly corresponding to
scales of �1� 40�h�1 Mpc (somewhat dependent on the
cosmological model). At larger scales the errors due to
uncertainties in fitting a continuum (i.e. in removing the
long wavelength dependence of the spectrum emitted by
each QSO) become very large while at smaller scales the
contribution of metal absorption systems becomes domi-
nant (see e.g. [32,55]). In this paper, we will use the dark
matter power spectrum that Viel, Haehnelt, and Springel
[34] (VHS) inferred from the flux power spectra of the
Croft et al. [33] (C02) sample and the LUQAS sample of
high-resolution Lyman-� forest data [56]. The C02 sample
consists of 30 Keck high-resolution HIRES spectra and 23
Keck low-resolution LRIS spectra and has a median red-
shift of z � 2:72. The LUQAS sample contains 27 spectra
taken with the UVES spectrograph and has a median
redshift of z � 2:125. The resolution of the spectra is
6 km/s, 8 km/s, and 130 km/s for the UVES, HIRES and
LRIS spectra, respectively. The S/N per resolution element
is typically 30-50. Damped and subdamped Lyman-� sys-
tems have been removed from the LUQAS sample and
their impact on the flux power spectrum has been quanti-
-5
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fied by [33]. Estimates for the errors introduced by con-
tinuum fitting, the presence of metal lines in the forest
region and strong absorptions systems have also been made
[32,33,55,57].

B. From the flux power spectrum to the linear matter
power spectrum

VHS have used numerical simulation to calibrate the
relation between flux power spectrum and linear dark
matter power spectrum with a method proposed by C02
and improved by [58] and VHS. A set of hydrodynamical
simulations for a coarse grid of the relevant parameters is
used to find a model that provides a reasonable but not
exact fit to the observed flux power spectrum. Then, it is
assumed that the differences between the model and the
observed linear power spectrum depend linearly on the
matter power spectrum.

The hydrodynamical simulations are used to determine a
bias function between flux and matter power spectrum:
PF�k� � b2

F�k�P�k�, on the range of scales of interest. In
this way the linear matter power spectrum can be recovered
with reasonable computational resources.1 This method
has been found to be robust provided the systematic un-
certainties are properly taken into account [34,58].
Running hydrodynamical simulations for a fine grid of
all the relevant parameters is unfortunately computation-
ally prohibitive (see discussion in [43] on a possible at-
tempt to overcome this problem).

We have seen in Sec. II C that the isocurvature mode
contribution can create distortions in the small-scale linear
matter power spectrum. Of course, this extra freedom was
not taken into account in the definition of the grid of
models in VHS. In principle, we should run simulations
for a new grid with extra parameters (�, �, niso, ncor).
Alternatively, we can carry a tentative analysis with the
same function bF�k� and the same error bars as in the pure
adiabatic case, and check the validity of our results a
posteriori. The idea is simply to select a marginally ex-
cluded model with the largest possible deviation from
adiabaticity in the matter power spectrum. For this model,
we run a new hydrodynamical simulation and we compare
PF�k�=P�k� with the function b2

F�k� used in the analysis. In
case of good agreement, the results will be validated. We
expect this agreement to be fairly good on large scales, but
deviations should appear on small scales, because of the
different nonlinear evolution.

The use of state-of-the-art hydrodynamical simulations
is a significant improvement compared to previous studies
which used numerical simulation of dark matter only [33].
We use the parallel TreeSPH code GADGET-II [59] in its
TreePM mode which speeds up the calculation of long-
range gravitational forces considerably. The simulations
1Note that this bias is different from the usual bias between
light and matter, and can be strongly scale-dependent.
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are performed with periodic boundary conditions with an
equal number of dark matter and gas particles. Radiative
cooling and heating processes are followed using an im-
plementation similar to [51] for a primordial mix of hydro-
gen and helium. The UV background is given by [60]. To
maximise the speed of the simulation a simplified criterion
of star formation has been applied: all the gas at over-
densities larger than 1000 times the mean overdensity is
turned into stars [34]. The simulations were run on
COSMOS, a 152 Gb shared memory Altix 3700 with 152
CPUs hosted at the Department of Applied Mathematics
and Theoretical Physics (Cambridge).

C. Systematics errors

There is a number of systematic uncertainties and sta-
tistical errors which affect the inferred power spectrum and
an extensive discussion can be found in [33,34,43,58].
VHS estimated the uncertainty of the overall rms fluctua-
tion amplitude of matter fluctuation to be 14.5% with a
wide range of different factors contributing.

We present here a brief summary. The effective optical
depth, �eff � � lnhFi which is essential for the calibration
procedure has to be determined separately from the ab-
sorption spectra. As discussed in VHS, there is a consid-
erable spread in the measurement of the effective optical
depth in the literature. Determinations from low-resolution
low S/N spectra give systematically higher values than
high-resolution high S/N spectra. However, there is little
doubt that the lower values from high-resolution high S/N
spectra are appropriate and the range suggested in VHS
leads to a 8% uncertainty in the rms fluctuation amplitude
of the matter density field (see Table 5 in VHS). Other
uncertainties are the slope and normalization of the
temperature-density relation of the absorbing gas which
is usually parametrized as T � T0�1� �b���1. T0, and �
together contribute up to 5% to the error of the inferred
fluctuation amplitude. VHS further estimated that uncer-
tainties due to the C02 method (due to fitting the observed
flux power spectrum with a bias function which is extracted
at a slightly different redshift than the observations) con-
tribute about 5%. They further assigned a 5% uncertainty
to the somewhat uncertain effect of galactic winds and
finally an 8% uncertainty due the numerical simulations
(codes used by different groups give somewhat different
results). Summed in quadrature, all these errors led to the
estimate of the overall uncertainty of 14.5% in the rms
fluctuation amplitude of the matter density field.

For our analysis we use the inferred DM power spectrum
in the range 0:003 s=km< k< 0:03 s=km as given in
Table 4 of VHS. (Note that, as in [44] we have reduced
the power spectrum values by 7% to mimick a
temperature-density relation with � � 1:3, the middle of
the plausible range for � [61]).

Unfortunately at smaller scales the systematic errors
become prohibitively large mainly due to the large contri-
-6
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bution of metal absorption lines to the flux power spectrum
(see Fig. 3 of Ref. [34]) and due to the much larger
sensitivity of the flux power spectrum to the thermal state
of the gas at these scales.
IV. FITTING THE DATA

A. Parameter basis and priors

Any AD� CDI model is described by the usual six
parameters of the �CDM model, plus four parameters
for the isocurvature sector (two amplitudes and two tilts).
Like in most of the literature, we define the amplitudes
parameters at the pivot scale k0 � 0:05 Mpc�1. For the
isocurvature fraction, we could decide to impose a flat prior
on fiso, or �, or any function of them; different choices are
not equivalent, in general. We will come back to the
dependence of the final result on the choice of priors in
Sec. IV E. Meanwhile, we chose a specific set of parame-
ters which appear linearly in the expression of the observ-
able power spectra, � and 2�

��������������������
��1� ��

p
, and that we

believe are physically relevant. As already mentioned,
these two parameter are defined within an ellipse, in which
0.02 0.022 0.024 0.026
Ω

b
 h2

0.11 0.12 0
Ω

c
 h2

0 0.1 0.2
τ

0.9 0.95
n

ad

−0.1 0 0.1 0.2
δ

cor

3 3.4

log[1010 (A

−1 −0.5 0 0.5 1

2 β [α (1−α)]1/2
0.5 1

A
Ly−α

0.7 0.8 0.9 1
σ

8

0 10
z

re

FIG. 2 (color online). Likelihood for the AD� CDI model, using a
last four are related parameters (with nonflat priors).
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we assume a flat prior. Furthermore, we must take into
account the inequality

j cos�j � j�j
�
k
k0

�
ncor

	 1; (13)

which should hold at least over the scales probed by the
data, i.e. typically between kmin � 4 10�5 Mpc�1 and
kmax � 2 Mpc�1. This is achieved by introducing a new
parameter �cor � ncor= lnj�j�1, with a flat prior within the
range �0:14< �cor < 0:27. In summary, our basis pa-
rameters with flat priors consists of:
(a) th
.13 0.14

1 1

3.8
2+B2)]

1.

20

ll our d

-7
e baryon density, !b � �bh
2,
(b) th
e cold dark matter density, !c � �ch
2,
(c) th
e ratio � of the sound horizon to the angular
diameter distance multiplied by 100,
(d) th
e optical depth to reionization, �,

(e) th
e adiabatic tilt, nad,

(f) th
e isocurvature tilt, niso,

(g) th
e parameter related to the tilt of the cross-

correlation angle, �cor 2 
�0:14; 0:27�,

(h) th
e overall normalization, ln
1010�A2 � B2��,

(i) th
e isocurvature fraction, �,
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TABLE I. 1	 confidence limits for the AD� CDI model,
using all our data set, for the 11 basis parameters with flat priors,
and below, for related parameters.

Parameter 1	 C.L.

�bh
2 0:0235� 0:0011

�ch
2 0:125� 0:005

� 1:045� 0:008
� 0:11� 0:05
nad 0:97� 0:02
niso 1:9� 0:5
�cor Within prior range
log
1010�A2 � B2�� 3:3� 0:2
� <0:20
2�
��1� ���1=2 0:1� 0:2
ALy�� 0:8� 0:2

�� 0:68� 0:03
	8 0:88� 0:06
zre 13� 4
H0 69� 3
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( j) th
e cross-correlation amplitude, 2�
��������������������
��1� ��

p
.

component, near the pivot scale. We adopted a flat prior within
the ellipse (which appears here as a circle) in which these
parameters are defined.

2Technically, our bias prior is implemented in the same way as
in Ref. [64]: see Eq. (27) and following lines in this reference.
In addition, there are three independent parameters related
to observations: the Lyman-� calibration parameter ALy��

defined in [46], on which we impose the same Gaussian
prior ALy�� � 1:0� 0:29; and the two bias parameters
associated to the 2dF and SDSS data with flat priors. Our
full parameter space is therefore 13-dimensional.

B. Results

We compute the marginalized Bayesian likelihood of
each parameter with a Monte Carlo Markov Chain method,
using the public code CosmoMC [62]. The results are
displayed in Fig. 2 and Table I (after marginalization
over the 2dF and SDSS bias parameters). The data favors
purely adiabatic models, but remains compatible with an
isocurvature fraction �< 0:40 at the 2	 (95%) confidence
level (C.L.), with a tilt niso � 1:9� 1:0 (2	 C.L.). The
one-dimensional likelihoods for �, 2�

��������������������
��1� ��

p
must be

interpreted with care: the fact that these parameters are
defined within an ellipse implies that there is more parame-
ter space available near � � 0:5 and 2�

��������������������
��1� ��

p
� 0.

More interesting are the two-dimensional likelihood con-
tours for ��; 2�

��������������������
��1� ��

p
� displayed in Fig. 3, since in

this representation the prior is really flat inside the ellipse.
From this figure, it is clear that the data prefers an uncorre-
lated isocurvature contribution. The flatness of the �cor

likelihood shows that the data give no indication on the
tilt of the cross-correlation angle.

C. Specific impact of the Ly-� data

The Lyman-� forest provides a powerful indication on
both the amplitude and the shape of the matter power
spectrum for k > 0:01 s=km, i.e. roughly larger than
103515
1 h=Mpc. In order to illustrate the importance of this
data set in our results, we repeat the same analysis without
Lyman-� data. In this case, there are two options: we can
either use the 2dF and SDSS galaxy power spectrum data
as a constraint only on the shape of the matter power
spectrum, as already done in the previous analysis of
Sec. IV B; or introduce a bias prior derived e.g. from the
third and fourth-order galaxy correlation function of the
2dF catalogue [39,63], in order to keep an information on
the amplitude of the matter power spectrum2.

For these three cases, that we call ‘‘Lyman-�,’’
‘‘2dFbias prior’’ and ‘‘none,’’ the 2	 upper bound on �
are, respectively, equal to 0.4, 0.5, and 0.5. The likelihoods
for the most interesting parameters are displayed in Fig. 4.
As expected, the Lyman-� data set is significanty more
powerful than the 2dF bias prior for cutting out models
with large �, and even more clearly, with large niso or large
anticorrelation, as can be seen in Fig. 4. It is important to
note that without these data, all results depend on our
arbitrary prior niso < 4: values far beyond this upper bound
could still be compatible with the data, as also found in
Ref. [22] when using the same pivot scale. In the presence
of the Lyman-� data, we get a robust upper bound on niso,
and none of our priors play a role in the final results, with
the exception of the well-motivated �cor prior.
-8
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The impact of the Lyman-� data can be understood
visually from Fig. 5. After running each case, we consider
the collection of all matter power spectra in our Markhov
chains (except models with a bad posterior likelihood L<
Lmax=5). The gray bands in Fig. 5 correspond to the
envelope of all these P�k�’s, compared to the Lyman-�
data points. As expected, when the Lyman-� is not used,
the band gets very wide above the wavenumber k�
0:2 h=Mpc� 2 10�3 s=km (note that for models with
niso � 4, the small-scale power spectrum is asymptotically
flat). The role of the bias prior is marginal: it simply favors
models with the lowest global normalization, but without
affecting the isocurvature fraction and tilt. Using the
Lyman-� data, we can exclude any break in the power
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et al. spectra (right). The bands represent the envelope of all the mat
with the worse likelihood). Each power spectrum has been computed
s. In addition to the statistical errors, the data points share an overall
in the top right corners. For the run including the Lyman-� data, each
parameter. The red dashed curves show the particular power spectru
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spectrum on scales k 	 3 h=Mpc� 3 10�2 s=km. This
results in much stronger constraints for the parameters
��;�; niso�, as can be seen from Fig. 4.

D. Checking the validity of the Ly-� data-fitting
procedure

We apply the strategy described in section III B in order
to check the validity of our Lyman-� data-fitting proce-
dure. We take the large number of samples contained in our
Markov chains, and eliminate all models with a likelihood
smaller than Lmax=10 (in terms of effective �2, this corre-
sponds to ��2 � �2 � �2

min > 20). We then select the
model with the largest value of �, which represents the
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effective calibration error, whose standard deviation is displayed
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m discussed in Sec. IV D.
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strongest deviation from the purely adiabatic model. The
corresponding matter power spectrum is plotted in Fig. 5
and has a break around k� 5 h=Mpc� 5 10�2 s=km.
Above this wavenumber, the slope of the power spectrum
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(evaluated at the pivot scale). The two plots show the results of two in
left (solid red curves), the parameters are ��; 2�

��������������������
��1� ��

p
�, with a

parameters are �fiso; cos��, related to the previous parameters throug
show for comparison the likelihood contours obtained for one param
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is given by Eq. (10) with niso � 2:7. For this ‘‘extreme’’
model, we perform a hydrodynamical simulation as de-
scribed in Sec. III B, and compare the bias function bF�k�
with that assumed throughout the analysis. As shown in
Fig. 6, in the range 0:003< k< 0:3 km=s probed by the
data, the difference between the two functions is very small
with respect to the statistical errors on the data. We con-
clude that in the present context, our Lyman-� data-fitting
procedure is robust, and does not introduce an error in the
1	 or 2	 bounds derived for each parameter of the AD�
CDI mixed model.

E. The role of parametrization and priors

The fact of choosing a top-hat prior in the
��; 2�

��������������������
��1� ��

p
� parameter space is rather arbitrary.

Other groups prefer to take top-hat priors on fiso, defined
in Eq. (6), and cos� � �. Because of the nonlinear trans-
formation between the two basis, they are clearly not
equivalent in terms of priors (see the discussion of this
point in [31], in the context of Bayesian evidence calcu-
lation for adiabatic versus mixed models).

We checked this issue explicitly with an independent run
based on the �fiso; cos�� basis. The results are summarized
in Fig. 7. As expected from the Jacobian, the �fiso; cos��
option gives more weight to models with a small isocurva-
ture fraction. For instance, the run with a flat prior on fiso

gives a 1	 bound fiso < 0:26, while that with a flat prior on
� gives fiso < 0:66. However, at the 2	 level, the relative
difference is small (fiso < 0:75 versus fiso < 0:87) because
the Jacobian is asymptotically flat.

In principle, in Bayesian analysis, the choice of parame-
ter basis and priors should reflect one’s knowledge on the
model before comparison with the data. However, in the
absence of a unique underlying physical model motivating
f
iso
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the presence of isocurvature modes, different scientists
might put foward different choices of prior. This intrinsic
freedom in Bayesian analyses should always be kept in
mind when quoting bounds, especially for parameters
which represent physical ingredients not strictly needed
by the data, which is the case here for the isocurvature
sector parameters (for other parameters such that the data
picks up a narrow allowed region, a change of priors will
not affect the bounds very much). However, even for the
isocurvature parameters discussed here, it is reassuring to
see from our analysis that the 2	 contours obtained from
the two runs and compared in Fig. 7 are roughly in
agreement.

F. The curvaton model

In this section we derive bounds on the specific case of
curvaton models. The curvaton hypothesis is an ingenuous
way to generate the observed curvature perturbation from a
field (the curvaton) different from that which drives infla-
tion (the inflaton) [15]. In practice there is not much
difference in the phenomenological signatures left in the
CMB and LSS compared to an ordinary inflationary model.
However, there are a few cases in which it is possible to
leave a ‘‘residual’’ isocurvature component, together with
the dominant curvature contribution. More specifically, in
the curvaton models in which the curvaton field is respon-
sible for the CDM component of matter, there are various
possibilities depending on the time of creation of CDM
versus the decay of the curvaton field. In all these cases, the
curvature and isocurvature perturbations are related to the
gauge invariant Bardeen variable  as

S � 3�cdm � �; (14)

R � �: (15)

Let us classify here the different cases: (1) when CDM-
creation occurs before the curvaton decays and the fraction
r of the total energy density in the curvaton field at the time
of its decay is negligible. Then S � �3 � 3R, which
corresponds to fiso � 3 (� � 0:9), and � � �1 (maxi-
mally correlated), with niso � nad; (2) when CDM-creation
occurs before the curvaton decays but the fraction r at
decay is important. This case requires specific model input
and in principle can have any value of fiso and �, while
niso � nad; (3) when CDM-creation occurs at the decay of
the curvaton and the fraction r < 1. In this case, cdm �
=r and thus S � 3�r�1 � 1� � 3�1� 1=r�R, which
corresponds to fiso � 3�1� 1=r�, i.e. � � �1 (maximally
anticorrelated) and niso � nad; (4) when CDM-creation
occurs after the curvaton decay. Then there is only one
thermal fluid in equilibrium, cdm �  , and there is no way
to generate an isocurvature perturbation, S � 0.

Since case (1) is already excluded at many sigma, and
case (2) is essentially identical (except for niso � nad) to
our generic analysis, we will concentrate on case (3) of a
103515
maximally anticorrelated mixture of isocurvature and adia-
batic modes with equal tilts and �cor � 0. Our results are
summarized in Fig. 8, which shows the likelihood distri-
bution for the generic curvaton model. We have used nad �
niso, �cor � 0, and � � �1, which is equivalent to � � 1
and fiso positive or negative: fiso > 0 corresponds to � �
1, or positive correlation between Rrad and Srad, i.e. sup-
pression of power in P�k� and in the large-scale CMB
temperature spectrum; while fiso < 0 corresponds to the
opposite anticorrelated case.

We find fiso � 0:04� 0:09 at the 2	-level, which im-
plies r > 0:98 at the same C.L. In our opinion, such a
stringent constraint on the fraction of energy density in
the curvaton at decay calls for a tremendous finetuning
(there is no physical reason to expect that the curvaton
should decay precisely when it is starting to dominate the
total energy density of the universe, within 2%), which
makes the curvaton hypothesis in its most attractive sce-
nario very unlikely.

G. The double-inflation model

Another chance to generate an observable isocurvature
signature is through the possible presence of two scalar
fields driving inflation [2,65]. The simplest case at hand is
that of two massive fields coupled only gravitationally:

L �
1

2
��h;��

;�
h �m

2
h�

2
h� �

1

2
��l;��

;�
l �m

2
l �

2
l �;

(16)

where mh and ml are the masses of the heavy and light
fields, respectively.

We assume slow-roll conditions during inflation, and use
the number of e-folds till the end of inflation s �
� ln�a=aend� to parametrize the fields as

�2
h �

s
2�G

sin2�; �2
l �

s
2�G

cos2�; (17)

Using the field and Friedmann equations, we can solve
for the rate of expansion during inflation:
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H2�s� ’
2

3
s �m2

l 
1� �R
2 � 1�sin2��; (18)

where R � mh=ml, and find the number of e-folds as a
function of �:

s��� � s0
�sin��2=�R

2�1�

�cos��2R
2=�R2�1�

: (19)

The perturbed Einstein equations can be solved for long
wavelength modes in the longitudinal gauge. Assuming
that the heavy field decays into CDM whereas the ligth
field produces other species, we find the magnitudes of the
curvature and entropy perturbation at horizon crossing.
During radiation domination and for super-Hubble modes,
this gives:

Rrad�k� � �

����������
4�G

k3

s
Hks

1=2
k �sin�keh�k� � cos�kel�k��;

Srad�k� �

����������
4�G

k3

s
Hks

�1=2
k

�
eh�k�
sin�k

�
R2el�k�
cos�k

�
; (20)

where ei�k� are Gaussian random fields associated with the
quantum fluctuations of the fields, and the subindex k
implies the value of the corresponding quantity at horizon
crossing during inflation. One typically expects sk ’ 60. It
can be seen from (1) that the correlation power spectrum
has no scale dependence, and thus, for this model ncor � 0,
while the adiabatic and isocurvature tilts have expressions

nad � 1�
2

sk
�

�R2 � 1�tan2�

2sk�1� R
2tan2��2

; (21)

niso � 1�
�R2 � 1��R2tan4�� 1��1� tan2��

sk�1� R
2tan2��2�1� R4tan2��

; (22)

whose values, for sk � 60, are typically nad � 0:97, and
niso in the range [0.97,0.90] for R 2 
1; 4�. Since niso >
0:93 at 95% C.L., models with large values of R are ruled
out.

It was shown in [21] that a relationship beteween � and
� can be found. It can be simply expressed as a straight line
in our parameter space:

2�
��������������������
��1� ��

p
�

2�R2 � 1�

sk
�1� ��: (23)

On the other hand, for these models, the parameters � and
� have minimum and maximum values, respectively,
which only depend on the ratio R and the number of e-
folds sk,

�min �
�R2 � 1�2

s2
k � �R

2 � 1�2
; (24)
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�max �
R2 � 1

R2 � 1
; (25)

2�
��������������������
��1� ��

p
jmax �

2sk�R
2 � 1�

s2
k � �R

2 � 1�2
: (26)

Using the results of section IV B, we find that the
inclusion of the Lyman-� data significantly improves the
previous bound on R to R< 3 at 95% C.L. This bound
comes mainly from a combination of bounds on
2�

��������������������
��1� ��

p
and niso.

We did not find necessary to generate a ncor � 0 sam-
pling for this model. In our results, the parameter �cor has a
flat distribution and thus is unconstrained. We therefore
expect similar results when fixing it to zero.

V. CONCLUSIONS

In addition to CMB, LSS, and SNIa data, we used some
recent Lyman-� forest data to further constrain the bounds
on possible CDM-isocurvature primordial fluctuations. We
find that the systematics induced � in particular, those
associated with the recovery of the linear dark matter
power spectrum from the flux power spectrum � are
greatly compensated by the valuable information on the
small-scale matter power spectrum provided by the
Lyman-� data.

Before summarizing our results, it is worth mentioning
that when we omit the Lyman-� forest data our bounds
agree very well with those of Ref. [22]. The authors of [22]
work with a pivot scale k0 � 0:02 Mpc�1, but they also
show how their results are modified when they take k0 �
0:05 Mpc�1 like in the present paper: in that case the
agreement with us is particularly good. The comparison
of our results with the WMAP analysis from Ref. [24] is
more puzzling: using or not some Lyman-� data, they
always find much stronger bounds on fiso than us. It is
true that we have one more free parameter �cor, and that we
do not introduce a prior on the 2dF bias; however, even
when we fix �cor � 0 and introduce such a prior, our fiso

bound remains much weaker. So far, private communica-
tions with the WMAP team did not allow us to understand
the origin of the discrepancy.

Using all our data set, we find at the 95% confidence
level, an isocurvature fraction �< 0:4, a cross-correlation
amplitude 2�

��������������������
��1� ��

p
� 0:1� 0:4, and an isocurvature

tilt niso � 1:9� 1:0. The tilt of the correlation angle re-
mains unconstrained. If we switch to the basis used for
instance in Ref. [24] we find fiso < 0:75 at 95% C.L.

In the case of a curvaton scenario where CDM-creation
occurs at the decay of the curvaton—a case in which the
adiabatic and isocurvature modes are maximally anticorre-
lated, � � �1, and nad � niso —we find fiso < 0:05, still
at the 95% confidence level. This requires that the fraction
r of the total density in the curvaton field at that time be
fine-tuned between 0.98 and one. Finally, if we assume a
-12
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double-inflation model with two massive inflatons coupled
only gravitationally, such that the heaviest field decays into
CDM, while the lightest one into standard model particles,
we find that the mass ratio should obey R< 3 (95% C.L.).
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