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Topological signatures in CMB temperature anisotropy maps
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We propose an alternative formalism to simulate cosmic microwave background (CMB) temperature
maps in �CDM universes with nontrivial spatial topologies. This formalism avoids the need to explicitly
compute the eigenmodes of the Laplacian operator in the spatial sections. Instead, the covariance matrix
of the coefficients of the spherical harmonic decomposition of the temperature anisotropies is expressed in
terms of the elements of the covering group of the space. We obtain a decomposition of the correlation
matrix that isolates the topological contribution to the CMB temperature anisotropies out of the simply
connected contribution. A further decomposition of the topological signature of the correlation matrix for
an arbitrary topology allows us to compute it in terms of correlation matrices corresponding to simpler
topologies, for which closed quadrature formulas might be derived. We also use this decomposition to
show that CMB temperature maps of (not too large) multiply connected universes must show ‘‘patterns of
alignment,’’ and propose a method to look for these patterns, thus opening the door to the development of
new methods for detecting the topology of our Universe even when the injectivity radius of space is
slightly larger than the radius of the last scattering surface. We illustrate all these features with the
simplest examples, those of flat homogeneous manifolds, i.e., tori, with special attention given to the
cylinder, i.e., T1 topology.
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I. INTRODUCTION

It is becoming widely recognized that universes with a
nontrivial spatial topology may be more natural models for
our Universe than the traditional simply connected ones.
This naturalness can be invoked from the mathematical
point of view by arguing that there is an infinity of locally
homogeneous and isotropic multiply connected 3-spaces,
while there are only three simply connected ones; or with
physical arguments coming from incursions into the no-
body’s territories of quantum gravity and quantum cosmol-
ogy. On the other hand, from a more pragmatic point of
view, we can argue that cosmological models with a non-
trivial spatial topology offer a very rich field of research,
and are particularly well suited to explain certain reported
‘‘anomalous’’ features in cosmic microwave background
(CMB) temperature maps, such as the alignments of their
low ‘ modes [1,2].

Conversely, the full sky CMB temperature maps pro-
duced by the space missions COBE and WMAP provide us
with an amazingly rich and high quality amount of data
with which we can look for the topology of space. This is
very compelling for those who wish to unmask our
Universe and see its shape, since cosmic topology is at
present an almost exclusively observational and phenome-
nological issue, due to the lack of an accepted fundamental
physical theory which can predict the global topology of
space.

Theory demands topology of space to leave several
different kinds of marks in CMB temperature maps. Two
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of them have been largely studied and exploited to try to
unveil the shape of our Universe, the distortion of the
angular power spectrum with respect to that of a simply
connected universe [3–7], and the existence of ‘‘circles in
the sky’’ [8,9]. Two other closely related signatures, a non-
null bipolar power spectrum [10,11] and alignments of the
low ‘ modes [1,2,7], have been only marginally used. Our
main motivation for deciding to adventure into cosmic
topology with the CMB was the desire to get a deeper
understanding of the nature and properties of these align-
ments as a topological signature.

One indispensable tool for a project like this is a soft-
ware facility to produce simulated CMB temperature maps
in multiply connected universes, so that we could system-
atically study the effects of different sizes and topologies
on these alignments. These simulation procedures exist and
have been used in several studies in cosmic topology
[5,12–17], so we could expect that this issue of the project
would not present any problem.

However, almost all known methods for computing
CMB temperature anisotropies in multiply connected uni-
verses need to solve the Helmholtz equation in the mani-
fold modeling our three-dimensional space, the only
exception to our knowledge being the work of Bond et
al. [17]. To solve the Helmholtz equation is a relatively
easy problem in Euclidean manifolds [4,16], but a very
difficult task in spherical [18,19] and hyperbolic 3-spaces
[20]. Indeed, the spherical case has been completely solved
analytically only recently by Lachièze-Rey [19], while for
compact hyperbolic manifolds the only possible approach
is numerical [20].

Among other results, in this paper we present a new
approach to the computation of the correlation matrix
-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.103008


W. S. HIPÓLITO-RICALDI AND G. I. GOMERO PHYSICAL REVIEW D 72, 103008 (2005)
ha‘ma
�
‘0m0 i of the coefficients of the spherical harmonic

decomposition of CMB temperature anisotropies in a uni-
verse with nontrivial spatial topology. The main feature of
this approach is that it avoids the explicit computation of
the solutions of the Helmholtz equation in the spatial
sections of spacetime. Instead, we express the correlation
matrix in terms of the covering group alone. Incidentally,
the idea of generating a CMB map exploiting the symme-
tries of the quotient space was already suggested by Janna
Levin and collaborators [12,13]. In particular, we wish to
quote a citation of a nontrivial claim in [13] (page 2695)
which we have, in our opinion, succeeded in achieving:
‘‘By understanding the symmetries of the fundamental
polyhedron and the identification rules, a CBR pattern
can be deduced without the need to explicitly obtain the
spectrum mode by mode.’’

Our main formal result is a generic decomposition of the
form

X� � Xs:c: � Xt:s:; (1)

where X may be any covariance function which can be
related to the two-point correlation function of the
Newtonian potential (see Sec. III), � is the covering group
of (the multiply connected) space, s.c. stands for ‘‘simply
connected,’’ and t.s. means ‘‘topological signature.’’

Thus, in Eq. (1), X� is the covariance function computed
in the manifoldM � ~M=�, and Xs:c: is the same covariance
function but computed in the universal covering space ~M.
It means that all the topological information is encoded in
the ‘‘perturbative’’ term Xt:s:, and that is why we refer to it,
generically, as the topological signature of X�. This de-
composition is always possible whenever one can express
X� in terms of �, as, for example, in the pair separations
histogram method for detecting multiple copies of standard
candles [21]. In the present case, we succeeded in writing
the correlation matrix of the a‘m’s in this way by formally
manipulating the two-point correlation function of the
Newtonian potential derived by Bond, Pogosyan, and
Souradeep [17].

Our approach to compute the correlation matrix
ha‘ma�‘0m0 i has some methodological advantages in the
simulation of CMB temperature maps. Indeed, by means
of a suitable decomposition of the covering group � in
cyclic subgroups, we are able to write down a formula for
the correlation matrix of a complicated topology in terms
of the correlation matrices of the cyclic topologies (top-
ologies with a cyclic covering group) that cover it maxi-
mally. Since correlation matrices for cyclic manifolds are
relatively easy to compute (we obtain a closed quadrature
formula for the cylinder), we expect to obtain in the near
future more efficient ways to simulate maps for compli-
cated manifolds.

The decomposition of � in cyclic subgroups describes in
a transparent way the symmetries of the manifold, and this
fact gives rise to another advantage of our approach, in this
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case from the observational side. Universes with a cyclic
topology present an alignment along the ‘‘direction of the
generator isometry.’’ It follows that a CMB map in a
universe with a nontrivial topology might present ‘‘patterns
of alignment’’ (one for each ‘ mode) characteristic of its
shape and size. Indeed, and this shall become ‘‘obvious,’’
symmetries of the quotient manifolds translate into sym-
metries of their patterns of alignment. We propose a
method to search for these patterns by constructing maps
of the dispersion of the squares ja‘mj2 around the power
spectrum. This opens the door to the development of
methods to look for topology by searching these patterns,
instead of limiting ourselves to considerations concerning
only the special directions defined by the alignments.

For the sake of brevity, other advantages of our approach
to compute the matrix ha‘ma�‘0m0 i are discussed in Sec. VI
only. We prefer now to make a few remarks on some
limitations of our work. We have considered here a few
simplifications to develop the formalism, and worked out
the details for the very simplest nontrivial topologies. In
fact, we (i) have considered the Sachs-Wolfe effect as the
only source of temperature anisotropies in CMB maps, (ii)
have written the correlation matrix ha‘ma�‘0m0 i formally
only for Euclidean 3-spaces, (iii) have worked out the
details for homogeneous flat manifolds, (iv) have made a
detailed analysis and some simulations only for cylinders
(T1 topology), and (v) these simulations were done using
the Einstein-de Sitter model. We wish to close this intro-
duction by justifying each one of these simplifications.

The shape of space is a global property, thus we expect
the topological signatures in CMB to show themselves on
very large scales only. Although a proof is missing, we
believe that the main features of these signals would ob-
servationally appear if we restrict the searches to the low ‘
modes in the temperature maps, i.e., we do not need high
resolution CMB maps in cosmic topology. Since the Sachs-
Wolfe effect is the main source of temperature anisotropies
at these scales [14], we expect that theoretical explorations
considering only this effect will put in evidence the main
features of the topological signals that we would observe in
a real map. The addition of the missing part of the anisot-
ropies will only modify quantitatively the predictions made
with our approximation and, thus, will only be important
when adjusting theoretical models with data.

We consider this paper technically hard, so much care
has been taken to write it in a clear and pedagogical way.
The main features of our formalism and of the topological
signatures we predict in CMB can be understood by re-
stricting the presentation to Euclidean topologies. The
inclusion of nonzero spatial curvature will only introduce
additional technical considerations (and nothing qualita-
tively new), thus we decided to leave the spherical and
hyperbolic cosmological models for a future paper.

The same applies to the lack in the paper of detailed
explicit correlation matrices for nonhomogeneous flat
-2
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manifolds. Indeed, the price we pay for simplicity and
transparency in the presentation of the results for each
specific cyclic topology is the need for very hard calcula-
tions in the middle steps, as can be seen in the appendices.
Explicit calculations for nonhomogeneous flat manifolds
will only add one page to the main body of the paper, and
one or two more appendices to the already large list of
them (see the end of the introduction). An exhaustive
presentation for all the Euclidean manifolds is left for a
future work.

Last but not least, we performed the simulations with the
Einstein-de Sitter model for simplicity. Nothing is lost
from the theoretical point of view with this simplification
since, as discussed in the paper, the structure of the topo-
logical signatures in CMB is captured in this oversimpli-
fied and old fashioned model of our Universe. However,
more realistic �CDM models will be required to confront
theory with observations quantitatively.

We close this introduction by giving a detailed descrip-
tion of the structure of the paper. In Sec. II we briefly
review the two most common methods to simulate CMB
temperature maps in multiply connected universes, as well
as present the method we have developed, and imple-
mented for the Euclidean case. In Sec. III we define the
topological signature in a correlation function, perform the
decomposition of the covering group of a quotient space in
its cyclic subgroups, and write the topological signature in
terms of this decomposition. We also show here that the
symmetries of a quotient space appear transparently in the
decomposition of its covering group in cyclic subgroups.

In Sec. IV we apply our formalism to the homogeneous
Euclidean manifolds, which are the simplest. We first
compute the correlation matrix and the angular power
spectrum for the cylinder, and apply the general results
of the previous section in order to write down the correla-
tion matrix of the spherical harmonic coefficients and the
angular power spectrum for a generic torus. Finally, as an
illustration, we write those expressions explicitly for the
chimney (T2 topology).

In Sec. V we first show, by means of simulations, that in
a universe with the topology of a cylinder the low ‘ modes
are aligned in a similar fashion as they are in the WMAP
data. We then use the results in the previous sections to
argue that CMB temperature maps in a universe with a
nontrivial topology must present characteristic patterns of
alignment, and propose the method of mapping on the
sphere the dispersion of the squares ja‘mj2 to look for
them. Finally, in Sec. VI we discuss in detail the results
of this paper and suggest further lines of research.

In brief, the main goal of this paper is to show that our
approach to the computation of the correlation matrix
ha‘ma

�
‘0m0 i (Sec. II), together with the decomposition of

the covering group of a manifold in cyclic subgroups
(Sec. III), led to the discovery of a new topological sig-
nature in CMB temperature maps, i.e., the ‘‘patterns of
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alignment’’ (Sec. V). To illustrate this we have used the
simplest example, i.e., that of flat homogeneous manifolds
(Sec. IV).

The paper has four appendices. In Appendix A we
collect standard definitions and results related to spherical
harmonics in order to set the conventions used in this paper.
The technical calculations needed for the computation of
the correlation matrix ha‘ma�‘0m0 i for the cylinder are pre-
sented in Appendices B and C. In the former, we develop
from scratch the theory of Clausen ’ functions, for which
we have not found any suitable reference in the literature.
In the latter, we compute a function that is the key part for
computing efficiently the topological signature of the cor-
relation matrix for the cylinder. Finally, in Appendix D we
briefly reproduce known results for the correlation matrix
of five out of the six compact orientable Euclidean 3-
spaces. These formulas have been obtained previously in
the literature by considering explicitly the solutions of the
Helmholtz equation in these manifolds, and are written in
terms of the kmodes [4,16]. Our derivation avoids the need
for considering these solutions.
II. SIMULATING CMB TEMPERATURE MAPS

In this section we briefly describe two methods currently
available for simulating CMB temperature maps in uni-
verses with nontrivial spatial topology, and proceed to
develop our own formulation. We consider �CDM uni-
verses, where the background metric of spacetime is of the
Robertson-Walker type, and include scalar and adiabatic
perturbations as the seeds for the temperature anisotropies
of the CMB. In the Newtonian gauge we have

ds2 � a2�����1� 2��d�2 � �1� 2���ijdx
idxj�

for the metric, where � is the conformal time, a��� is the
scale factor, � is the Newtonian potential, and

�ij �
�
1�

K
4
�x2 � y2 � z2�

�
�2
�ij

is the metric of the spatial section of the background with
sectional curvature K � 0, 	1.

The matter content consists of radiation (�r), baryonic
and cold dark matter (�m � �b ��cdm), and dark energy
in the form of a cosmological constant (��). Since we are
interested on fluctuations on large angular scales, we make
the assumption of instantaneous recombination and do not
consider finite thickness effects. The main contribution to
the temperature anisotropy observed at the direction n
comes from the complete (ordinary plus integrated)
Sachs-Wolfe effect

�T
T
�n� �

1

3
���LSS; RLSSn� � 2

Z �0

�LSS

d�
@�

@�

����������;R���n�;
(2)

where the index LSS stands for ‘‘last scattering surface,’’
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the index 0 for present time, and R��� is the comoving
distance at instant � between a photon, scattered at �LSS,
and the observer.

The Newtonian potential is written as

���;x� �
Z
dqF��; q���q;x�: (3)

The temporal part satisfies the equation

F00��� � 3H �1� c2
s�F

0���

� �2H 0 � �1� 3c2
s��H

2 � K� � c2
sq

2�F��� � 0; (4)

where cs is the speed of sound in the fluid and H � a0=a
is the Hubble parameter in conformal time. On the other
hand, the spatial part consists of solutions of the Helmholtz
equation

��� q2���q;x� � 0; (5)

where the index q has been put as a variable in � for
simplicity of notation.

The integral in Eq. (3) has to be understood in a measure
theoretic sense. Indeed, for multiply connected spaces the
measure dq is not the usual one but a combination of a
discrete and an absolutely continuous measure, reducing
the integral in (3) to a sum and an integral in the usual
sense. In particular, if the space is compact, the measure
reduces to a discrete one. This comes from the well-known
fact that not every eigenmode of the Laplacian operator in
the universal covering space ~M is also an eigenmode in a
quotient space M � ~M=�. In fact, only eigenmodes in ~M
satisfying the invariance conditions

��q; gx� � ��q;x� (6)

for any g 2 � project to eigenmodes in M.
The most straightforward way of simulating CMB tem-

perature maps is by solving (4) and (5), performing the sum
in (3), and then evaluating the SW effect (2). However, one
has to consider that a temperature anisotropy map is a
realization of a random field on the 2-sphere, and this
randomness is inherited from that of the Newtonian poten-
tial (3). There are currently two ways to implement this
random character in the simulations, and one goal of this
paper is to propose a third one.

The first and most direct method is to consider the
randomness in the temporal part of the decomposition (3)
of the Newtonian potential. The two-point correlation
function of the Newtonian potential at fixed time � can
then be written as

h���;x����;x0�i �
Z
dqdq0f��; q; q0���q;x����q0;x0�;

(7)

where f��; q; q0� � hF��; q�F��; q0�i is the two-point cor-
relation function for the amplitudes of the scalar perturba-
tion modes and ��q;x� are normalized solutions of the
Helmholtz equation.
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Assuming that the Newtonian potential is a homogene-
ous and isotropic random field, the two-point correlation
function (7) reduces to a function of time � and the
distance d�x;x0�, and thus we get f��; q; q0� �
P���; q���q� q0�, where P���; q� is the gravitational
power spectrum. If, in addition, the Newtonian potential
is assumed to be Gaussian, its random character is com-
pletely encoded in the variance of the temporal part

hF2��; q�i � P���; q�: (8)

Specifying this function, one then takes as an initial
condition, F��init; q�, a realization of a normal distribution
with zero mean and variance given by Eq. (8), and some
suitable condition for the initial first derivative. With these
initial conditions, one solves for (4), so one can now
compute the potential (3). Topology is considered by re-
stricting in (3) to normalized solutions of the Helmholtz
equation satisfying the invariance conditions (6). This
method has been extensively used in [5,12,13], although
in the former the authors do not consider the randomness of
the function F��; q�. Instead the random character of the
CMB maps is attributed exclusively to the random charac-
ter of the eigenmodes of the Laplacian in compact hyper-
bolic spaces.

The second method to produce simulated maps of CMB
temperature anisotropies in universes with nontrivial spa-
tial topology was first described in [14], and used in
[15,16]. It is based in considering the randomness of the
Newtonian potential in the eigenmodes of the Laplacian
operator. We begin by decomposing the general solution of
the Helmholtz equation, in the universal covering space, as
a sum of fundamental solutions

��q;x� �
X
‘;m

�̂‘m�q�Y‘m�q;x�; (9)

where

Y ‘m�q;x� � �‘�q; x�Y‘m�n� (10)

is the normalized solution of the Helmholtz equation after
separating it in radial and angular variables. Here we have
put x � jxj, n is the unit vector in the direction of x, and
the Y‘m�n� are the spherical harmonic functions (see
Appendix A). Since the solutions (10) are normalized,
the randomness of the eigenmodes’ amplitudes relies on
the coefficients �̂‘m�q�.

Introducing (3) in (2), and using (9) and (10), we arrive
at the decomposition of the temperature anisotropy map in
spherical harmonics

�T
T
�n� �

X
‘;m

a‘mY‘m�n�; (11)

with multipole coefficients

a‘m �
Z
dq�̂‘ms�q�G‘�q�; (12)
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and the effects of physical cosmology given by

G‘�q� �
1

3
F��LSS; q��‘�q; RLSS�

� 2
Z �0

�LSS

d�
@F
@�

����������;q��‘�q; R����: (13)

At this point it is convenient to recall how topology
enters in the story. Note that, due to the invariance con-
ditions (6), not every solution of the form (9) is a solution
in a quotient space. However, one would expect that any
solution in a quotient space could be written in this form,
the only problem being to find the correct coefficients
�̂‘m�q�. These coefficients are not independent one from
the other, since the invariance conditions (6) establish
certain relations among them. In what follows we will
assume that these relations can always be found, so that
we will always represent an eigenmode in a quotient space
by Eq. (9), with suitable coefficients.

A crucial point in [14] is the decomposition of these
coefficients as

�̂ ‘m�q� �
�������������
P��q�

q
ê‘m�q�; (14)

where P��q� is the gravitational initial power spectrum,
and the ê‘m�q� form a multivariate Gaussian random vari-
able, with a nondiagonal covariance matrix due to the
relations among the coefficients �̂‘m�q� coming from the
invariance conditions.

The simulation procedure can now be described. First
we solve Eq. (4) using the initial condition F��init; q� � 1,
and a suitable condition for the first derivative, and use this
in (13) to compute G‘�q�. Then generate a realization of
the random variable ê‘m�q� and use (14) to compute
�̂‘m�q�. The map is now simulated by computing the co-
efficients a‘m using (12), and performing the sum in (11).

An alternative method of simulation, also proposed in
[14], is to construct the covariance matrix of the a‘m’s as

ha‘ma�‘0m0 i �
Z
dqdq0G‘�q�G‘0 �q0�h�̂‘m�q��̂

�
‘0m0 �q

0�i:

(15)

The substitution of (14) into (15), and the evaluation of the
resulting integral give rise to expressions for the covariance
matrix in terms of the eigenvalues and eigenmodes of the
Laplacian operator. The multipolar coefficients are then
obtained directly as a realization of a Gaussian distribution
with zero mean and covariance given by (15).

The method we propose in this paper lies along these
lines, but we are able to manipulate the correlation function
for the �̂‘m�q� in a way that avoids the need for an explicit
determination of the eigenmodes of the Laplacian. Instead,
the final expression after the integration of (15) is given in
terms of the isometries of the corresponding covering
group.
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Our starting point is an expression, obtained by Bond et
al. in [17], that relates the two-point correlation function of
the Newtonian potential in a simply connected universe,
and that in a multiply connected universe, when both
potentials have the same initial power spectrum. For a
homogeneous and isotropic random field the expression is

h���;x����;x0�i� �
X
g2�

jgjh���;x����; gx0�is:c:; (16)

where jgj � 1 if g is orientation preserving, and �1
otherwise.

We now show how to use Eq. (16) in order to express
(15) in terms of the covering group, and for simplicity we
will restrict the presentation to flat topologies. In Euclidean
space, the most general solution of Eq. (5) is written in the
form

��q;x� �
Z
d3k��q� k��̂�k�eik
x: (17)

If we now expand the plane waves in spherical harmonics
as

eik
x � 4�
X
‘;m

i‘j‘�kx�Y
�
‘m�nk�Y‘m�n�; (18)

where j‘�x� is the spherical Bessel function of order ‘, and
introduce it in (17) we obtain ��q;x� expressed as in
Eq. (9) with

�̂ ‘m�q� � 4�i‘
Z
d3k��q� k��̂�k�Y�‘m�nk�; (19)

where nk is the unit vector in the direction of k, and
�‘�q; x� � j‘�qx�.

Note that we have not decomposed �̂‘m�q� as in Eq. (14).
Instead, the decomposition (19) allows us to implement the
randomness of the Newtonian potential in the modes �̂�k�.
In fact, introducing (19) in (15), the covariance matrix for
the a‘m’s now reads

ha‘ma�‘0m0 i � �4��
2i‘�‘

0
Z
d3kd3k0G‘�k�G‘0 �k0�

� h�̂�k��̂��k0�iY�‘m�nk�Y‘0m0 �nk0 �: (20)

It is the correlation function of the modes �̂�k� that carries
all the topological information, as we will see in the
following.

Introducing (17) in (3) we obtain

���;x� �
Z
d3kF��; k��̂�k�eik
x;

thus the two-point correlation function of the Newtonian
potential now reads

h���;x����;x0�i �
Z
d3kd3k0F��; k�F��; k0�

� h�̂�k��̂��k0�iei�k
x�k0
x0�: (21)
-5
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At this point we have to recall that a Euclidean isometry
can always be written as g � �R; r�, where R is an orthogo-
nal transformation and r is an Euclidean vector, and that
this isometry acts on a vector x as gx � Rx� r. It is now
an easy task to deduce from Eqs. (16) and (21) that

h�̂�k��̂��k0�i� �
X
g2�

h�̂�k��̂��Rk0�is:c:e�iRk0
r: (22)

In most inflationary models the initial perturbations of
the gravitational field are homogeneous and isotropic
Gaussian random fields, thus the correlation matrix of the
k modes in a simply connected universe takes the form

h�̂�k��̂��k0�is:c: �
P��k�

k3 ��k� k0�:

The use of (22) now yields

h�̂�k��̂��k0�i� �
P��k�

k3

X
g2�

��k� Rk0�e�iRk0
r;

for the correlation matrix of the k modes in the quotient
space M � ~M=�, which when substituted in (20) finally
gives

ha‘ma�‘0m0 i
� � �4��2i‘�‘

0
Z d3k

k3 �‘‘0 �k���
‘0m0 �k�Y

�
‘m�nk�;

(23)

where the physical effects are encoded in

�‘‘0 �k� � P��k�G‘�k�G‘0 �k�; (24)

and the topological information in

��
‘m�k� �

X
g2�

e�ik
rY‘m�nRTk�: (25)

The integration in (23) is over the whole k space. The
topological information is carried in Eq. (25), which auto-
matically selects the eigenvalues of the Laplacian operator
in M. This can be seen in Appendix D, where ��

‘m�k� is
expressed in terms of Dirac’s delta functions centered in
the eigenvalues of the Laplacian operator in the corre-
sponding quotient spaces.

III. DECOMPOSITION OF � IN CYCLIC
SUBGROUPS

In this section we develop some formal results in order
to proceed further. Especially, we define the topological
signature of any covariance function that can be decom-
posed as

X� �
X
g2�

Xg;

as, for example, the two-point correlation function of the
Newtonian potential and the correlation matrix ha‘ma�‘0m0 i.
Then we work out a suitable decomposition of a covering
group in their cyclic subgroups, and write down the topo-
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logical signature in terms of this decomposition. We also
show here that the symmetries of a quotient space appear
transparently in the decomposition of its covering group in
cyclic subgroups. It follows that the main result of this
section is the elucidation of how these symmetries manifest
themselves in the topological signature of CMB tempera-
ture anisotropy maps.

Let us begin by writing the obvious decomposition

X� � Xs:c: � X�̂; (26)

where �̂ � � n fidg. The second term in the right-hand side
is the topological signature in the covariance function. The
expressions we present in the following are analogous to
(26) and are also rather obvious.

It is convenient to introduce a notation, so natural, that
has been used in (26) without any previous definition. Let S
be any subset of isometries of the covering space ~M, then a
superscript S in the covariance function means

XS �
X
g2S

Xg:

Then if M � ~M=� is a quotient space and �1 � � is any
subset of the covering group, we can immediately write
X� � X�1 � X�n�1 . This expression is nothing but the
simplest generalization of Eq. (26), which corresponds to
the trivial case �1 � fidg. We get a further generalization
as follows: let �1 and �2 be any two subsets of the covering
group �, such that �1 \ �2 � �3, then

X� � X�1 � X�2 � X�3 � X�n��1[�2�: (27)

We can now write the formal result we are interested in.
Consider the subsets G1; . . . ; Gn � � such that for any i �

j, Gi \Gj � H, then by induction on (27) we get

X� �
Xn
i�1

XGi � �n� 1�XH � X�nG; (28)

where G � [Gi.
To move forward, let G1 � hg1i and G2 � hg2i be two

cyclic subgroups of �, and let 0 2 ~M be a lift to ~M of the
position of the observer in M. We will say that g1 and g2

are conjugate by an isometry that ‘‘does not move the
observer’’ if there exists an isometry � fixing 0 and such
that g1 � ��1g2�. Note that, as a consequence, we have
that d�0; g10� � d�0; g20�, where d�x; y� is the distance
between two points x and y in ~M. By extension, we will
also say that the groups G1 and G2 are conjugate by an
isometry that does not move the observer. In addition, we
will say that g1 is a minimal distance generator ofG1 (with
respect to the observer) if d�0; g10� 
 d�0; �0� for any
other generator � 2 G1.

Now consider the isometries g1; . . . ; gn 2 � that gener-
ate the cyclic groups Gi � hgii, and such that if i � j then
Gi \Gj � fidg. By using Eq. (28) we immediately obtain
that the topological signature of the covariance function
-6
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can be decomposed as

X�̂ �
Xn
i�1

XĜi � X�nG:

In the following we will be particularly interested in the
case where the gi’s are minimal distance generators of the
Gi’s, and the latter form a complete set of groups mutually
conjugate by isometries that do not move the observer.

Decomposing the topological signature further along
these lines, let g1; . . . ; gn; h1; . . . ; hm 2 � be minimal dis-
tance generators of the groups Gi � hgii and Hj � hhji,
and let G � [Gi and H � [Hj. Moreover, suppose that
the Gi’s and the Hj’s form two complete sets of groups
mutually conjugate by isometries that do not move the
observer, and such that G \H � fidg and d�0; g10� 

d�0; h10�. Then the topological signature can be decom-
posed as

X�̂ �
Xn
i�1

XĜi �
Xm
i�1

XĤi � X�n�G[H�:

We can proceed along these lines again and again, and
obtain the following decomposition, in cyclic subgroups,
of the covering group �,

� �
[1
i�1

[ki
j�1

�ij; (29)

where gij 2 � is a minimal distance generator of the cyclic
group �ij, and such that
(1) F
or each i 2 N, the set f�i1; . . . ;�ikig is a complete
set of groups mutually conjugate by isometries that
do not move the observer.
(2) I
f i � i0, the sets [kij�1�ij and [
ki0
j�1�i0j have the

identity as the only common element.

(3) I
f i < i0, then d�0; gi10� 
 d�0; gi010�.
Then the topological signature of the covariance function
can be written as

X�̂ �
X1
i�1

Xki
j�1

X�̂ij : (30)

Thus, to compute the topological signature of the covari-
ance function for any multiply connected manifold, it is
enough to know how to compute it for manifolds whose
covering groups are cyclic groups. It is now obvious that
this decomposition will be particularly useful for calculat-
ing the correlation matrix of the a‘m’s for any compact
manifold once we know how to calculate it for cyclic flat
(twisted cylinders), spherical (lens spaces), and hyperbolic
manifolds.

Let us now show that the decomposition (29) describes
transparently the symmetries of the quotient manifold
M � ~M=�. Actually, this decomposition contains the sym-
metries of the Dirichlet fundamental polyhedron of M
centered at the observer’s position 0 2 ~M, which is what
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one expects to reconstruct with cosmological observations.
Recall that the Dirichlet fundamental polyhedron centered
at 0 2 ~M is the set D0 � ~M defined by (see [22])

D 0 � fx 2 ~M:d�0;x� 
 d�g0;x� for any g 2 �g:

The first thing to be noted is that, although the whole
covering group enters in this definition, it turns out that,
in order to effectively construct the Dirichlet polyhedron,
we only need the minimal distance generators (and maybe
the first few positive powers) of the first few cyclic groups
�ij and their inverses.

In fact, for each g 2 � consider the semispace

Hg � fx 2 ~M:d�0;x� 
 d�g0;x�g:

Then it is obvious that the Dirichlet polyhedron is the
intersection of all of these semispaces. However, there is
a high redundancy here since, for a sufficiently large
positive power n, we may have

\n�1

k�1

Hgkij
� Hgnij

;

and so this and further powers of gij do not effectively
contribute to the polyhedron D0. Additionally, if some Hg

effectively contributes to the polyhedron, so does Hg�1 ,
thus the same argument holds for the inverses of the
minimal distance generators. Moreover, note that due to
condition 3 above, for a sufficiently large i, it may be the
case that the semispaces Hgij do not contribute effectively
to the polyhedron.

The faces of the Dirichlet polyhedron are subsets of the
boundary planes of the semispaces effectively contributing
to it. In fact, for each Hg effectively contributing, the
corresponding face is orthogonal to the geodesic joining
0 and g0, and cuts it at its middle point. It follows that the
decomposition (29) describes the symmetries of the
Dirichlet fundamental polyhedron of M centered at the
observer.
IV. FLAT HOMOGENEOUS MANIFOLDS

We have seen in the previous section that, to compute the
topological signature of CMB temperature anisotropies in
a given manifold, we just need to know how to compute it
for the cyclic manifolds that cover it maximally. In the flat
orientable case, the cyclic manifolds are twisted cylinders,
i.e., manifolds with a covering group generated by a screw
motion. We will now focus on the simplest case, the flat
homogeneous manifolds, which are generated by trans-
lations only.

The flat homogeneous manifolds are 3-tori or T3 mani-
folds (generated by three linearly independent transla-
tions), chimneys or T2 manifolds (generated by two
linearly independent translations), and cylinders or T1

manifolds (generated by one translation). Thus, we first
-7
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compute the correlation matrix ha‘ma�‘0m0 i
� for cylinders,

and then show how the decomposition (30) is used to
compute the topological signature in this matrix for two-
and three-dimensional tori. We also show that the compu-
tation of the angular power spectrum in tori is greatly
simplified by this decomposition.

A. The cylinder

Let us consider a cylinder orthogonal to the z direction,
that is with covering group generated by the translation
g � �I;a�, with a � Lêz, where distances are measured in
units of the radius of the last scattering surface RLSS. This
choice of the coordinate system is very convenient since
here the cylinder appears invariant under (i) arbitrary ro-
tations around the z axis, (ii) the parity transformation, and
(iii) the reflection on the y � 0 plane. Thus, according to
Sec. A 3, we will end with a real correlation matrix with no
m-dependent correlations and the multipoles ‘ and ‘0

correlated only when both are even or odd.
It is convenient to recall here that our cylinder has

injectivity radius equal to L=2, thus cylinders with L< 2
are ‘‘small’’ and might present topological copies of dis-
crete sources and/or circles in the sky. On the other hand,
‘‘large’’ cylinders, i.e., those with L> 2, have undetect-
able topology with the methods currently available [23].

The covering group of the cylinder is labeled by the
integers as gn � �I; na�, with n 2 Z. We then have from
(25) that all the topological information is encoded in

��
‘m�k� �

X
n2Z

e�inkzLY‘m�nk�;

and thus the correlation matrix of the a‘m’s for the cylinder
is simply

ha‘ma�‘0m0 i
� � �4��2i‘�‘

0
Z d3k

k3 �‘‘0 �k�

�

�X
n2Z

e�inkzL
�
Y‘0m0 �nk�Y�‘m�nk�: (31)

To reduce this integral we may use any of the following
two identities, eitherX

n2Z

e�inkzL � 2�
X
p2Z

��kzL� 2�p�; (32)

or

X
n2Z

e�inkzL � 1� 2
X1
n�1

cos�nkzL�: (33)

The first identity is obvious since the left-hand side is the
Fourier expansion of the right hand side. This option yields
a formula of the kind obtained in Appendix D, which
expresses the correlation matrix in terms of the eigenvalues
of the Laplacian operator on the cylinder. The second one
still uses a parametrization in terms of the covering group,
and thus can be used to isolate the topological signature.
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In fact, using (33) to evaluate (31), and integrating in
spherical coordinates, we get

ha‘ma�‘0m0 i
� � ha‘ma�‘0m0 i

s:c: � ha‘ma�‘0m0 i
�̂; (34)

where the simply connected part is as usual

ha‘ma�‘0m0 i
s:c: � Cs:c:

‘ �‘‘0�mm0 ; (35)

with the (simply connected) angular power spectrum given
by

Cs:c:
‘ � �4��

2
Z 1

0

dx
x

�‘‘�x�; (36)

and the topological signature for the correlation matrix is
given by

ha‘ma�‘0m0 i
�̂��4��2i‘�‘

0
�mod�2�
‘‘0 �mm0

Z 1
0

dx
x

�‘‘0

�
x
L

�
Fm‘‘0 �x�;

(37)

with

Fm‘‘0 �x� � 2
X1
n�1

Z 1

�1
dy cos�nxy�Pm

‘ �y�P
m
‘0 �y�; (38)

where Pm
‘ �x� is the normalized associated Legendre func-

tion (see Appendix A). As expected, we have ended up
with a real correlation matrix with factors �mod�2�

‘‘0 and �mm0 .
After evaluating the series in (38), it turns out that

Fm‘‘0 �x� is a piecewise continuous function. In fact, in
each interval �2�q; 2��q� 1��, it is a polynomial of de-
gree �‘� ‘0 � 1� in �=x. Indeed, the final result is

Fm‘‘0 �x� �
X
q2Z

Fm
‘‘0 �x; q���x� 2�q���2��q� 1� � x�;

(39)

where ��x� is the Heaviside step function, and the form of
the polynomial Fm

‘‘0 �x; q� in the qth interval of length 2� is

Fm
‘‘0 �x; q� � 4

X�‘�‘0�=2

k�0

��1�kP �2k�‘‘0m�0�g2k�1�q�
�
�
x

�
2k�1

� �‘‘0 : (40)

Here gk�q� are polynomials of degree k in q, and P �k�‘‘0m�0�
is the kth derivative of the polynomial

P ‘‘0m�x� � Pm
‘ �x�P

m
‘0 �x� (41)

evaluated at the origin. In Appendix B we present recur-
rence relations for the polynomials gk�q�, and all the
technical steps that take us from (38) to (39) can be found
in Appendix C.

The integrals appearing in the topological signature (37)
can be easily evaluated since Eqs. (39) and (40) allow an
exact and very fast computation of the function Fm‘‘0 �x�, and
the integrands decay very fast, as illustrated in Figs. 1 and
2. In this figures we have adopted, for simplicity, a scale
-8
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FIG. 1 (color online). Shapes of the integrands inside integrals of the type in (37) for ‘ � ‘0 � 2, and compactification scales L � 1
and L � 2 in units of the radius of the last scattering surface.
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invariant Einstein-de Sitter model, thus

�‘‘0 �x� / j‘�x�j‘0 �x�: (42)

The nice behavior of the integrands in (37) is not a con-
sequence of this particular choice of �‘‘0 �x�. Actually, the
integrand in (37) always decays very fast because �‘‘0 �x�
and Fm‘‘0 �x� are both decaying functions, thus the evaluation
of the topological signature for the cylinder is always very
efficient.

The computation of the topological signature of the
power spectrum reduces to a simple integral. In fact we
obtain
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FIG. 2 (color online). Shapes of the integrands inside integrals of th
and L � 2 in units of the radius of the last scattering surface.
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C�̂
‘ � �4��

2
Z 1

0

dx
x

�‘‘

�
x
L

�
f‘�x�;

with

f‘�x� �
1

2‘� 1

X‘
m��l

Fm‘‘�x�:

Using (38) to perform this sum, the addition theorem for
spherical harmonics (see Appendix A) yields immediately

C�̂
‘ � 2�4��2

Z 1
0

dx

x2 �‘‘

�
x
L

�
’1�x�; (43)
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where ’1�x� is the first Clausen ’-function given in
Appendix B.

In Fig. 3(a) we show the low ‘ modes of the topological
signature of the angular power spectrum of a cylinder,
normalized with respect to (w.r.t.) Cs:c:

‘ , as a function of
its size L. We can see that the topological signature is
typically much smaller than the cosmic variance, even
for small cylinders which have already been discarded
observationally as candidates for the shape of our
Universe because of the lack of antipodal matched circles
in WMAP data [1,9]. Thus it is apparent that the angular
power spectrum is not a good indicator to look for topology
in this case.

The correlation matrix given by (34)–(40) corresponds
to a cylinder for which the direction of compactification is
parallel to the z axis. The correlation matrix corresponding
to a cylinder with a different orientation can be easily
obtained from the previous one by simply rotating the
celestial sphere. Thus, parametrizing the rotations with
Euler angles, if R��;�; �� 2 SO�3� takes the z axis to
the direction of compactification of the cylinder, the topo-
logical signature of the corresponding correlation matrix
can be computed using the expressions (A2)–(A4) of
Appendix A yielding

ha‘ma
�
‘0m0 i

�̂
R � ei�m

0�m��
X
m1

d‘mm1
���d‘

0

m0m1
���ha‘m1

a�‘0m1
i�̂;

(44)

since ha‘ma�‘0m0 i
s:c: is rotationally invariant. Moreover, the

� angle does not appear in this expression since Rz��� in
(A3) does not move the z axis, and ha‘ma�‘0m0 i

� is invariant
under such rotations.

It should be noted here that, no matter its orientation, the
cylinder is always invariant under parity, thus its correla-
tion matrix will always conserve the factor �mod�2�

‘‘0 . On the
other hand, the correlation matrix will remain real as far as
we perform rotations with � � 0, since in this case we do
not rotate the cylinder around the z axis, and thus it remains
invariant under reflections on the plane y � 0. However,
1 1,5 2 2,5
L

-0,4

0

0,4

0,8

C lΓ∗
/C

lSC

l = 2
l = 3 
l = 4
l = 5

(a)

FIG. 3 (color online). Topological signature of the power spectrum
four ‘ modes, normalized w.r.t. Cs:c:

‘ , and as a function of the scale of
suppression or an excess of power depending on the value of L. Fo
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any rotation of the cylinder (other than one with � � �)
makes it noninvariant under azimuthal rotations; thus the
correlation matrix of an arbitrarily oriented cylinder has
m-dependent correlations. All these features can be seen
explicitly in (44).

B. Tori

In order to calculate the correlation matrix of the a‘m’s
for a two- or a three-torus we use the decomposition (29) of
its covering group in cyclic subgroups. Let �ij � hgiji be
the covering group of the cylinder generated by the ele-
ment gij 2 �, and let us write Li � d�0; gij0�, gi �
�I; Liêz�, and �i � hgii. In the Euclidean case, the orienta-
tion preserving isometries that do not move the observer
are rotations, thus let Rij 2 SO�3� be the rotation taking êz
to the unit vector along gij0.

Using the decomposition (30), we easily write the topo-
logical signature for the torus as a superposition of topo-
logical signatures of rotated cylinders. In fact,

ha‘ma
�
‘0m0 i

�̂ �
X1
i�1

Xki
j�1

ha‘ma
�
‘0m0 i

�̂i
Rij
; (45)

where the correlation matrices of the rotated cylinders are
written in terms of the Wigner D functions and Euler
angles, according to (44), as

ha‘ma
�
‘0m0 i

�̂i
Rij
� ei�m

0�m��ij
X
m1

d‘mm1
��ij�d

‘0
m0m1
��ij�

� ha‘m1
a�‘0m1

i�̂i ; (46)

and ��ij; �ij� are the angular spherical coordinates of the
vector gij0, and ki is the number of cylinders of size Li.
Since any group of translations is invariant under parity,
from Sec. A 3 we know that the correlation matrix for a
homogeneous flat manifold has always the factor �mod�2�

‘‘0 ,
and this is evident from (45), since it is just a sum of
correlation matrices of cylinders.
1 1,5
L

-0,4

0

0,4

0,8

C lΓ∗
/C

lSC

(b)

of (a) a cylinder, and (b) a chimney with square base, for the first
compactification L. Note that, for each multipole, one can have a
r typographical reasons, here we write �� instead of �̂.
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The power spectrum is rotationally invariant, thus from
(45) one can easily write down the expression for the
topological signature of the power spectrum of the torus
as a superposition of topological signatures of power spec-
tra of cylinders,

C�̂
‘ �

X1
i�1

kiC
�̂i
‘ : (47)

Let us consider a chimney with square base for the sake
of illustration. It is convenient to orient the chimney so that
its covering group consists of translations in the horizontal
plane. We take as generators of the covering group the
translations g1 � �I; a� and g2 � �I;b�, with a � Lêx and
b � Lêy.

It is more convenient to reparametrize the cyclic decom-
position as follows. Parametrize each cyclic subgroup by a
pair of integer numbers �p; q� as Gpq � hg

q
2g

p
1 i. Clearly, if

the greatest common divisor of �p; q� is r, then

Gpq < G�p=r��q=r�;

where ‘‘<’’ means ‘‘subgroup of.‘‘ Thus we must restrict
the labels to pairs �p; q� of coprime numbers.

The only exceptions are when (i) p � 	1 and q � 0 and
vice versa, and (ii) when p � 	1 and q � 	1. Thus the
first two complete sets of cyclic subgroups conjugate by a
rotation are fG1;0; G0;1g and fG1;1; G�1;1g. In both cases the
conjugation is performed by a rotation of �=2 around the z
axis. The compactification lengths of the corresponding
cylinders are L1;0 � L0;1 � L and L1;1 � L�1;1 �

���
2
p
L,

respectively. The Euler angles ��;�� to rotate the corre-
sponding cylinders from the z axis to their orientation in
the chimney, according to (46), are � � �=2 in all cases,
and �1;0 � 0, �0;1 � �=2, �1;1 � �=4, and ��1;1 �
3�=4, respectively.

To write the remaining complete sets of cyclic sub-
groups conjugate by a rotation let us define, for a pair of
coprime natural numbers �p; q�, with p > q � 1, the
groups

G�1�pq � Gpq � hg
q
2g

p
1 i; G�3�pq � G�q;p � hg

p
2g
�q
1 i;

G�2�pq � Gqp � hg
p
2g

q
1i; G�4�pq � G�p;q � hg

q
2g
�p
1 i:

The compactification lengths are all equal to Lpq ������������������
p2 � q2

p
L, and the Euler angles ��;�� to rotate the

corresponding cylinders from the z axis to their orientation
in the chimney, according to (46), are � � �=2 in all
cases, and

��1�pq � arctan
q
p
; ��3�pq �

�
2
� ��1�pq;

��2�pq �
�
2
� ��1�pq; ��4�pq � �� ��1�pq;

respectively.
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Let us denote by �pq the covering group of the cylinder
with compactification scale Lpq and oriented along the z
axis. Then, putting all this together, using (45) and (46),
and taking into account the invariance properties derived in
Sec. A 3, the topological signature of the chimney with
square base is

ha‘ma�‘0m0 i
�̂ � �mod�4�

mm0

X
m1

d‘mm1
��=2�d‘

0

m0m1
��=2�W m0�m

‘‘0m1
;

(48)

with

Wm
‘‘0m1

� 2�ha‘m1
a�‘0m1

i�̂1;0 � ��1�m=4ha‘m1
a�‘0m1

i�̂1;1�

� 4
X
�p;q�

cosm��1�pqha‘m1
a�‘0m1

i�̂pq ; (49)

where the sum in �p; q� is evaluated only for pairs of
coprime natural numbers �p; q� such that p > q � 1.

The topological signature of the power spectrum of the
chimney with square base is simply

C�̂
‘ � 2�C�̂1;0

‘ � C�̂1;1

‘ � � 4
X
�p;q�

C
�̂pq
‘ : (50)

Since the topological signature of the power spectrum of a
cylinder converges quickly to zero as a function of the
compactification scale [see Fig. 3(a)], it follows that the
sum in (50) also converges quickly.

Moreover, the topological signature of the power spec-
trum of the chimney is larger than that of the cylinder. This
is so because the ‘th mode of the topological signature of
the angular power spectrum of the cylinder oscillates very
slowly. Thus, from (50) this signature is slightly higher in
the chimney, as can be seen in Fig. 3(b). Actually, this is a
general result that holds for manifolds whose covering
groups are not cyclic.
V. PATTERNS OF ALIGNMENT

The nondiagonal character of the topological signature
of the correlation matrix of the a‘m’s in multiply connected
universes and their m dependence are manifestations of
their globally anisotropic nature. They manifest them-
selves in statistically anisotropic temperature maps, i.e.,
realizations of random temperature fluctuations for which
mean values of functions of the temperature over ensem-
bles of universes depend on the orientation [10].

In this section we analyze an expected consequence of
the topology of space on the temperature anisotropies of
the CMB that has not received the deserved attention up to
the present, namely, the existence of preferred directions in
space. We show that the decomposition of the topological
signature of the correlation matrix of the a‘m’s in a uni-
verse with a complex topology, in signatures corresponding
to cyclic topologies, demands the existence of ‘‘patterns of
alignments’’ along these directions. For the sake of sim-
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plicity, we consider the Einstein-de Sitter model; thus from
now on we will take (42) to perform all our calculations.

We want to call attention to the existence of alignments
of the low ‘ modes of the CMB temperature maps in
multiply connected universes. Indeed, in Fig. 4 we show
a low resolution temperature map simulation for a cylinder
with L � 2 (in units of RLSS), together with the maps
corresponding to the first four ‘ modes. One can see that
these ‘ maps present alignments along the z direction,
which in this case is the unique direction of compactifica-
tion of space.

Similar alignments as those present in our simulations
have been reported as being observed in WMAP data, and
have been attributed to a possible nontrivial topology of
space with the shape of a cylinder [1]. These models have
been quickly abandoned due to the lack of circles in the sky
which should be present if the Universe were small [1,9].
However, our simulations show that even in universes
slightly larger, and so not presenting such circles, these
alignments should still be observable. Thus whether these
observed alignments are a consequence of a nontrivial
shape of our Universe is still an open question [24].

We will show here that, if our Universe had a nontrivial
topology, its CMB temperature map will present character-
istic patterns of alignment, even if its size is somewhat
larger than the observable universe. Moreover, from the
observed patterns of alignment, we might be able to re-
construct the shape of space.
FIG. 4 (color online). Simulated CMB temperature anisotropy map
and size L � 2. Also shown are the lowest multipoles, all of which
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In Fig. 5 we show the topological signature of the low ‘
modes of the diagonal part of the correlation matrix of the
a‘m’s, normalized w.r.t. C�

‘ , for a cylinder oriented along
the polar axis, as a function of the size L of compactifica-
tion. It is apparent that, for a given ‘ mode, there are
multipole coefficients for which their expected values are
above the mean (the angular power spectrum), and others
for which these expected values are below it. This is the
reason why the low ‘ modes in a cylinder are aligned.
Actually, the expectation values hja‘mj2i are all equal to C‘
only in the simply connected case, thus the dispersion
around the mean

	‘ �

������������������������������������������������������
1

2‘� 1

X
m

�hja‘mj
2i � C‘�

2

s
(51)

is null. However, in a multiply connected universe, this
dispersion is nonzero, and in a particular map, it adds to the
cosmic variance. Thus it seems natural to propose the
dispersion of the squares ja‘mj2 around their mean value
as a measure of these alignments in a map.

In Fig. 6 we show a plot of the dispersion (51), normal-
ized w.r.t. C�

‘ , for a cylinder oriented along the polar axis,
as a function of L, for low multipoles. Note that even for a
large cylinder (L � 2) the dispersion is larger than 15% of
the power for multipoles up to ‘ � 5. Indeed, on these
scales the dispersion is of the order of the cosmic variance,
and thus might be detectable.
at low resolution (2 
 ‘ 
 10) for a universe with a T1 topology
present clear alignments near the polar direction.
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FIG. 5 (color online). Plots of the topological signatures of the squares hja‘mj2i�̂, normalized w.r.t. C�
‘ , for low multipoles (2 


‘ 
 5), in a universe with cylindrical topology aligned with the polar axis, and as a function of the scale of compactification L. For
typographical reasons, here we write �� instead of �̂.

TOPOLOGICAL SIGNATURES IN CMB TEMPERATURE . . . PHYSICAL REVIEW D 72, 103008 (2005)
In order to show that this is a good measure of the
alignment of multipoles, and that it provides an efficient
method to determine the directions of possible alignments
in real or simulated maps, let us compute the dispersion of
the squares hja‘mj2i, Eq. (51), for a cylinder which is
oriented along a direction making an angle � with the z
axis. Each one of these squares can be computed with

hja‘mj2i�R �
X
m1

�d‘mm1
����2hja‘m1

j2i�;

which is nothing but (44) restricted to the diagonal part.
0,5 1 1,5 2 2,5 3
L

0

0,5

1

σ lΓ /C
lΓ

l = 2
l = 3
l = 4
l = 5

FIG. 6 (color online). Dispersion of the hja‘mj2i�, normalized
w.r.t. C�

‘ , for low multipoles (2 
 ‘ 
 5), in a universe with
cylindrical topology aligned with the polar axis, and as a
function of the scale of compactification L.
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In Fig. 7 this dispersion is shown as a function of � for
different multipole coefficients and for different values of
L. One can see that the dispersion has a maximum when
the cylinder is oriented along the z axis. Thus, in order to
look for the alignments in a hypothetical universe with the
shape of a cylinder, one should just rotate the celestial
sphere around different directions until finding those two
opposite ones along which the dispersion of the squares
ja‘mj2 is maximum.

However, in order to collect definitive evidence that the
universe is indeed a cylinder, one should map the disper-
sion of the squares ja‘mj2 on the sphere for each ‘ mode,
i.e. one should determine the dispersion (51) as a function
of the orientation of the celestial sphere. If the universe had
the topology of a cylinder, these dispersion maps should be
axially symmetric around a special direction, where the
dispersion is maximum. Moreover, this direction should be
identified with the direction of compactification of the
cylinder.

If the universe has the topology of a flat homogeneous
manifold, note from (45) and (46) that the topological
signature is a superposition of rotated cylinders of different
sizes. Thus, a CMB map for a universe with this kind of
topology might present alignments along the directions
corresponding to these cylinders. In fact, rotating the cel-
estial sphere and computing the dispersion of the squares
ja‘mj2, an easy computation shows that, whenever we
perform the rotation R�0;�
;�’� with 
 � �ij and ’ �
�ij, one has the cylinder labeled by �i; j� oriented along the
polar axis, and thus dispersion maps might present local
maxima along these directions.
-13
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Whether these local maxima are observable in a given
dispersion map will depend on (i) the scale of compactifi-
cation of the corresponding cylinder Li, (ii) the background
due to the simply connected part, and (iii) the other cylin-
ders’ topological signatures. For large values of Li, the
corresponding local maxima will not be observable, how-
ever one can expect those maxima corresponding to the
smaller cylinders to be detectable. The existence and dis-
tribution of these maxima in each dispersion map, together
with their relative intensities is what we call a pattern of
alignment.

It might seem that the problem of constructing disper-
sion maps for manifolds that are not flat homogeneous is
more involved, since general cyclic manifolds do not have
axial symmetry as the cylinder has. Equation (44) depends
on two angles only because the cylinder is axially sym-
metric, but in the general case the expression for the
correlation matrix in a rotated frame depends on the three
Euler angles. Thus it seems at first sight that, in these cases,
a dispersion map should be a function on the 3-sphere.
Fortunately, the diagonal elements of the rotated correla-
tion matrix depend only on the last two Euler angles as

hja‘mj2i�R �
X
m1;m2

ei�m2�m1��d‘mm1
���d‘mm2

���ha‘m1
a�‘m2
i�;
thus the same conclusion holds in the general case.
Dispersion maps on the 2-sphere for low ‘ modes should
display patterns of alignment showing the symmetries of
our Universe if it has a (not too large) nontrivial topology.
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IV. DISCUSSION

In order to study systematically the effects of a non-
trivial spatial topology in the temperature fluctuations of
the CMB, we need to have the ability to simulate efficiently
temperature maps in multiply connected �CDM cosmol-
ogies. Almost all the usual methods to perform these sim-
ulations use explicitly the solutions of the Helmholtz equa-
tion in 3-manifolds with nontrivial topology. The compu-
tation of the eigenfunctions and eigenvalues of the
Laplacian operator is simple only in Euclidean manifolds,
while in spherical and hyperbolic spaces it is a nontrivial
problem. In fact, it is only recently that an analytical com-
putation has been achieved for all the spherical manifolds.
The hyperbolic cases still have to be done numerically.

In this paper we have developed a simulation procedure
that avoids the explicit use of the solutions of the
Helmholtz equation. Instead, our results are expressed in
terms of the covering group � of the corresponding mani-
fold. In this section we summarize the details of the
method, its efficiency, the simple applications performed
here, and discuss future related work.

A. The formalism

The cornerstone of our method is formula (16), which is
the two-point correlation function of the scalar perturba-
tions in a multiply connected universe expressed in terms
of the covering group of the manifold [17]. By means of
simple formal manipulations, we obtain an expression for
the correlation matrix of the spherical harmonic expansion
coefficients of the temperature maps, Eqs. (23)–(25),
-14
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which contain all the topological information expressed as
a sum over the elements of the covering group.

Former applications of (16) required a regularization
procedure in order to account for divergences of the series,
as well as some resummation techniques for accelerating
the convergence. We do not have these problems here
because the divergent series, which are actually distribu-
tions, appear only inside integrals. Indeed, on the one hand,
we show in Appendix D that our formalism easily repro-
duces results previously reported in the literature, as well
as some simple generalizations, without the need of any
regularization procedure. On the other hand, elementary
decompositions of the two-point correlation function (16),
shown in Sec. III, guarantee that our final expressions are
highly convergent, as discussed below.

Two decompositions of a generic covariance function
which can be written as a sum over the covering group are
crucial for the efficiency of our formalism. The first one, a
trivial decomposition given by (26), defines the topological
signature of the covariance function. When written for the
correlation matrix of the harmonic expansion coefficients,
it yields the topological signature in the temperature an-
isotropy maps, as illustrated for the cylinder by (34). This
expression shows that the topological signature is nothing
but a ‘‘perturbation’’ of the correlation matrix correspond-
ing to the simply connected case. Since, as discussed in
Sec. IVA, these ‘‘perturbations’’ are small, the efficiency
of the calculation follows.

The second decomposition given by (30) allows us to
write the topological signature of any manifold in terms of
the topological signatures of its maximal covering mani-
folds with cyclic covering groups. The example of the tori
illustrates the power of this approach, since we can write
down explicit formulas for a general torus whether its
generating translations are orthogonal and/or equal.
Trying to do this with the explicit use of eigenfunctions
of the Laplacian (or with the method used in Appendix D)
turns out to be tedious if not difficult.

Moreover, by construction, this decomposition is invari-
ant under the symmetries of the manifold; thus it carries
information on how these symmetries shall manifest in
individual CMB temperature anisotropy maps, as will be
discussed in Sec. VI B.

Another advantage of this second decomposition is the
simplicity for writing down the power spectrum for com-
plicated manifolds. Expressions like (47) and (50) are com-
putationally very efficient once we have saved the power
spectrum for cyclic manifolds as a function of its scale of
compactification, since we have just to perform a weighted
sum of power spectra for cyclic manifolds at different
scales considering the multiplicity of the decomposition.

B. Topological signatures

A further advantage of splitting the correlation matrix of
the multipole coefficients into its simply connected part
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and its topological signature is that we can identify very
easily the geometric features of the signature. Although we
have made explicit calculations for flat homogeneous
manifolds only, qualitatively these results are general.

Universes with cylindrical topology of size L � 2
present clear alignments of their low ‘ modes along the
direction of compactification. A dispersion map of the
squares hja‘mj2i, for a given low ‘, exhibits an axial
symmetry around this direction, thus it reduces to a func-
tion of the polar angle. These dispersion maps are shown in
Fig. 7.

By decomposing the covering group � in cyclic sub-
groups, one can see that, whatever the shape of our
Universe, and if it is not too large, dispersion maps (one
for each individual low multipole) might show patterns of
alignment. In the general case such maps are functions on
the two-dimensional projective space or, by a lifting, on the
2-sphere. Although we have shown the existence of pat-
terns of alignment explicitly only for homogeneous flat
manifolds, it follows from the exposition of the general
formalism that the same conclusions hold for any manifold
of constant curvature. Thus, we propose the construction of
these dispersion maps in the WMAP data, and so the search
for patterns of alignment, as a new method for detecting a
possible nontrivial topology of our Universe.

It is interesting to comment on some features relating
Levin and collaborators’ proposal of pattern formation in
CMB temperature maps and the results we present in this
paper. The patterns proposed by Levin et al. [12,13] are
due to individual eigenmodes (k modes); the patterns we
have identified here are due to multipole modes (‘ modes).
In either case the modes compete to form their patterns in a
CMB temperature map, however the observable modes in a
map on the sphere are the latter, since spherical harmonics
form a base on the space of functions on the sphere. On the
other side, the association between real space perturbations
and angular temperature fluctuations requires some aver-
aging over the k modes [6]; thus these patterns appear
mixed in a map and their observation might demand
more elaborated techniques.

C. Further remarks and future research

The formalism we have developed in this paper reveals
new insights on the problem of characterizing the marks
that topology leaves in CMB maps, and opens up new
possibilities for developing further methods for unveiling
the shape of our Universe. It makes explicit that the multi-
pole alignments observed in COBE and WMAP full sky
CMB temperature maps may be a manifestation of its
global shape, provides details of the nature and features
of these alignments, and gives at least one methodology to
test this hypothesis. As a consequence, further work is
much needed.

One line of further research is the implementation of our
formalism in the spherical and hyperbolic cases. One way
-15
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to do this requires first to identify the radial part of the fun-
damental solution (10) of the Helmholtz equation in the un-
iversal covering, as well as the analog of the ‘‘plane wave
expansion’’ solution (17) in these geometries, and to write
the expansion of the corresponding‘‘plane waves’’in spher-
ical harmonics as in (18). The difficult part seems to be
expressing the ‘‘plane wave expansion’’ in a suitable form
to reproduce the formal steps used in the Euclidean case.

Moreover, we have to compute the topological signature
of all other cyclic manifolds, in order to extend the com-
putations to any quotient space that could be a candidate
for the shape of space. We also need to include acoustic
oscillations, and Doppler and finite width effects in �CDM
models so that we could determine the relevant angular
scales in cosmic topology, i.e. the angular scales at which
the topological signatures appear. This is a crucial step in
order to confront quantitatively the theory with real CMB
maps in an efficient and rigorous way. An ultimate goal
may be to implement all this methodology in a software
package for public use.

The identification of the ‘‘topological signature’’ of the
correlation matrix ha‘ma�‘0m0 i

� also opens up a path for
solving a problem raised by Riazuelo et al. in [14]. The
correlation matrix for a multiply connected universe is
nondiagonal and, typically, m dependent. In fact, this is
the source of the statistical anisotropy of the CMB in these
universes. However, for very large manifolds this correla-
tion matrix becomes effectively diagonal, and equal to that
corresponding to the universal covering counterpart. A
natural question is raised: at what typical scales does the
correlation matrix ‘‘become diagonal’’? In terms of our
formalism, this problem can be stated as finding the scales
where the topological signature becomes observationally
negligible compared to the simply connected part. A closed
analysis of the topological signature might give some
answers to this and related questions. For example, estab-
lishing bounds on the integral in (37) might solve the
problem for the cylinder.
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APPENDIX A: SPHERICAL HARMONICS

In order to be self-contained and to set the notation used
in the paper, in this appendix we present basic definitions,
some useful formulas of spherical harmonic functions and
Wigner rotation matrices, as well as some invariance prop-
erties of the correlation matrix ha‘ma�‘0m0 i under coordinate
transformations. For a complete treatment of spherical
harmonic functions, the reader can consult [25].

1. Basic definitions

Let us denote by n � �
; ’� a point in a 2-sphere pa-
rametrized in the usual spherical coordinates, then the
spherical harmonic functions are defined as

Y‘m�n� �

����������������������������������
2‘� 1

4�
�‘�m�!
�‘�m�!

s
Pm‘ �cos
�eim’;

where

Pm‘ �x� � ��1�m�1� x2�m=2 d
m

dxm
P‘�x�

are the associated Legendre functions with non-negative
index 0 
 m 
 ‘, and with

P‘�x� �
1

2‘‘!

d‘

dx‘
�x2 � 1�‘

being the Legendre polynomials. The associated Legendre
functions with negative index m are defined by

P�m‘ �x� � ��1�m
�‘�m�!
�‘�m�!

Pm‘ �x�:

Moreover, it is often convenient to introduce the normal-
ized associated Legendre functions

P m
‘ �x� �

����������������������������������
2‘� 1

2

�‘�m�!
�‘�m�!

s
Pm‘ �x�:

It can easily be seen that the Legendre polynomial P‘�x�
is an ‘th degree polynomial of parity ‘, and thus the
associated Legendre function Pm‘ �x� is a function of parity
‘�m. It follows that the function P ‘‘0m�x� defined in (41)
is an �‘� ‘0�th degree polynomial of parity ‘� ‘0, and
thus the expression forFm‘‘0 �x� in (38), which is evaluated in
Appendix C, contains only even polynomials.

Spherical harmonics form a complete orthonormal set of
functions on the sphere, thus their most common applica-
tion is in the expansion of functions, like a CMB tempera-
ture anisotropy map, in multipoles as in (11), where the
coefficients a‘m, called the multipole coefficients, are
given by

a‘m �
Z
S2
d�

�T
T
�n�Y�‘m�n�:

Since the temperature map is a real function on the sphere,
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the multipole coefficients obey the constraint a�‘m �
��1�ma‘;�m.

A very useful formula is given by the addition theorem
for spherical harmonics:

P‘�n 
 n0� �
4�

2‘� 1

X‘
m��‘

Y‘m�n�Y�‘m�n
0�; (A1)

which for the particular case n � n0 yields the identity

X‘
m��‘

�Pm
‘ �x��

2 �
2‘� 1

2
:

2. Wigner D functions

On several occasions it is convenient to rotate the sphere
and compute the multipole coefficients in this new coor-
dinate system. This can be achieved by means of the
Wigner D functions which can be defined operationally
as the functions D‘

mm1
�R� such that, for any rotation R 2

SO�3�, then

Y‘m�Rn� �
X
m1

D‘
mm1
�R�Y‘m1

�n�:

In this case, it can be shown that the multipole coefficients
of the temperature anisotropy map in the rotated reference
frame are

~a ‘m �
X
m1

D�‘mm1
�R�a‘m1

:

This expression can be used to compute the correlation
matrix of the a‘m’s in a rotated frame simply as

ha‘ma�‘0m0 iR �
X
m1;m01

D�‘mm1
�R�D‘0

m0m01
�R�ha‘m1

a�‘0m01
i: (A2)

The Wigner D functions take a very simple form when
we express the rotation matrix R in terms of its Euler
angles as

R��;�; �� � Rz��� 
 Ry��� 
 Rz���: (A3)

Indeed, for this decomposition we have

D‘
mm0 �R��;�; ��� � ei�m��m

0��d‘mm0 ���; (A4)

where d‘mm0 ��� � D‘
mm0 �Ry���� is a real matrix with the

following symmetries:

d‘mm0 ��� � ��1�m�m
0
d‘m0m���;

d‘mm0 ��� � d‘
�m0;�m���;

d‘mm0 ��� �� � ��1�‘�m
0
d‘
�m;m0 ���;

d‘mm0 ���� � ��1�m
0�md‘m;m0 ���:

There exist several explicit and recursive formulas to com-
pute these matrices (see [25]). A very efficient recursive
procedure can be found in [26]. The following formula will
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be enough to reproduce the results presented in this paper.

d‘mm0 ��� �
���������������������������������������������������������������������������
�‘�m�!�‘�m�!�‘�m0�!�‘�m0�!

p X
k

��1�k

�
�cos�2�

2‘�2k�m�m0 �sin�2�
2k�m�m0

k!�‘�m� k�!�‘�m0 � k�!�m0 �m� k�!
;

where the sum in k is evaluated whenever the arguments
inside the factorials are non-negative.

3. Symmetry considerations

Some consequences of the symmetries of the quotient
manifold on the invariance structure of the correlation
matrix of the a‘m’s can be deduced directly from the
transformation rules of the spherical harmonic functions
under coordinate transformations. The results obtained in
this way are formal, generic, and are very useful in prac-
tical computations. We end this appendix by deducing the
invariance properties the correlation matrix must have,
given some symmetries of the corresponding quotient
manifold. These invariance properties have been used in
[14] to simplify the correlation matrix for the 3-torus,
however we want to remark here that they are general
and do not depend on the geometry of the universal cover-
ing space.

Let us begin with the invariance properties of
ha‘ma

�
‘0m0 i

� under rotations around the z axis. Under a
rotation Rz���:’! ’� �, the function Y‘m�n� trans-
forms as

Y‘m�Rz���n� � eim�Y‘m�n�:

As a consequence, the transformation rules for the multi-
pole coefficients of a CMB temperature map are of the
form ~a‘m � e�im�a‘m, and so the correlation matrix trans-
forms under this rotation as

ha‘ma�‘0m0 i
�
Rz���

� ei�m
0�m��ha‘ma�‘0m0 i

�: (A5)

We extract two consequences out of (A5). First, if the
quotient space is invariant under a rotation of � � 2�=s
around the z axis, then the correlation matrix must be zero
unless m � m0mod s. Second, if the quotient space is
invariant under ‘‘any’’ rotation around the z axis, the
correlation matrix must be zero unlessm � m0. In practice,
if we take our coordinate system such that the fundamental
polyhedron of the quotient manifold is oriented so that it is
invariant under a 2�=s rotation around the polar axis, the
correlation matrix will present a factor �mod�s�

mm0 , and corre-
spondingly, if the orientation is such that the polyhedron is
invariant under arbitrary rotations around the z axis, the
correlation matrix will present a factor �mm0 .

Let us now take a look at invariance under the inversion
transformation P:n! �n. Under this transformation the
spherical harmonic functions change as

Y‘m�Pn� � ��1�‘Y‘m�n�;
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thus the multipole coefficients a‘m change as ~a‘m �
��1�‘a‘m, and as a consequence the transformation rule
for the correlation matrix is

ha‘ma�‘0m0 i
�
P � ��1�‘�‘

0
ha‘ma�‘0m0 i

�: (A6)

Thus, if the fundamental polyhedron is oriented such that it
appears invariant under the parity transformation, the cor-
relation matrix must be zero unless ‘ � ‘0mod 2, i.e., the
correlation matrix will present a factor �mod�2�

‘‘0 .
To end this section, let us consider the reflection on the

y � 0 plane. This operation changes only the azimuthal
angle as Py:’! �’, thus the transformation rule for the
spherical harmonics is

Y‘m�Pyn� � Y�‘m�n�;

the multipole coefficients a‘m change as ~a‘m � a�‘m, and
thus, the transformation rule for the correlation matrix is

ha‘ma�‘0m0 i
�
Py
� ha‘ma�‘0m0 i

��: (A7)

It immediately follows that if the fundamental polyhedron
is oriented such that it appears invariant under the reflec-
tion on the y � 0 plane, the correlation matrix must be real.
APPENDIX B: CLAUSEN FUNCTIONS

In this appendix we briefly present some computational
aspects of the theory of Clausen functions, as far as we
need them for our purposes. Clausen functions are periodic
functions of period 2�. There are two kinds of Clausen
functions, the ’ class and the  class. Clausen ’ functions
can be expressed in terms of polynomials, while Clausen  
functions involve higher transcendental functions, the so-
called Clausen integrals. Fortunately, we are interested
exclusively in the Clausen ’ functions, thus we will de-
velop the details of the theory only for them. The Clausen
’ functions are defined as

’2s�1�x� �
X1
n�1

sinnx

n2s�1 ; ’2s�x� �
X1
n�1

cosnx

n2s ; (B1)

for s � 1; 2; . . . , and can be calculated recursively with the
formulas,

’2s�x� � ��2s� �
Z x

0
’2s�1�y�dy;

’2s�1�x� �
Z x

0
’2s�y�dy;

(B2)

where

��s� �
X1
n�1

1

ns

is the Riemann zeta function.
These recurrence relations are complemented by the

initial condition
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’1�x� �
X1
n�1

sinnx
n

�
1

2

X
q2Z

��2q� 1��� x�

���x� 2�q���2��q� 1� � x�; (B3)

where ��x� is the Heaviside step function. Formula (B3)
can be verified by computing the Fourier series of the
second right-hand side.

Since the Clausen functions are periodic of period 2�,
we can write

’s�x� �
X
q2Z

fs�x� 2�q���x� 2�q���2��q� 1� � x�;

with f1�x� �
1
2 ��� x�. The recurrence formulas (B2)

yield the following expressions for the Clausen functions
in the period �0; 2��:

f2s�1�x� �
Xs�1

r�0

��1�r

�2r� 1�!
��2�s� r��x2r�1

�
��1�s

2

�
�x2s

�2s�!
�

x2s�1

�2s� 1�!

�
(B4)

for s � 0; 1; 2; . . . , and

f2s�x� �
Xs�1

r�0

��1�r

�2r�!
��2�s� r��x2r

�
��1�s

2

�
�x2s�1

�2s� 1�!
�

x2s

�2s�!

�
(B5)

for s � 1; 2; 3; . . . .
From the definitions (B1) we get f2s�1��� � 0, which

can be used to obtain a recurrence formula for the Riemann
zeta function of even argument,

��2s� �
Xs�1

r�1

��1�r�1

�2r� 1�!
��2�s� r���2r �

��1�ss
�2s� 1�!

�2s:

(B6)

Writing ��2s� � g2s�0��2s, and substituting this into (B6),
we have

g2s�0� �
Xs�1

r�1

��1�r�1

�2r� 1�!
g2�s�r��0� �

��1�ss
�2s� 1�!

:

The convenience for introducing this notation will be
apparent in what follows.

We will now seek for generalizations of the formulas
(B4) and (B5), i.e., we look for explicit expressions for the
Clausen functions in the qth interval �2�q; 2��q� 1��.
Since the Clausen functions satisfy the periodicity condi-
tions ’2s�1�2�q� � 0 and ’2s�2�q� � ��2s�, the recur-
-18
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rence relations (B2) can be rewritten in the form

’2s�x� � ��2s� �
Z x

2�q
’2s�1�y�dy;

’2s�1�x� �
Z x

2�q
’2s�y�dy;

(B7)

Defining the polynomials fqs �x� � fs�x� 2�q�, we no-
tice that ’s�x� coincides with fqs �x� in the interval
�2�q; 2��q� 1��. This fact, and the expressions (B7),
allow us to write recurrence formulas analog to (B2) for
the polynomials fqs �x� as follows:

fq2s�x� � g2s�q��
2s �

Z x

0
fq2s�1�y�dy;

fq2s�1�x� � g2s�1�q��2s�1 �
Z x

0
fq2s�y�dy;

(B8)

where

g2s�q� � g2s�0� �
1

�2s

Z 2�q

0
fq2s�1�y�dy;

g2s�1�q� � �
1

�2s�1

Z 2�q

0
fq2s�y�dy;

(B9)

with initial conditions, given by the first Clausen function,
fq1 �x� � g1�q���

x
2 and g1�q� � q� 1

2 .
The expressions (B8) can be written in a unified way as

fqs �x� � gs�q��
s � ��1�s

Z x

0
fqs�1�y�dy:

Using this expression, we readily obtain the explicit for-
mula, which is the generalization of (B4) and (B5) we were
looking for:

fqs �x� �
Xs�1

r�0

��1���r;s�

r!
gs�r�q��s�rxr �

��1���s;1�

2

xs

s!
;

(B10)

where

��r; s� �
�
r
2
�

1� ��1�s

4

�
;

and bxc is the floor function of x, i.e., the largest integer
smaller than x.

The expressions (B9) can also be written in a unified
way as

gs�q� � gs�0� �
��1�s

�s
Z 2�q

0
fqs�1�y�dy;

where

gs�0� �
� ��s�
�s if s is even
0 if s > 1 is odd:
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From this we get the expression analogous to (B10):

gs�q� � gs�0� � ��1�s
�Xs�1

r�1

��1���r�1;s�1� 2
r

r!
gs�r�q�q

r

� ��1���s�1;1� 2
s�1

s!
qs
	
: (B11)

The polynomials gs�q� can also be written in the canoni-
cal form

gs�q� �
Xs
k�0

Askq
k; (B12)

where the coefficients are given by As0 � gs�0�,

Asn � ��1�s
Xn
r�1

��1���r�1;s�1� 2
r

r!
As�rn�r

for 0< n< s, and

Ass���1�s
�Xs�1

r�1

��1���r�1;s�1�2
r

r!
As�rs�r���1���s�1;1�2

s�1

s!

	
;

with initial conditions A1
0 �

1
2 and A1

1 � 1. These coeffi-
cients are obtained by just introducing (B12) into (B11)
and collecting terms.
APPENDIX C: THE FUNCTION Fm‘‘0 �x�

In this appendix we evaluate the function Fm‘‘0 �x� given
by (38). We first observe (see Appendix A) that the func-
tion P ‘‘0m�x�, given by (41), is an even polynomial of �‘�
‘0� degree. Thus, we begin by considering the integral

I��� �
Z 1

�1
P�y� cos�ydy;

where P�y� is an even analytical function. Integrating
successively by parts, we get

I��� � 2
�

sin�
�

X1
s�0

��1�s

�2s P�2s��1�

�
cos�

�2

X1
s�0

��1�s

�2s P�2s�1��1�
	
; (C1)

where P�k��x� is the kth derivative of P�x�.
Making � � nx and P�x� � P ‘‘0m�x� in (C1), substitut-

ing (C1) in (38), and performing the sum in n, we get

Fm‘‘0 �x� � 4
X�‘�‘0�=2

s�0

��1�s
�
P �2s�‘‘0m�1�

x2s�1 ’2s�1�x�

�
P �2s�1�
‘‘0m �1�

x2s�2 ’2s�2�x�
	
; (C2)

where ’k�x� is the kth Clausen ’ function defined in
Appendix B.
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Since the Clausen functions are periodic functions of
period 2�, analytic in each period, it follows that Fm‘‘0 �x� is
a piecewise continuous function, analytic in each period as
well. Thus we will now show how the explicit expression
for Fm‘‘0 �x�, in the qth interval �2�q; 2��q� 1��, given in
(40), comes out.

Introducing the explicit form for the Clausen ’ func-
tions (B10), in the sum of (C2) yields a huge expression,
but a close inspection reveals that it is a polynomial in�=x.
The independent term is simply

�
1

2

X�‘�‘0�=2

s�0

��1�s

�s� 1�!
P �s�‘‘0m�1� � �

1

4

Z 1

�1
P ‘‘0m�x�dx

� �
1

4
�‘‘0 ;

where the first equality can be deduced by writing the
Taylor expansion of the integrand of the right-hand side,
and integrating. On the other hand, summing up all the
coefficients of the �r� 1�th odd term, and proceeding as
before, we have this term equal to

��1�rP �2r�‘‘0m�0�g2r�1�q�
�
�
x

�
2r�1

;

while the �r� 1�th even term is equal to

��1�rP �2r�1�
‘‘0m �0�g2r�2�q�

�
�
x

�
2r�2

;

which by the parity of P ‘‘0m�x� is zero. Summing up all the
terms we finally get (39) and (40).

APPENDIX D: KNOWN RESULTS FOR CLOSED
FLAT 3-MANIFOLDS

In this section we briefly show how we can obtain the
formulas for the correlation matrix of the a‘m’s and the
angular power spectrum, currently available in the litera-
ture, for some closed flat manifolds, as well as a simple
generalization, i.e., considering the observer out of the axis
of rotations of the screw motions of the covering group. We
present explicit derivations and formulas for the correlation
matrix ha‘ma�‘0m0 i, as well as for the power spectrum, in
order to allow the interested reader to perform their own
simulations confidently.

We first give a brief description of flat orientable closed
3-manifolds and their covering groups. The versions of the
diffeomorphic and isometric classifications of flat 3-
manifolds we present here were given by Wolf in [27],
and previous descriptions in the context of cosmic topol-
ogy were given in [28] (see [4,16] for alternative
descriptions).

There are six diffeomorphic classes of compact orient-
able Euclidean 3-manifolds. The generators for the cover-
ing groups of the first five classes, G1 �G5, are
�1 � �I; a�, �2 � �I;b�, and �3 � �Ai; c�, where A1 � I
is the identity and
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A2 �

�1 0 0
0 �1 0
0 0 1

0@ 1A; A4 �

0 �1 0
1 0 0
0 0 1

0@ 1A;

A3 �

0 �1 0
1 �1 0
0 0 1

0@ 1A; A5 �

0 �1 0
1 1 0
0 0 1

0@ 1A;
for the classes G1 � G5 respectively. It is important to
remark that these matrices for the rotations are written in
the basis formed by the set fa;b; cg of linearly independent
vectors. Thus, the torus G1 is generated by three indepen-
dent translations, while for the other manifolds the gener-
ators are two independent translations and a screw motion
along a linearly independent direction. The manifold G6 is
the most involved since their generators are all screw
motions. In the following, we present some general con-
siderations concerning the classes G1 � G5 only.

For space forms of the classes G2 � G5, the following
facts are easily derivable (see [28] for details):
(1) T
-20
he vector c is orthogonal to both a and b.

(2) T
he angle between a and b is a free parameter for

the class G2, while its value is fixed to be 2�=3,
�=2, and �=3 for the classes G3, G4, and G5,
respectively.
(3) D
enoting by jcj the length of the vector c, and
similarly for any other vector, one has that jaj �
jbj for the classes G3 �G5, while both lengths are
independent free parameters in the class G2.
Moreover, in all classes G2 � G5, jcj is an indepen-
dent free parameter.
(4) D
enoting the canonical unitary basis vectors in
Euclidean space by fêx; êy; êzg, one can always write
a � jajêx, b � jbj cos’êx � jbj sin’êy, and c �
jcjêz, for the basis fa;b; cg, where ’ is the angle
between a and b, as established in the item 2.
Thus in dealing with manifolds of classes G2 � G5, the
axis of rotation of the generator screw motion can be taken
to be the z axis, and the orthogonal part of this generator, in
the basis fêx; êy; êzg, is

A �
cos� � sin� 0
sin� cos� 0

0 0 1

0
@

1
A; (D1)
with � � �, 2�=3, �=2, and �=3, respectively. Since the
axis of rotation passes through the origin, the translational
part of the generator �3 is c � �0; 0; Lz�, where we have
put jcj � Lz as is usual in cosmic topology.

However, in cosmological applications we need to con-
sider the arbitrariness of the position of the observer inside
space. Thus if the axis of rotation is at a distance � from the
origin (the observer), and its intersection with the horizon-
tal plane makes an angle 
 with the positive x axis, the
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translational part of the screw motion �3 � �A; c� is

c � ��cos
� cos�
� ���êx

� ��sin
� sin�
� ���êy � Lzêz: (D2)

In order to perform calculations of the topological sig-
nature of CMB temperature maps, we need to write the
covering group for the manifold under study in a compact
form. For a torus G1 the problem is trivial, since the
covering group is generated by three independent trans-
lations, and thus any two isometries commute (see Sec. D 1
below), while the covering groups for the other closed flat
manifolds are noncommutative since they contain screw
motions.

The generators of the covering groups for the classes
G2 � G5 satisfy certain relations of the form

�3�
n1
1 �

n2
2 � �m1

1 �m2
2 �3;

where n1; n2; m1; m2 2 Z, and they hold whether the axis
of rotation passes through the origin or not. It follows that a
generic isometry can always be put in the form

� � �n1
1 �

n2
2 �

n3
3 ; (D3)

with �n1
1 � �I; n1a�, �n2

2 � �I; n2b�, and

�n3
3 � �A

h; n3ck �Ohc?�;

where A is given by (D1), � � 2�=s, n3 � sq� h, with q
and h integers such that 0< h 
 s, the parameter s being
2, 3, 4, , and 6 corresponding to G2, G3, G4, and G5,
respectively,

O h �
Xh�1

j�0

Aj;

ck � Lzêz, and c? � ��cos
� cos�
� ���êx �
��sin
� sin�
� ���êy.

It is now straightforward to compute both the correlation
matrix ha‘ma�‘0m0 i and the angular power spectrumC‘. They
all have a simple structure. We first describe the general
procedure for obtaining these expressions and present the
results in a unified form. We finally specify each case
separately. Note that, due to (D2), in all of our calculations
we are considering that the observer may be off an axis of
rotation of the screw motions of �.

Upon introducing (D3) into (25), we transform the series
of exponentials in a series of Dirac’s delta functions by
using (32). The integration of (23) is then immediate in
Cartesian coordinates, the general result being

ha‘ma�‘0m0 i �
�4��2

V
i‘�‘

0
X

p2Ẑ3

1

�3 �‘‘0 �2���Y‘0m0 �n ~��

� Y�‘m�n ~��f
�
m0 �2�

~��;

where V is the volume of the manifold, and Ẑ3 � Z3 n
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�0; 0; 0�, since the term corresponding to p � 0 represents a
constant perturbation, and thus is neglected.

The function

f�
m�k� �

1

s

�
1�

Xs�1

h�1

!�hms e�ik
Ohc
	
;

where!s is the first complex sth root of unity, is a complex
modulating term characteristic of the geometry and topol-
ogy of the spatial section of the universe model, and
depends only on the screw motion generators. The vector
~��p� comes from the discretization of the wave vector k

due to the Dirac’s deltas (each 2�� is an eigenvalue of the
Laplacian operator), and n ~� is the unit vector in the direc-

tion of ~�.
Using the property ha‘ma�‘0m0 i � ha‘0m0a

�
‘mi
�, one can

easily show, by resumming the series, that the variances
of the multipole moments can be put in the general form

hja‘mj
2i�
�4��2

V

X
p2Ẑ3

1

�3 �‘‘�2���jY‘m�n ~��j
2<�f�

m� ~2����;

where< stands for the real part of a complex number. The
angular power spectrum is then

C‘ �
4�
V

X
p2Ẑ3

1

�3 �‘‘�2���	‘�2� ~��;

where

	‘�k� �
4�

2‘� 1

X‘
m��l

jY‘m�nk�j
2<�f�

m�k��

can be evaluated using the addition theorem for spherical
harmonics yielding

	‘�k� �
1

s

�
1�

Xs�1

h�1

P‘�cos
k;h� cos�k 
Ohc�
	
;

where

cos
k;h � cos2
k � sin2
k cos
2�h
s
:

1. Rectangular torus G1

The generators for the rectangular torus are the trans-
lations a � Lxêx, b � Lyêy, and c � Lzêz, thus a generic
isometry of its covering group can be written as � � �I; r�,
with r � nxLxêx � nyLyêy � nzLzêz, and nx; ny; nz 2 Z,
i.e., the covering group of G1 is parametrized by Z3.

It follows immediately that, for a rectangular torus, the
expression (25) takes the form
-21
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��
‘m�k� �

X
n2Z3

e�i�nxkxLx�nykyLy�nzkzLz�Y‘m�nk�

� �2��3
X

p2Z3

��kxLx � 2�px���kyLy

� 2�py���kzLz � 2�pz�Y‘m�nk�:

Following the procedure described above one gets
f�
m�k� � 1, and �x � px=Lx, �y � py=Ly, and �z �
pz=Lz. In particular, we have the well-known result

C‘ �
4�
V

X
p2Ẑ3

1

�3 �‘‘�2���:
2. Rectangular G2

The generators for the rectangular G2 are �1 � �I; a�,
�2 � �I;b�, and �3 � �A; c�, with a � Lxêx, b � Lyêy,
c � 2� cos
êx � 2� sin
êy � Lzêz, and A given in (D1)
with � � �. They satisfy the relations �1�3�1 � �3 and
�2�3�2 � �3, which allow to write any isometry of the
covering group by (D3) with

�n3
3 �

�
�I; n3ck� if n3 is even
�A; n3ck � c?� if n3 is odd;

(D4)

where c? � 2� cos
êx � 2� sin
êy.
It follows from (D3) and (D4) that the expression (25)

takes the form

��
‘m�k� �

X
n2Z3

e�i�nxkxLx�nykyLy�2nzkzLz�

� �1� ��1�me�ik
c�Y‘m�nk�

� �2��3
X

p2Z3

��kxLx � 2�px���kyLy � 2�py�

� ��kzLz � �pz�Y‘m�nk�f�
m�k�;

where we have put n1 � nx, n2 � ny, and n3 � 2nz or
2nz � 1, depending on whether n3 is even or odd. The
components of ~� are �x � px=Lx, �y � py=Ly, and �z �
pz=2Lz.

3. G3

The generators for a manifold of class G3 are �1 �

�I; a�, �2 � �I;b�, and �3 � �A; c�, with a � Lêx, b �
� L

2 �êx �
���
3
p

êy�, c � �
2 �3 cos
�

���
3
p

sin
�êx �
�
2 �

�3 sin
�
���
3
p

cos
�êy � Lzêz, and A given in (D1) with
� � 2�=3. They satisfy the relations ��1

2 �3�1 � �3 and
�1�2�3�2 � �3, which allow us to write any isometry of
the covering group by (D3) with

�n3
3 �

8><
>:
�I; n3ck� if n3 � 0 mod 3
�A; n3ck � c?� if n3 � 1 mod 3
�A2; n3ck �O2c?� if n3 � 2 mod 3;

(D5)
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where c? �
�
2 �3 cos
�

���
3
p

sin
�êx �
�
2 �3 sin
����

3
p

cos
�êy.
It follows from (D3) and (D5) that the expression (25)

takes the form

��
‘m�k� �

X
n2Z3

e�ifnxkxL�ny��
������
3=2
p

�ky��1=2�kx�L�3nzkzLzg

� �1�!�m3 e�ik
c �!�2m
3 e�ik
O2c�Y‘m�nk�

� �2��3
X

p2Z3

��kxL� 2�px��
�� ���

3
p

2
ky �

1

2
kx

	
L

� 2�py

�
�
�
kzLz �

2�
3
pz

�
Y‘m�nk�f

�
m�k�;

where we have put n1 � nx, n2 � ny, and n3 � 3nz, 3nz �
1 or 3nz � 2 according to (D5). We also get�x �

px
L ,�y �

�
���
3
p
=�3L���2py � px�, and �z � pz=�3Lz�.

4. G4

The generators for a manifold of class G4 are �1 �
�I; a�, �2 � �I;b�, and �3 � �A; c�, with a � Lêx, b �
Lêy, c � ��cos
� sin
�êx � ��sin
� cos
�êy �
Lzêz, and A given in (D1) with � � �=2. They satisfy
the relations ��1

2 �3�1 � �3 and �1�3�2 � �3, which al-
low us to write any isometry of the covering group by (D3)
with

�n3
3 �

8>>>><>>>>:
�I; n3ck� if n3 � 0 mod 4
�A; n3ck � c?� if n3 � 1 mod 4
�A2; n3ck �O2c?� if n3 � 2 mod 4
�A3; n3ck �O3c?� if n3 � 3 mod 4;

(D6)

where c? � ��cos
� sin
�êx � ��sin
� cos
�êy.
Similarly, using (D3) and (D6), the expression (25) takes

the form

��
‘m�k� �

X
n2Z3

e�i�nxkxL�nykyL�4nzkzLz�

�

�
1�

X3

h�1

!�hm4 e�ik
Ohc
	
Y‘m�nk�

� �2��3
X

p2Z3

��kxL� 2�px���kyL� 2�py�

� �
�
kzLz �

�
2
pz

�
Y‘m�nk�f

�
m�k�;

where we have put n1 � nx, n2 � ny, and n3 � 4nz, 4nz �
1, 4nz � 2, or 4nz � 3 according to (D6). We also get�x �
px
L , �y �

py
L , and �z � pz=�4Lz�.
-22
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5. G5

The generators for the rectangular G5 are �1 � �I; a�,
�2 � �I;b�, and �3 � �A; c�, with a � Lêx, b � L

2 �êx ����
3
p

êy�, c � �
2 �cos
�

���
3
p

sin
�êx �
�
2 �sin
����

3
p

cos
�êy � Lzêz, and A given in (D1) with � � �=3.
They satisfy the relations ��1

2 �3�1 � �3 and
�1�

�1
2 �3�2 � �3, which allow us to write any isometry

of the covering group by (D3) with

�n3
3 �

8>>>>>>>><>>>>>>>>:

�I; n3ck� if n3 � 0 mod 6
�A; n3ck � c?� if n3 � 1 mod 6
�A2; n3ck �O2c?� if n3 � 2 mod 6
�A3; n3ck �O3c?� if n3 � 3 mod 6
�A4; n3ck �O4c?� if n3 � 4 mod 6
�A5; n3ck �O5c?� if n3 � 5 mod 6

(D7)

where c?�
�
2 �cos
�

���
3
p

sin
�êx�
�
2 �sin
�

���
3
p

cos
�êy.
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Using (D3) and (D7), the expression (25) takes the form

��
‘m�k� �

X
n2Z3

e�ifnxkxL�ny��
��
3
p
=2�ky��1=2�kx�L�6nzkzLzg

�

�
1�

X5

h�1

!�hm6 e�ik
Ohc
	
Y‘m�nk�

� �2��3
X

p2Z3

��kxL� 2�px��
�� ���

3
p

2
ky �

1

2
kx

	
L

� 2�py

�
�
�
kzLz �

�
3
pz

�
Y‘m�nk�f

�
m�k�;
where we have put n1 � nx, n2 � ny, and n3 � 6nz, 6nz �
1, 6nz � 2, . . ., 6nz � 5 according to (D7). We also get
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