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We study the cosmological and weak-field properties of theories of gravity derived by extending
general relativity by means of a Lagrangian proportional to R1��. This scale-free extension reduces to
general relativity when � ! 0. In order to constrain generalizations of general relativity of this power
class, we analyze the behavior of the perfect-fluid Friedmann universes and isolate the physically relevant
models of zero curvature. A stable matter-dominated period of evolution requires � > 0 or � <�1=4. The
stable attractors of the evolution are found. By considering the synthesis of light elements (helium-4,
deuterium and lithium-7) we obtain the bound�0:017< �< 0:0012. We evaluate the effect on the power
spectrum of clustering via the shift in the epoch of matter-radiation equality. The horizon size at matter-
radiation equality will be shifted by�1% for a value of �� 0:0005. We study the stable extensions of the
Schwarzschild solution in these theories and calculate the timelike and null geodesics. No significant
bounds arise from null geodesic effects but the perihelion precession observations lead to the strong bound
� � 2:7� 4:5� 10�19 assuming that Mercury follows a timelike geodesic. The combination of these
observational constraints leads to the overall bound 0 � � < 7:2� 10�19 on theories of this type.
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I. INTRODUCTION

There is a long history of considering generalizations of
Einstein’s theory of general relativity which reduce to
general relativity in the weak gravity limit when the
space-time curvature, R, becomes small. Typically, these
studies consider a gravitational Lagrangian which aug-
ments the linear Einstein-Hilbert Lagrangian by the addi-
tion of terms of quadratic or higher order in R; first
considered by Eddington [1]; these additions may also
include terms in lnR, [2]. More general extensions of
general relativity in this spirit have considered the structure
of theories derived from gravitational Lagrangians that are
general analytic functions of R [3–6]. These choices pro-
duce theories which can look like general relativity plus
small polynomial corrections in the appropriate limiting
situations as R becomes small. There has also been interest
in theories with corrections to general relativity that are
O�R�1	 because of their scope to introduce cosmological
deviations from general relativity at late times which might
mimic the effects of dark energy on the Hubble flow [7,8].
We also know that theories derived from a Lagrangian that
is an analytic function of R have an important conformal
relationship to general relativity with scalar-field sources
so long as the trace of the energy-momentum tensor van-
ishes in the higher-order gravity theory [9,10]. All these
theories introduce corrections to general relativity which
come with a characteristic length scale that is determined
by the new coupling constant that couples the higher-order
terms to the Einstein-Hilbert part of the Lagrangian. In
general, these theories are mathematically complicated
with 4th-order field equations that can exhibit singular
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perturbation behavior unless care is taken to ensure that
the stationary action does not become maximal rather than
minimal [5,11]. and there are few interesting exact solu-
tions other than those of general relativity, which are
particular solutions in vacuum and for trace-free energy-
momentum tensor so long as the cosmological constant
vanishes [5].

In this paper we are going to consider a different type of
generalization of Einstein’s general relativity, in which no
new scale is introduced. The Lagrangian is proportional to
Rn, and so general relativity is recovered in the n! 1
limit, from above or below. Particular cases have been
studied by Buchdahl [12] and Roxburgh [13]. This gravi-
tation theory has many appealing properties and, unlike
other higher-order gravity theories, admits simple exact
solutions for Friedmann cosmological models and exact
static spherically symmetric solutions which generalize the
Schwarzschild metric. As well as allowing comparison
with observation, these solutions also provide an interest-
ing testing ground for new developments in gravitation
theory such as particle production, holography and gravi-
tational thermodynamics. Furthermore, this theory is of
additional interest because it permits a very general inves-
tigation of the nature of its behavior in the vicinity of a
cosmological singularity which brings the behavior of
general relativity into sharper focus. In another paper
[14], we show that the counterpart of the Kasner aniso-
tropic vacuum cosmology can be found exactly and strong
conclusions drawn about the presence or absence of the
chaotic behavior found in the mixmaster universe.

The structure of this paper is as follows: in the next
section we present the gravitational action and field equa-
tions for the theory of gravity we will be considering. A
conformal relationship with general relativity containing a
scalar field in a Liouville (exponential) potential is then
-1 © 2005 The American Physical Society
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outlined and the Newtonian limit of the field equations is
investigated. The rest of the paper is then split into two
sections; the first investigates the cosmology of the theory
and the second investigates the static and spherically sym-
metric weak field—in both cases our goal is to calculate
predictions for physical processes, the results of which can
be compared with observation. We use observational data
from cosmology and the standard solar-system tests of
general relativity to bound the allowed values of n, the
single defining parameter of the theory.

In the cosmology section we consider Friedmann-
Robertson-Walker (FRW) universes. We present the
equivalent of the Friedmann equations, in this theory, and
find some power-law exact solutions. A dynamical systems
approach is then used to show the extent to which these
solutions can be considered as attractors of spatially flat
universes at late times. After showing the attractive prop-
erties of these solutions (with certain exceptions), we
proceed to predict the results of primordial nucleosynthesis
and the form of the power spectrum of perturbations in this
theory. These predictions are then compared to observation
and used to constrain deviations from general relativity.

The static and spherically symmetric weak-field analysis
follows. We present the field equations and find the physi-
cally relevant exact solution to them. A dynamical systems
approach is then used to find the asymptotic attractor of the
general solution at large distances. This asymptotic form is
then perturbed and the linearized field equations are found
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and solved. The exact solution is shown to be the relevant
solution in this limit, when oscillatory modes in the per-
turbed metric functions are set to zero. We find the null and
timelike geodesics for this space-time to Newtonian and
post-Newtonian order. Predictions are then made for the
outcomes of the classical tests of general relativity in this
theory; namely, the bending of light, the time delay of radio
signals and the perihelion precession of Mercury. These
predictions are then compared to observation and again
used to constrain deviations from general relativity.

II. FIELD EQUATIONS

We consider here a gravitational theory derived from the
Lagrangian density

L G �
1

�
�������
�g
p

R1��; (1)

where � is a real number and � is a constant. The limit �!
0 gives us the familiar Einstein-Hilbert Lagrangian of
general relativity and we are interested in the observational
consequences of j�j> 0.

We denote the matter action as Sm and ignore the
boundary term. Extremizing

S �
Z

LGd4x� Sm;

with respect to the metric gab then gives [12]
��1� �2	R�
R;aR;b
R2 � ��1� �	R�

R;ab

R
� �1� �	R�Rab �

1

2
gabRR� � gab��1� �2	R�

R;cR;
c

R2

� ��1� �	gabR�
�R
R
�
�
2
Tab; (2)
where Tab is the energy-momentum tensor of the matter,
and is defined in terms of Sm and gab in the usual way. We
take the quantity R� to be the positive real root of R
throughout this paper.

A. Conformal equivalence to general relativity

Rescaling the metric by the conformal factor ��r	 �
�0R� the vacuum field equations (2) become

�Gab �
3�2

2

R;aR;b
R2 �

3�2

4
�gab �gcd

R;cR;d
R2

�
�

2�1� �	
�gab
�0

R

R�
;

where �gab � �gab and other quantities with overbars are
constructed from the rescaled metric �gab.

Making the definition of a scalar field

� 


�������������
3

16�G

s
lnR�;
these equations can be rewritten as

�Gab � 8�G��;a�;b �
1
2 �gab� �g

cd�;c�;d � 2V��			 (3)

and

�� �
dV
d�

;

where V��	 is given by

V��	 �
�sign�R	

16�G�1� �	�0
exp

� �������������
16�G

3

s
�1� �	
�

�
�
: (4)

The magnitude of the quantity �0 is not physically im-
portant and simply corresponds to the rescaling of the
metric by a constant quantity, which can be absorbed by
an appropriate rescaling of units. It is, however, important
to ensure that �0 > 0 in order to maintain the�2 signature
of the metric. This result is a particular example of the
general conformal equivalence to general relativity plus a
-2



1This equivalence to scalar-tensor theories should not be taken
to imply that bounds on the Brans-Dicke parameter ! are
immediately applicable to this theory. It can be shown that a
potential for the scalar field can have a nontrivial effect on the
resulting phenomenology of the theory [15]. Furthermore, the
form of the perturbation to general relativity that we are con-
sidering does not allow an expansion of the corresponding scalar
field of the form �0 ��1 where �0 is constant and j�1j �
j�0j, so that any constraints obtained in a weak-field expansion
of this sort cannot be applied to this situation.
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scalar field for Lagrangians of the form f�R	, where f is an
analytic function found in Refs. [9,10].

B. The Newtonian limit

By comparing the geodesic equation to Newton’s gravi-
tational force law, it can be seen that, as usual,

��00 � �;� (5)

where � is the Newtonian gravitational potential. All the
other Christoffel symbols have �abc � 0, to the required
order of accuracy.

We now seek an approximation to the field equations (2)
that is of the form of Poisson’s equation; this will allow us
to fix the constant �. Constructing the components of the
Riemann tensor from (5) we obtain the standard results:

R�0�0 �
@2�

@x�@x�
and R00 � r

2�: (6)

The 00 component of the field equations (2) can now be
written

�1� �	R00 �
1

2
g00R �

�
2

T00

R�
(7)

where terms containing derivatives of R have been dis-
carded as they will contain third and fourth derivatives of
�, which will have no counterparts in Poisson’s equation.
Subtracting the trace of Eq. (7) gives

�1� �	R00 �
�

2R�

�
T00 �

1

2�1� �	
g00T

�
(8)

where T is the trace of the stress-energy tensor. Assuming a
perfect-fluid form for T, we should have, to first order,

T00 ’ � and T ’ 3p� � ’ ��: (9)

Substituting (9) and (6) into (8) gives

r2� ’
��1� 2�	

4�1� �2	

�

R�
:

Comparison of this expression with Poisson’s equation
allows one to read off

� � 16�G
�1� �2	

�1� 2�	
R�0 (10)

where R0 is the value of the Ricci tensor at the time G is
measured. It can be seen that the Newtonian limit of the
field equations (2) does not reduce to the usual relation
r2� / �, but instead contains an extra factor of R�. This
can be interpreted as being the space-time dependence of
Newton’s constant, in this theory. Such a dependence
should be expected as the Lagrangian (1) can be shown
to be equivalent to a scalar-tensor theory, after an appro-
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priate Legendre transformation1 (see e.g., [16]). This type
of Newtonian gravity theory admits a range of simple exact
solutions in the case where the effective value of G is a
power law in time even though the theory is nonconserva-
tive and there is no longer an energy integral [17].

III. COSMOLOGY

In this paper we will be concerned with the idealized
homogeneous and isotropic space-times described by the
Friedmann-Robertson-Walker metric with curvature pa-
rameter �:

ds2 � �dt2 � a2�t	
�

dr2

�1� �r2	
� r2d	2 � r2sin2	d�2

�
:

(11)

Substituting this metric ansatz into the field equations (2),
and assuming the universe to be filled with a perfect fluid of
pressure p and density �, gives the generalized version of
the Friedmann equations

�1� �	R1�� � 3��1� �	R�
� �R
R
� 3

_a
a

_R
R

�

� 3��1� �2	R�
_R2

R2 �
�
2
��� 3p	 (12)

�3
�a
a
�1� �	R� �

R1��

2
� 3��1� �	

_a
a

_R
R
R� �

�
2
�

(13)

where, as usual,

R � 6
�a
a
� 6

_a2

a2 � 6
�

a2 : (14)

It can be seen that in the limit �! 0 these equations
reduce to the standard Friedmann equations of general
relativity. A study of the vacuum solutions to these equa-
tions for all � has been made by Schmidt, see the review
[18] and a qualitative study of the perfect-fluid evolution
for all � has been made by Carloni et al. [19]. Various
conclusions are also immediate from the general analysis
of f�R	 Lagrangians made in Ref. [5] by specializing them
to the case f � R1��. In what follows we shall be inter-
ested in extracting the physically relevant aspects of the
general evolution so that observational bounds can be
placed on the allowed values of �.
-3
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FIG. 1. Critical density, �0, as a function of �. The solid line corresponds to pressureless dust and the dashed line to blackbody
radiation.
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Assuming a perfect-fluid equation of state of the form
p � !� gives the usual conservation equation � /
a�3�!�1	. Substituting this into Eqs. (12) and (13), with
� � 0, gives the power-law exact Friedmann solution for
! � �1

a�t	 � t�2�1��	
=�3�1�!	
 (15)

where

�1� 2�	�2� 3��1�!	 � 2�2�4� 3!		

� 12�G�1� �	�1�!	2�c (16)

and �c is the critical density of the universe.
Alternatively, if ! � �1, there exists the de Sitter so-

lution

a�t	 � ent

where

3�1� 2�	n2 � 8�G�1� �	�c:

The critical density (16) is shown graphically, in Fig. 1,
in terms of the density parameter �0 � �8�G�c	=�3H2

0	 as
a function of � for pressureless dust (! � 0) and black-
body radiation (! � 1=3). It can be seen from the graph
that the density of matter required for a flat universe is
dramatically reduced for positive �, or large negative �. In
order for the critical density to correspond to a positive
matter density we require � to lie in the range

�

������������������������������������
73� 66!� 9!2
p

� 3�1�!	
4�4� 3!	

< �;

� <

������������������������������������
73� 66!� 9!2
p

� 3�1�!	
4�4� 3!	

:

(17)
A. The dynamical systems approach

The system of Eqs. (12), (13), and (19) have been
studied previously using a dynamical systems approach
by Carloni, Dunsby, Capozziello and Troisi for general �
[19]. We elaborate on their work by studying in detail the
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spatially flat, � � 0, subspace of solutions. This allows us
to draw conclusions about the asymptotic solutions of (12)
and (13) when � � 0 and so investigate the stability of the
power-law exact solution (15) and the extent to which it
can be considered an attractor solution. By restricting to
� � 0 we avoid ‘‘instabilities‘‘ associated with the curva-
ture which are already present in general-relativistic
cosmologies.

In performing this analysis we choose to work in the
conformal time coordinate

d
 


����������
8��

3R�

s
dt: (18)

Making the definitions

x 

R0

R
and y 


a0

a
;

where a prime indicates differentiation with respect to 
,
the field equations (12) and (13) can be written as the
autonomous set of first-order equations

x0 �
2� ��1� 3!	

�2�1� �	
�
�x2

2
�
�4� ��1� 3!		xy

2�

�
2�1� �	y2

�2 (19)

y0 � �
1

�
�

1

2
�2� 3�	xy�

�2� ��1� 3!		y2

2�
: (20)

These coordinate definitions are closely related to those
chosen by Holden and Wands [20] for their phase-plane
analysis of Brans-Dicke cosmologies and allow us to pro-
ceed in a similar fashion.

1. Locating the critical points

The critical points at finite distances in the system of
Eqs. (19) and (20) are located at

x1;2 � �
1� 3!

�
�����������������������������������
�1� �	�2� 3!	

p (21)
-4
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and

y1;2 � �
1�����������������������������������

�1� �	�2� 3!	
p

and at

x3;4 � �
3
�������������������
2�1�!	

p
��������������������������������������������������������������������������������
�1� �	�2� 3��1�!	 � �2�8� 6!		

p (22)

and

y3;4 � �

������������������
2�1� �	

p
��������������������������������������������������������������
2� 3��1�!	 � �2�8� 6!	

p :

The exact form of a�t	 at these critical points, and the
stability of these solutions, can be easily deduced. At the
critical point �xi; yi	, the forms of a�
	 and R�
	 are given
by

a�
	 � a0e
yi
 and R�
	 � R0e

xi
; (23)

where a0 and R0 are constants of integration. In terms of 

the perfect-fluid conservation equation can be integrated to
give

� � �0e�3�1�!	yi
;

where �0 is another positive constant. Substituting into the
definition of 
 now gives

d
 / e��3=2	�1�!	yi
���=2	xi
dt
103005
or, integrating,

t� t0 /
1

3
2 �1�!	yi �

�
2 xi

e�3=2	�1�!	yi
���=2	xi
: (24)

It can now be seen that if 3�1�!	yi � �xi > 0 then
t! 1 as 
! 1 and t! t0 as 
! �1. Conversely, if
3�1�!	yi � �xi < 0 then t! t0 as 
! 1 and t! �1
as 
! �1.

In terms of t time, the solutions corresponding to the
critical points at finite distances can now be written as

a�t	 / �t� t0	
�2yi	=�3�1�!	yi��xi


and

R�t	 / �t� t0	�2xi	=�3�1�!	yi��xi
:

The critical points 1 and 2 can now been seen to correspond
to a / t1=2 and the points 3 and 4 correspond to (15).

In order to analyze the behavior of the solutions as they
approach infinity it is convenient to transform to the polar
coordinates

x � �r cos� y � �r sin�:

The infinite phase plane can then be compacted into a finite
size by introducing the coordinate

r �
�r

1� �r
:

Equations (19) and (20) then become
r0 �
�1

4�2�1� �	
�4�1� 2r	���1� �	 sin�� �2� ��1� 3!		 cos�	 � r2��6� 4�� 3�2 � �3 � 12�!	 cos�

� �1� �	�2� 2�� �2 � 2�3	 cos3�� 2��3� ��1� 3!	 � 3 cos2�	 sin�		 (25)

and

�0 �
�1

2�2�1� �	�1� r	r
��2��1� �	 cos�� 2�2� ��1� 3!		 sin�	�1� 2r	 � ���1� �	 cos��1� 3 cos2�	

� 4 sin�� 4�1� �	2sin3�� 2��1� 3!� ��1� �	�1� 2�	cos2�	 sin�	r2	: (26)
In the limit r! 1 ( �r! 1) it can be seen that critical
points at infinity satisfy

sin�i�� cos�i � sin�i	���1� 2�	 cos�i

� 2�1� �	 sin�i	 � 0

and so are located at

�5;�6	 � 0 ���	 (27)
�7;�8	 � tan�1���	 ���	 (28)

�9;�10	 � tan�1

�
�
��1� 2�	
2�1� �	

�
���	: (29)

The form of a�t	 can now be calculated for each of these
critical points by proceeding as Holden and Wands [20].
Firstly, as r! 1 Eq. (25) approaches
r0 !
1

4�2 ���1� 2��1� 3!		 sin�i � 3� sin3�i � �2� ��2� �		 cos�i � �2� ��2� �� 2�2		 cos3�i	 
 f��i	

which allows the integral
-5
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r� 1 � f��i	�
� 
0	

where the constant of integration 
0 has been set so that
r! 1 as 
! 
0. Now the definition of x allows us to write

R0

R
�

r
�1� r	

cos�i

� �
f��i	�
� 
0	 � 1

f��i	�
� 
0	
cos�i

! �
cos�i

f��i	�
� 
0	

as 
! 
0. Integrating this it can be seen that

R / j
� 
0j
��cos�i	=�f��i	
 as r! 1:

Similarly,

a / j
� 
0j
��sin�i	=�f��i	
 as r! 1:

The definition of 
 (18) now gives

d
 / j
� 
0j
�3=2	�1�!	f�sin�i	=�f��i	
g���=2	f�cos�i	=�f��i	
gdt

which integrates to

t� t0 / �
f��1	

F��i	
j
� 
0j

��F��i	
=�f��i	
 (30)

where

F��i	 �
3�1�!	 sin�i � � cos�i � 2f��i	

2
:

The location of critical points at infinity can now be written
in terms of t as the power-law solutions

R�t	 / �t� t0	�cos�i	=�f��i	
 (31)

and

a�t	 / �t� t0	
�sin�i	=�f��i	
:

TIMOTHY CLIFTON AND JOHN D. BARROW
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Direct substitution of the critical points (27)–(29) into
(31) gives

a5;6�t	 ! const a7;8�t	 !
������������
t� t0
p

a9;10�t	 ! �t� t0	���1�2�	
=�1��	

as r! 1. Moreover, it can be seen from (30) that as r! 1
and 
! 
0 so t! t0 as long as F��i	=f��i	< 0, as is the
case for the stationary points considered here [as long as
the value of � lies within the range given by (17)].

The exact forms of a�t	 at all the critical points are
summarized in the table below.
Critical point
-6
a(t)
1, 2, 7 and 8
 t1=2
3 and 4
 t�2�1��	
=�3�1�!	

5 and 6
 constant

9 and 10
 t���1�2�	
=�1��	
2. Stability of the critical points

The stability of the critical points at finite distances can
be established by perturbing x and y as

x�r	 � xi � u�r	 and y�r	 � yi � v�r	 (32)

and checking the sign of the eigenvalues �i of the line-
arized equations

u0 � �iu and v0 � �iv:

Substituting (32) into Eqs. (19) and (20) and linearizing
in u and v gives
u0 � �
�
�xi �

�4� ��1� 3!		
2�

yi

�
u�

�
�4� ��1� 3!		

2�
xi � 4

�1� �	

�2 yi

�
v

v0 �
�2� 3�	

2
y0u�

�
�2� 3�	

2
xi �

�2� ��1� 3!		
�

y0

�
v:

The eigenvalues �i are therefore the roots of the quadratic equation

�2
i � B�i � C � 0

where

B � �
1

2
�2� �	xi �

3

2
�1� 3!	yi

C � �
�
2
�2� 3�	x2

i � �2� ��1� 3�		xiyi �
1

2�
�2� 11�� 6!�1� �	 � 9�!2	y2

i :

If B> 0 and C> 0 then both values of �i are negative, and we have a stable critical point. If B< 0 and C> 0 both values
of �i are positive, and the critical point is unstable to perturbations. C> 0 gives a saddle point.

For points 1 (upper branch) and 2 (lower branch) this gives
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B � �
�1� ��2� 3!	 � 3!	

�
�����������������������������������
�1� �	�2� 3!	

p and C � �
�1� 4�� 3!	
��1� �	

and for points 3 (upper branch) and 4 (lower branch)

B � �
3�1�!�1� 2�		�������������������������������������������������������������������������������������

2�1� �	�2� 3��1�!	 � 2�2�4� 3!		
p and C �

�1� 4�� 3!	
��1� �	

:

The stability of the critical points at finite distances for a universe filled with pressureless dust are therefore, for various
different values of �, given by
Critical point
 B
 C
1

��
������
73
p

� 3=16	< �<� 1
4

03005-7
� 1
4 < �< 0
 0< �< �

������
73
p

� 3=16	
1
 ��1� 2�	=��
������������������
2�1� �	

p


 � �1�4�	

��1��	
 Saddle
 Stable
 Saddle
2
 �1� 2�	=��
������������������
2�1� �	

p


 � �1�4�	

��1��	
 Saddle
 Unstable
 Saddle
3
 3=�
��������������������������������������������������
2�1� �	�2� 3�� 8�2	

p


 �1�4�	

��1��	
 Stable
 Saddle
 Stable
4
 �3=�
��������������������������������������������������
2�1� �	�2� 3�� 8�2	

p


 �1�4�	

��1��	
 Unstable
 Saddle
 Unstable
and for a universe filled with blackbody radiation are given by
Critical point
 B
 C
 ���
���
6
p
� 1	=5
< �< ��

���
6
p
� 1	=5

1
 �3=
�������������
1� �
p

� 4
�1��	
 Saddle
2
 3=
�������������
1� �
p

� 4
�1��	
 Saddle
3
 �1� �	=
������������������������������������������������
�1� �	�1� 2�� 5�2	

p

4

�1��	
 Stable
4
 �1� �	=
������������������������������������������������
�1� �	�1� 2�� 5�2	

p

4

�1��	
 Unstable
Values of � <�f�
������������������������������������
73� 66!� 9!2
p

� 3�1�!	
=�4�4� 3!	
g and � > �
������������������������������������
73� 66!� 9!2
p

� 3�1�!	
=�4�4�
3!	
 have not been considered here as they lead to negative values of �0 for the solution (15). (The reader may
note the difference here between the range of � for which point 3 is a stable attractor compared with the analysis of
Carloni et al.).

Point 3 lies in the y > 0 region and so corresponds to the expanding power-law solution (15). It can be seen from
the table above that this solution is stable for certain ranges of � and a saddle point for others. In contrast, point 4, the
contracting power-law solution (15), is unstable or a saddle point. The nature of the stability of these points and the
trajectories which are attracted towards them will be explained further in the next section.

A similar analysis can be performed for the critical points at infinity. This time only the variable � will be perturbed as

��t	 � �i � q�t	: (33)

The conditions for stability of the critical points are now that r0 > 0 and the eigenvalue � of the linearized equation q0 �
�q satisfies�< 0, in the limit r! 1. If both of these conditions are satisfied then the point is a stable attractor, if only one
is satisfied the point is a saddle point and if neither are satisfied then the point is repulsive.

Substituting (33) into (26) and linearizing in q�t	 gives, in the limit r! 1,

q0 �
1

4�2�1� r	
��6�1� �	 � �2�1� 2�		 cos�i � 3�2�1� �	 � �2�1� 2�		 cos3�i � 3� sin�i � 9� sin3�	q 
 �q:

The sign of r0 in the limit r! 1 can be read off from (25). The stability properties of each of the stationary points at infinity
can now be summarized in the table below:
Critical point �N1 < �<� 1
2 � 1

2 < �< 0
 0< �< 1
4

1
4 < �
<N2
5 Stable Saddle
 Unstable Uns
table

6 Unstable Saddle
 Stable Sta
ble

7 Unstable Unstable
 Saddle Sta
ble

8 Stable Stable
 Saddle Uns
table

9 Saddle Stable
 Stable Sa
ddle

10 Saddle Unstable
 Unstable Sa
ddle



I

II

3
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where

N1 � �
������������������������������������
73� 66!� 9!2

p
� 3�1�!	
=�4�4� 3!	


and

N2 � �
������������������������������������
73� 66!� 9!2

p
� 3�1�!	
=�4�4� 3!	
:
III

4

56

7

8

9

10

FIG. 2. Phase plane of cosmological solutions for ! � 0 and
� � 0:1.

1

2

5
6

7

8

9
10

I

II

III

FIG. 3. Phase plane of cosmological solutions for ! � 0 and
� � �0:1.
3. Illustration of the phase plane

Some representative illustrations of the phase plane are
now presented. Firstly, the compactified phase plane for a
universe filled with pressureless dust, ! � 0, and a value
of � � 0:1 is shown in Fig. 2. Figure 2 is seen to be split
into three separate regions labeled I, II and III. The
boundaries between these regions are the submanifolds
R � 0. As pointed out by Carloni et al., the plane R � 0
is an invariant submanifold of the phase space through
which trajectories cannot pass.

The equation for R in a FRW universe, (14), can now be
rewritten as

R �
16��

�R�
��1� �	y2 � ��1� �	xy� 1	: (34)

This shows that the boundary R � 0 is given in terms of x
and y by �1� �	y2 � ��1� �	xy� 1 � 0 and that in
region I the sign of R must be opposite to the sign of �
in order to have a positive �. Similarly, in regions II and III,
Rmust have the same sign as � in order to ensure a positive
�.

It can be seen that regions II and III are symmetric under
a rotation of � and a reversal of the direction of the
trajectories. As region II is exclusively in the semicircle
y � 0 all trajectories confined to this region correspond to
eternally expanding (or expanding and asymptotically
static) universes. Similarly, region III is confined to the
semicircle y � 0 and so all trajectories confined to this
region correspond to eternally contracting (or contracting
and asymptotically static) universes. Region I, however,
spans the y � 0 plane and so can have trajectories which
correspond to universes with both expanding and contract-
ing phases. In fact, it can be seen from Fig. 2 that, for � �
0:1, all trajectories in region I are initially expanding and
eventually contracting.

It can be seen from Fig. 2 that in region I the only stable
attractors are, at early times, the expanding point 10 and at
late times the contracting point 9. (By ‘‘attractors at early
times‘‘ we mean the critical points which are approached if
the trajectories are followed backwards in time.) Both of
these points correspond to the solution

a / t���1�2�	=�1��	


which describes a slow evolution independent of the matter
content of the universe. Notably, region I only has stable
attractor points, at both early and late times, which have
been shown to correspond to t! const; region I therefore
103005
does not have an asymptotic attractor when t! 1, for the
range of � being considered. In region II the only stable
attractors can be seen to be the static point 5 at some early
finite time, t0, and the expanding matter-driven expansion
described by point 3 as t!1. Conversely, in region III the
only stable attractors are the contracting point 4 for t!
�1 and the static point 6 for t! t0.

Figure 3 shows the compactified phase plane for a uni-
verse containing pressureless dust and having � � �0:1.
Figure 3 is split into three separate regions in a similar way
to Fig. 2, with the boundary between the regions again
-8
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corresponding to R � 0 and is given in terms of x and y by
(34). Regions II and III again correspond to expanding and
contacting solutions, respectively. Region I still has point
10 as the early-time attractor and point 9 as the late-time
attractor, but now has all trajectories initially contracting
and eventually expanding. There are still no stable attrac-
tors in region I which correspond to regions where t! 1.
Region II now has point 7 as an early-time stable attractor
solution and point 1 as a late-time stable attractor solution,
corresponding to a! t1=2 as t! 1. Point 3, which was
the stable attractor at late times when � � 0:1 is now no
longer located in region II and can instead be located in
region I where it is now a saddle point in the phase plane.
Interestingly, the value of � for which point 3 ceases to
behave as a stable attractor (� � 0) is exactly the same
value of � at which the point moves from region II into
region I; so as long as point 3 can be located in region I, it is
the late-time stable attractor solution and as soon as it
moves into region I it becomes a saddle point. At this
same value of �; point 1 ceases to be a saddle point and
becomes the late-time stable attractor for region II, so that
region II always has a stable late-time attractor where t!
1. Region III behaves in a similar way to the description
given for region II above, under a rotation of� and with the
directions of the trajectories reversed.

Phase plane diagrams for ! � 0 with values of � other
than 0:1 and �0:1, but still within the range

�

������������������������������������
73� 66!� 9!2
p

� 3�1�!	
4�4� 3!	

< �;

� <

������������������������������������
73� 66!� 9!2
p

� 3�1�!	
4�4� 3!	

;

look qualitatively similar to those above with some of the
attractor properties of the critical points being exchanged
as they pass each other. Notably, for � <� 1

4 point 3
returns to region II and once again becomes the stable
late-time attractor for trajectories in that region. The points
that are the stable attractors for any particular value of �
can be read off from the tables in the previous section.

Universes filled with perfect-fluid blackbody radiation
also retain qualitatively similar phase-plane diagrams to
the ones above; with the notable difference that the point 3
is always located in region II and is always the late-time
stable attractor of that region. This can be seen directly
from the Ricci scalar for the solution (15) which is given by

R �
3��1� �	

t2

and can be seen to have the same sign as �, for � >�1,
and so is always found in region II.

For a spatially flat, expanding FRW universe containing
blackbody radiation we therefore have that (15) is the
generic attractor as t! 1. Similarly, for a spatially flat,
expanding, matter-dominated FRW universe (15) is the
103005
attractor solution as t! 1; except when � 1
4 < �< 0, in

which case it is point 1 (a / t1=2).
If we require a stable period of matter domination,

during which a�t	 � t2=3, we therefore have the theoretical
constraint � > 0 (or � <� 1

4 ). Such a period is necessary
for structure to form through gravitational collapse in the
postrecombination era of the universe’s expansion.

The effect of a nonzero curvature, � � 0, on the cosmo-
logical dynamics is similar to the general-relativistic case.
The role of negative curvature (� � �1) can be deduced
by noting that its effect is similar to that of a fluid with! �
�1=3. The solution (15) is unstable to any perturbation
away from flatness and will diverge away from � � 0 as
t! 1. This is usually referred to as the ‘‘flatness prob-
lem‘‘ and can be seen to exist in this theory from the
analysis of Carloni et al. [19].

B. Physical consequences

The modified cosmological dynamics discussed in the
last section lead to different predictions for the outcomes of
physical processes, such as primordial nucleosynthesis and
CMB formation, compared to the standard general-
relativistic model. The relevant modifications to these
physical processes, and the bounds that they can impose
upon the theory, will be discussed in this section. We will
use the solutions (15) as they have been shown to be the
generic attractors as t! 1 (except for the case� 1

4 < �<
0 when ! � 0, which has been excluded as physically
unrealistic on the grounds of structure formation).

1. Primordial nucleosynthesis

We find that the temperature-time adiabat during radia-
tion domination for the solution (15) is given by the exact
relation

t2�1�d	 �
A

T4 (35)

where, as usual (with units @ � c � 1 � kB),

� �
g�2

15
T4

where g is the total number of relativistic spin states at
temperature T. The constant A can be determined from the
generalized Friedmann equation (13) and is dependent on
the present day value of the Ricci scalar, through Eq. (10).
(This dependence is analogous to the dependence of scalar-
tensor theories on the evolution of the nonminimally
coupled scalar, as may be expected from the relationship
between these theories [16].) As a first approximation, we
assume the universe to have been matter dominated
throughout its later history; this allows us to write

A �
�
45�1� 2�	�1� 2�� 5�2	

32�1� �	g�3G

��
2�1� �	

3H0

�
2�

(36)
-9
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where H0 is the value of Hubble’s constant today and we
have used the solution (15) to model the evolution of a�t	.
Adding a recent period of accelerated expansion will refine
the constant A, but in the interest of brevity we exclude this
from the current analysis.

As usual, the weak-interaction time is given by

twk /
1

T5
:

The freeze-out temperature, Tf, for neutron-proton kinetic
equilibrium is then defined by

t�Tf	 � twk�Tf	;

hence the freeze-out temperature in this theory, with � �

0, is related to that in the general-relativistic case with � �
0, TGRf , by

Tf � C�TGRf 	
�3�1��	
=��3�5�	
 (37)

where

C �
�

�1� �	

�1� 2�	�1� 2�� 5�2	

�
1=�2�2�5�	


�

�
45

32g�3G

�
���1��	
=�2�3�5�	


�
3H0

2�1� �	

�
�=�3�5�	

:

(38)

The neutron-proton ratio, n=p, is now determined at tem-
perature T when the equilibrium holds by

n
p
� exp

�
�

�m
T

�
;

where �m is the neutron-proton mass difference. Hence
the neutron-proton ratio at freeze-out in the R1�� early
universe is given by

n
p
� exp

�
�

�m

C�TGRf 	
1�"

�
;

where

" 

2�

3� 5�
:

The frozen-out n=p ratio in the R1�� theory is given by a
power of its value in the general-relativistic case, �np	GR �
1=7, by

n
p
�

�
n
p

�
C�TGRf 	

"

GR
:

It is seen that when C�TGRf 	
" > 1 (� < 0) there is a smaller

frozen-out neutron-proton ratio than in the general-
relativistic case and consequently a lower final helium-4
abundance than in the standard general-relativistic early
universe containing the same number of relativistic spin
states. This happens because the freeze-out temperature is
lower than in general relativity. The neutrons remain in
103005
equilibrium to a lower temperature and their slightly higher
mass shifts the number balance more towards the protons
the longer they are in equilibrium. Note that a reduction in
the helium-4 abundance compared to the standard model of
general relativity is both astrophysically interesting and
difficult to achieve (all other variants like extra particle
species [21,22], anisotropies [23–26], magnetic fields
[27,28], gravitational waves [24,25,29], or varying G
[17,30,31], lead to an increase in the expansion rate and
in the final helium-4 abundance). Conversely, when
C�TGRf 	

" < 1 (� > 0) freeze-out occurs at a higher tem-
perature than in general relativity and a higher final
helium-4 abundance fraction results. The final helium-4
mass fraction Y is well approximated by

Y �
2n=p

�1� n=p	
: (39)

It is now possible to constrain the value of � using
observational abundances of the light elements. In doing
this we will use the results of Carroll and Kaplinghat [32]
who consider nucleosynthesis with a Hubble constant pa-
rametrized by

H�T	 �
�

T
1 MeV

�
�
H1:

Our theory can be cast into this form by substituting

� �
2

�1� �	

and

H1 �
�1� �	

2
A�f1=�2�1��	
g�1 MeV	2=�1��	;

so, taking g � 43=8,G � 6:72� 10�45 MeV�2 andH0 �
1:51� 10�39 MeV [33], this can be rewritten as

H1 �
�1� �	

2

�
7:96� 10�43�1� �	

�1� 2�	�1� 2�� 5�2	

�
1=�2�1��	


�

�
2:23� 10�39

�1� �	

�
�=�1��	

MeV:

Carroll and Kaplinghat use the observational abundances
inferred by Olive et al. [34]

0:228 � YP � 0:248 2 � 105 �
D
H
� 5

1 � 1010 �
7Li

H
� 3

to impose the constraint

H1 � Hc

�
Tc

MeV

�
��

whereHc � 2:6� 0:9� 10�23 MeV at Tc � 0:2 MeV for
0:5 � 
10 � 50, or Hc � 2:0� 0:3� 10�23 for 1 �

10 � 10 and 
10 is 1010 times the baryon to photon ratio.
-10
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These results can now be used to impose upon � the
constraints

�0:017 � � � 0:0012;

for 0:5 � 
10 � 50, or

�0:0064 � � � 0:0012; (40)

for 1 � 
10 � 10.

2. Horizon size at matter-radiation equality

The horizon size at the epoch of matter-radiation equal-
ity is of great observational significance. During radiation
domination cosmological perturbations on subhorizon
scales are effectively frozen. Once matter domination com-
mences, however, perturbations on all scales are allowed to
grow and structure formation begins. The horizon size at
matter-radiation equality is therefore frozen into the power
spectrum of perturbations and is observable. Calculation of
the horizon sizes in this theory proceeds in a similar way to
that in Brans-Dicke theory [35].

In making an estimate of the horizon sizes in R1��

theory, we will use the generalized Friedmann equation,
(13), in the form

H2 � �H
_R
R
�

�R
6�1� �	

�
8�G�1� �	
3�1� 2�	

R�0
R�
�: (41)

Again, we assume the form (15) to model the evolution of
the scale factor during the epoch of matter domination.
This gives the results

a�t	 � a0

�
t
t0

�
�2�1��	
=3

H0 �
2�1� �	

3t0

�m �
3H2

0

16�G
�1� 2�	�2� 3�� 8�2	

�1� �	�1� �	2
a3

0

a3

R�t	 �
4�1� 5�� 4�2	

3t2

during the matter-dominated era. In order to simplify
matters we assume the above solutions to hold exactly
from the time of matter-radiation equality up until the
present (neglecting the small residual radiation effects
and the very late-time acceleration). Substituting them
into (41) along with �eq � 2�meq at equality, we can
then solve for Heq to first order in � to find

aeqHeq

a0H0
’

���
2
p ����������������

1� zeq
q �1�2�	=�1��	

�1� 2:686�	 �O��2	

(42)

where zeq is the redshift at matter-radiation equality and H
has been treated as an independent parameter. The value of
1� zeq can now be calculated in this theory as

1� zeq �
�r0
�m0

: (43)
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Taking the present day temperature of the microwave
background as T � 2:728� 0:004 K [36] gives

�r0 � 3:37� 10�39 MeV4 (44)

where three families of light neutrinos have been assumed
at a temperature lower than that of the microwave back-
ground by a factor �4=11	1=3. Using the same values for G
and H0 as above, we than find from the above expression
for �m that

�m0 � 2:03� 10�35 �1� 2�	�2� 3�� 8�2	

�1� �	�1� �	2
MeV4:

(45)

Substituting (43)–(45) into (42) then gives the expression
for the horizon size at equality, to first order in �, as

aeqHeq

a0H0
’ 155�1� 19�	 �O��2	: (46)

This expression shows that the horizon size at matter-
radiation equality will be shifted by �1% for a value of
�� 0:0005. This shift in horizon size should be observable
in a shift of the peak of the power spectrum of perturba-
tions, compared to its position in the standard general-
relativistic cosmology. Microwave background observa-
tions, therefore, allow a potentially tight bound to be
derived on the value of �. This effect is analogous to the
shift of power-spectrum peaks in Brans-Dicke theory (see
e.g. [35,37]).

A full analysis of the spectrum of perturbations in this
theory requires a knowledge of the evolution of linearized
perturbations as well as a marginalization over other pa-
rameters which can mimic this effect (e.g. baryon density).
Such a study is beyond the scope of the present work.

IV. STATIC AND SPHERICALLY SYMMETRIC
SOLUTIONS

In order to test the Rn gravity theory in the weak-field
limit by means of the standard solar-system tests of general
relativity, we need to find the analogue of the
Schwarzschild metric in this generalized theory and use
it to describe the gravitational field of the Sun. In the
absence of any matter, the field equations (2) can be written
as

Rab � �
�
R;
cd

R
� �1� �	

R;
cR;

d

R2

�

�

�
gacgbd �

1

2

�1� 2�	
�1� �	

gabgcd

�
: (47)

We find that an exact static spherically symmetric solution
of these field equations is given in Schwarzschild coordi-
nates by the line element

ds2 � �A�r	dt2 �
dr2

B�r	
� r2�d	2 � sin2	d�2	 (48)
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where

A�r	 � r2���1�2�	=�1��	
 �
C

r�1�4�	=�1��	

B�r	 �
�1� �	2

�1� 2�� 4�2	�1� 2��1� �		

�

�
1�

C

r�2�2��4�2	=�1��	

�
and C � const. This solution is conformally related to the
Q � 0 limit of the one found by Chan, Horne and Mann for
a static spherically symmetric space-time containing a
scalar field in a Liouville potential [38]. It reduces to
Schwarzschild in the limit of general relativity: �! 0.

In order to evaluate whether or not this solution is
physically relevant, we will proceed as follows. A dynami-
cal systems approach will be used to establish the asymp-
totic attractor solutions of the field equations (47). The
field equations will then be perturbed around these asymp-
totic attractor solutions and solved to first order in the
perturbed quantities. This linearized solution will then be
treated as the physically relevant static and spherically
symmetric weak-field limit of the field equations (47)
and compared with the exact solution (48).
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A. Dynamical system

The dynamical systems approach has already been ap-
plied to a situation of this kind by Mignemi and Wiltshire
[39]. We present a brief summary of the relevant points of
their work in the above notation; for a comprehensive
analysis the reader is referred to their paper.

Taking the value of sign�R	 from (48) as sign����1�
�	=�1� 2��1� �			 and making a suitable choice of �0

allows the scalar-field potential (4) to be written as

V��	 � �
3�2

8�G�1� 2��1� �		
exp

� �������������
16�G

3

s
�1� �	
�

�
�
:

(49)

In four dimensions Mignemi and Wiltshire’s choice of
line element corresponds to

d�s2 � e2U��	��dt2 � �r4��	d�2	 � �r2��	�d	2 � sin2	d�2	

(50)

which, after some manipulation, gives the field equations
(3) as
� 00 � �
2c2

1�1� �	
2 � 6�2
02 � 24�2
0� 0 � 2�1� 2�� 8�2	� 02

1� 2�� 4�2 � e2� (51)


00 �
�1� 2�� 8�2	�c2

1�1� �	
2 � 3�2
02 � 12�2
0� 0 � �1� 2�� 8�2	� 02	

3�2�1� 2�� 4�2	
�
�1� 2��1� �		

3�2 e2� (52)

and

e2
 � �
�1� 2��1� �		

3�2�1� 2�� 4�2	
�c2

1�1� �	
2 � 3�2
02 � 12�2
0� 0 � �1� 2�� 8�2	� 02 � �1� 2�� 4�2	e2� 	 (53)

where

���	 � U��	 � log�r��	 
��	 � �
�1� 2��1� �		

3�2 U��	 � 2 log�r��	 �
�1� �	2

3�2 c1�� const:

Primes denote differentiation with respect to � and c1 is a constant of integration.
Defining the variables X, Y and Z by

X � � 0 Y � 
0 Z � e�

the field equations (51) and (52) can then be written as the following set of first-order autonomous differential equations:

X0 � �
2c2

1�1� �	
2 � 6�2Y2 � 24�2XY � 2�1� 2�� 8�2	X2

1� 2�� 4�2 � Z2 (54)

Y0 �
�1� 2�� 8�2	�c2

1�1� �	
2 � 3�2Y2 � 12�2XY � �1� 2�� 8�2	X2	

3�2�1� 2�� 4�2	
�
�1� 2��1� �		

3�2 Z2 (55)
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Z0 � XZ: (56)

(The reader should note the different definition of Z here to
that of Mignemi and Wiltshire.) As identified by Mignemi
and Wiltshire, the only critical points at finite values of X,
Y and Z are in the plane Z � 0 along the curve defined by

c2
1�1� �	

2 � 3�2Y2 � 12�2XY � �1� 2�� 8�2	X2 � 0:

These curves are shown as bold lines in Fig. 4, together
with some sample trajectories from Eqs. (54) and (55).
From the definition above we see that the condition Z � 0
is equivalent to �reU � 0. Whilst we do not consider tra-
jectories confined to this plane to be physically relevant,
we do consider the plot to be instructive as it gives a picture
of the behavior of trajectories close to this surface and
displays the attractive or repulsive behavior of the critical
points, which can be the end points for trajectories which
could be considered as physically meaningful. The dotted
line in Fig. 4 corresponds to the line Y � 2X and separates
two different types of critical points. The critical points
with Y > 2X can be seen to be repulsive to the trajectories
in the Z � 0 plane and correspond to the limit �! �1.
Conversely, the points with Y < 2X are attractive and
correspond to the limit �! 1. As Z � �reU; all critical
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FIG. 4. The Z � 0 plane of the phase space defined by X, Y and Z fo
this plane and the diagonal lines show the unphysical trajectories co
critical points where �! 1 from the points where �! �1.
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points of this type in the Z � 0 plane correspond either to
naked singularities, �r! 0, or regular horizons, �r! const.

The two bold lines in Fig. 4 are the points at which the
surface defined by

c2
1�1� �	

2 � 3�2Y2 � 12�2XY � �1� 2�� 8�2	X2

� �1� 2�� 4�2	Z2 � 0

crosses the Z � 0 plane. This surface splits the phase space
into three separate regions between which trajectories
cannot move. These regions are labeled I, II and III in
Fig. 4. It can be seen from (53) that trajectories are confined
to either regions I or II, for the potential defined by (49). If
we had chosen the opposite value of sign�R	 in (4) then
trajectories would be confined to region III. We will show,
however, that region III does not contain solutions with
asymptotic regions in which �r! 1 and so is of limited
interest for our purposes.

In order to find the remaining critical points, it is neces-
sary to analyze the sphere at infinity. This can be done by
making the transformation

X � � sin	 cos� Y � � sin	 sin� Z � � cos	

and taking the limit �! 1. The set of Eqs. (54)–(56) then
gives
d	
d

! �

cos	

24�2�1� 2�� 4�	
�6�2 cos��3� 3��2� 9�	 � �1� ��2� 11�		 cos2		

� �3� 3��4� ��15� 22�� 32�2		 � �5� ��20� ��3� 34�� 32�2			 cos2		 sin�

� 2�18�2�1� ��2� 7�		 cos3�� �1� ��4� ��9� 26�� 32�2			 sin3�	sin2		

and
0.5 1
X

I

r � � 0:1 and c1 � 0:5. The bold lines show the critical points in
nfined to this plane. The dotted line is Y � 2X and separates the

-13
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FIG. 5. The surface at infinity of the phase space defined by X,Y and Z for � � 0:1. The shaded areas show regions I and II. Region
III is unshaded.
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d�
d

!�

1

24�2�1� 2�� 4�2	
�6�2�1� ��2� 41�	 � 5�1� ��2� 5�		 cos2		 cosec	 sin�

� 2��1� ��4� ��9� 26�� 32�2			 cos3�� 18�2�1� ��2� 7�		 sin3�	 sin	

� 2 cos��4�1� 2��2� ��3� 2�� 4�2			cosec 	� �7� ��28� ��15� 2��43� 128�				 sin			
where d
 � �d�. These equations can be used to plot the
positions of critical points and trajectories on the sphere at
infinity. The result of this is shown in Fig. 5. Once again,
these trajectories do not correspond to physical solutions in
the phase space but are illustrative of trajectories at large
distances and help to show the attractive or repulsive nature
of the critical points. The surface at infinity has eight
critical points, labeled A–H in Fig. 5. Points A and B are
the end points of the trajectory that goes through the origin
in Fig. 4 and are located at

	 �
�
2
;

and

�1;�2	 � cos�1

�
�6�2�������������������������������������������������������������������

1� 4�� 12�2 � 32�3 � 100�4
p

�
���	

or, in terms of the original functions in the metric (50),

�r! ��� �1	
�3�2	=�1�2��8�2	 and

eU ! ��� �1	
�3�2	=�1�2��8�2	;

where �1 is a constant of integration. The points A and B
therefore both correspond to �! �1 and hence to �r! 0.

Points C, D, E and F are the four end points of the two
curves in Fig. 4 and therefore correspond to �! 1 or�1
and �r! 0 or constant.
103005
The remaining points, G and H, are located at

�1;�2	 �
�
4
���	

and

	 �
1

2
cos�1

�
�

1� 2�� 10�2

3� 6�� 6�2

�
or

�r �1�2��4�2	=�1��	2 ! �

��������������������������������
�1� 2�� 2�2	

�1� 2�� 4�2	

s
1

��� �2	
(57)

and

e��1�2��4�2	U
=�3�2	 ! �

��������������������������������
�1� 2�� 2�2	

�1� 2�� 4�2	

s
1

��� �2	
;

where �2 is an integration constant, the positive branch
corresponds to point H and the negative branch to point G.
These points are, therefore, the asymptotic limit of the
exact solution (48) and correspond to �! �2 and hence
�r! 1.

Whilst it may initially appear that trajectories are re-
pelled from the pointH, this is only the case in terms of the
coordinate �. In terms of the more physically relevant
quantity �r, the point H is an attractor. This can be seen
from the first equation in (57). Taking the positive branch
here it can be seen that �r increases as � decreases. So, in
terms of �r the pointsG andH are both attractors, as �r! 1.
-14
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We can now see that in region I all trajectories appear to
start at critical points corresponding to either �r! 0 or
constant and end at point G where �r! 1. Region II
appears to share the same features as region I with all
trajectories starting at either �r! 0 or constant and ending
at H where �r! 1. Region III has no critical points cor-
responding to �r! 1 and so all trajectories both begin and
end on points corresponding to �r! 0 or constant.

Therefore the only solutions with an asymptotic region
in which �r! 1 exist in regions I and II where the potential
can be described by Eq. (49). Furthermore, all trajectories
in regions I and II appear to be attracted to the solution

ds2 � ��r�6�
2	=�1��	2dt2

�
�1� 2�� 4�2	�1� 2�� 2�2	

�1� �	4
d �r2

� �r2�d	2 � sin2	d�2	; (58)

which is the asymptotic behavior of the solution found by
Chan, Horne and Mann [38]. We therefore conclude that all
solutions with an asymptotic region in which �r! 1 are
attracted towards the solution (58) as �r! 1.

Rescaling the metric back to the original conformal
frame, we therefore conclude that the generic asymptotic
103005
attractor solution to the field equations (47) is

ds2 � �r2���1�2�	=�1��	
dt2

�
�1� 2�� 4�2	�1� 2�� 2�2	

�1� �	2
dr2

� r2�d	2 � sin2	d�2	 (59)

as r! 1. It reduces to Minkowski in the �! 0 limit of
general relativity.

B. Linearized solution

We now proceed to find the general solution, to first
order in perturbations, around the background described by
(59). Writing the perturbed line element as

ds2 � �r2���1�2�	=�1��	
�1� V�r		dt2

�
�1� 2�� 4�2	�1� 2�� 2�2	

�1� �	2
�1�W�r		dr2

� r2�d	2 � sin2	d�2	 (60)

and making no assumptions about the order of R, the field
equations (47) become, up to first order in V and W,
��1� 2�	�1� 2�2	

�1� �	2r2 �
�1� 2�2	

�1� �	
V 0

r
�
��1� 2�	
2�1� �	

W0

r
�
V 00

2

�
��1� 2�	

2

R02

R2 �
��1� 2�	
2�1� �	

R00

R
�

3�
4�1� �	

R0

R
V0 �

��1� 2�	�2� �	

2�1� �	2r

R0

R
�
��1� 2�	
4�1� �	

R0

R
W0 (61)

and

��1� 2�	�1� 2�� 2�2	

�1� �	2r2
�
��1� 2�	
�1� �	

V0

r
�
�2� �� 2�2	

2�1� �	
W0

r
�
V 00

2

� �
3�
2

R02

R2 �
3�

2�1� �	
R00

R
�
��1� 2�	�2� �� 2�2	

2�1� �	2r

R0

R
�
��1� 2�	
4�1� �	

R0

R
V0 �

3�
4�1� �	

R0

R
W0 (62)

and

�
2��3� 4�� 2�2 � 8�3	

�1� �	2r2 �
2�1� 2�� 4�2	�1� 2�� 2�2	

�1� �	2r2 W �
V 0

r
�
W0

r

� ���1� 2�	
R02

R2 �
��1� 2�	
�1� �	

R00

R
�
��4� �� 2�2 � 4�3	

�1� �	2r

R0

R
�
��1� 2�	
2�1� �	

R0

R
V 0 �

��1� 2�	
2�1� �	

R0

R
W0: (63)

Expanding R to first order in V and W gives

R � �
6��1� �	

�1� 2�� 2�2	

1

r2 � R1 (64)
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where

R1 �
2�1� �� �2	

�1� 2�� 2�2	

W

r2 �
2�1� �	�1� 2�2	

�1� 2�� 2�2	�1� 2�� 4�2	

V 0

r
�

�1� �	�2� �� 2�2	

�1� 2�� 2�2	�1� 2�� 4�2	

W0

r

�
�1� �	2

�1� 2�� 2�2	�1� 2�� 4�2	
V 00: (65)

Substituting (64) into the field equations (61)–(63) and eliminating R1 using (65) leaves

�1� �� �2	�5� 12�� 12�2 � 4�3	

3�1� �	2�1� �	

W
r
�
�16� 47�� 76�2 � 34�3 � 16�4 � 32�5	

6�1� �2	�1� 2�� 4�2	
W0

�
�1� �� 7�2 � 19�3 � 44�4 � 20�5	

3�1� �2	�1� 2�� 4�2	

Y
r
�
�8� 15�� 18�2 � 16�3	

6�1� �	�1� 2�� 4�2	
Y0

� �
�1� 2�� 2�2	�5� 12�� 12�2 � 4�3	

12�1� �2	�1� �	

 
r
�
�1� 2�� 2�2	

4�1� �2	
 0

and

�
�1� 2�	�1� �� �2	�3� 4�� 4�2	

3�1� �	2�1� �	

W
r
�
�1� 2�	�2� �� 2�2	�3� 4�� 4�2	

6�1� �2	�1� 2�� 4�2	
W0

�
�3� 2�� 17�2 � 4�3 � 40�2	

3�1� �2	�1� 2�� 4�2	

Y
r
�
�6� �� 2�2 � 20�3	

6�1� �	�1� 2�� 4�2	
Y0

�
�1� 2�	�1� 2�� 2�2	�3� 4�� 4�2	

12�1� �	2�1� �	

 
r
�
�1� 2�	�1� 2�� 2�2	

12�1� �2	
 0

and

�
2�8� 8�� 3�2 � 10�3 � 28�4 � 12�5	

3�1� �2	�1� �	�1� 2�� 2�2	

W
r
�

�13� 22�� 12�2 � 26�3 � 56�4	

3�1� �2	�1� 2�� 2�2	�1� 2�� 4�2	
W0

�
2�4� 9�2 � 8�3 � 12�4	

3�1� �	�1� 2�� 2�2	�1� 2�� 4�2	

Y
r
�

�5� 4�� 4�2 � 12�3	

3�1� �	�1� 2�� 2�2	�1� 2�� 4�2	
Y0

�
�5� 4�� 4�2 � 12�3	

6�1� �	2�1� �	

 
r
�
�1� 2�	

6�1� �2	
 0

where Y � rV 0 and  � r3R01, subject to the constraint (65).
For ��7� 3

������
21
p
	=20< �<��7� 3

������
21
p
	=20 the general solution to this first-order set of coupled equations is given,

in terms of V and W, by

V�r	 � c1V1�r	 � c2V2�r	 � c3V3�r	 � const (66)
W�r	 � �c1V1�r	 � c2W2�r	 � c3W3�r	 (67)

where
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V1 � �r
��1�2��4�2	=�1��	

V2 �
�1� 2�	r�f�1�2��4�2	=�2�1��	
g

2�2� 3�� 12�2 � 16�3	
��1� 2�	2 sin�A logr	

� 2A�1� �	 cos�A logr		

W2 � r�f�1�2��4�2	=�2�1��	
g sin�A logr	

V3 �
�1� 2�	r�f�1�2��4�2	=�2�1��	
g

2�2� 3�� 12�2 � 16�3	
��1� 2�	2

� cos�A logr	 � 2A�1� �	 sin�A logr		

W3 � r�f�1�2��4�2	=�2�1��	
g cos�A logr	

and

A � �

�������������������������������������������������������������������
7� 28�� 36�2 � 16�3 � 80�4
p

2�1� �	
:

The extra constant in (66) is from the integration of Y and
can be trivially absorbed into the definition of the time
coordinate. The above solution satisfies the constraint (65)
without imposing any conditions upon the arbitrary con-
stants c1, c2 and c3.

It can be seen by direct comparison that the constant c1

is linearly related to the constant C in (48) by a factor that
is a function of � only. The constants c2 and c3 correspond
to two new oscillating modes.

C. Physical consequences

In order to calculate the classical tests of metric theories
of gravity (i.e. bending and time delay of light rays and the
perihelion precession of Mercury), we require the static
and spherically symmetric solution to the field equations

POWER OF GENERAL RELATIVITY
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(2). Because of the complicated form of these equations we
are unable to find the general solution; instead we propose
to use the first-order solution around the generic attractor
as r! 1. This method should be applicable to gravita-
tional experiments performed in the solar system as the
gravitational field in this region can be considered weak
and we will be considering experiments performed at large
r (in terms of the Schwarzschild radius of the massive
objects in the system). To this end we will use the solution
found at the end of the previous subsection. We choose to
arbitrarily set the constants c2 and c3 to zero—this re-
moves the oscillatory parts of the solution, and hence
ensures that the gravitational force is always attractive.
This considerable simplification of the solution also allows
a straightforward calculation of both null and timelike
geodesics which can be used to compute the outcomes of
the classical tests in this theory.

1. Solution in isotropic coordinates

Having removed the oscillatory parts of the solution, we
are left with the part corresponding to the exact solution
(48). Making the coordinate transformation

r�1�2��4�2	=�1�d	 �

�
1�

C

4r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

�
2

� r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

the solution (48) can be transformed into the isotropic
coordinate system

ds2 � �A�r̂	dt2 � B�r̂	�dr̂2 � r̂2�d	2 � sin2	d�2		

(68)

where
A�r̂	 � r̂�2��1�2�	
=
���������������������������������������
�1�2��2�2	�1�2��4�2	
p �

1�
C

4r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

�
2

�

�
1�

C

4r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

�
�f�2�1�4�	
=�1�2��4�2	g

and

B�r̂	 � r̂�2�2��1��	=
���������������������������������������
�1�2��2�2	�1�2��4�2	
p




�
1�

C

4r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

�
�4�1��	
=�1�2��4�2	

;

which is, to linear order in C,

A�r̂	 � r̂�2��1�2�	
=
���������������������������������������
�1�2��2�2	�1�2��4�2	
p �

1�
�1� �	�1� 2�	

�1� 2�� 4�2	

C

r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

�

and

B�r̂	 � r̂�2�2��1��	=
���������������������������������������
�1�2��2�2	�1�2��4�2	
p




�
1�

�1� �	

�1� 2�� 4�2	

C

r̂
�����������������������������������������
�1�2��4�2	=�1�2��2�2	
p

�
:
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2. Newtonian limit

We first investigate the Newtonian limit of the geodesic equation in order to set the constant C in the solution (68) above.
As usual, we have

�;� � ��00

where � is the Newtonian gravitational potential. Substituting in the isotropic metric (68) this gives

r� �
rA�r̂	
2B�r̂	

(69)

�
��1� 2�	r̂1�2

�����������������������������������������
�1�2��2�2	=�1�2��4�2	
p

����������������������������������������������������������������
�1� 2�� 2�2	�1� 2�� 4�2	

p �
�1� �	�1� 8�� 4�2	Cr̂1�f�3�1�2�	
=

���������������������������������������
�1�2��2�2	�1�2��4�2	
p

g

2
������������������������������������������������������������������
�1� 2�� 2�2	�1� 2�� 4�2	3

p �O�C2	: (70)
The second term in the expression goes as �r̂�2�O��2	

and so corresponds to the Newtonian part of the gravita-
tional force. The first term, however, goes as �r̂�1�O��2	

and has no Newtonian counterpart. In order for the
Newtonian part to dominate over the non-Newtonian
part, we must impose upon � the requirement that it is at
most

��O
�
C
r

�
:

If � were larger than this then the non-Newtonian part of
the potential would dominate over the Newtonian part,
which is clearly unacceptable at scales over which the
Newtonian potential has been measured and shown to be
accurate.

This requirement upon the order of magnitude of �
allows (69) to be written

r� �
�

r̂1�O�C2	
�

C

2r̂2�O�C2	
�O�C2	 (71)

where expansions in C have been carried out separately in
the coefficients and the powers of r̂ of the two terms.

Comparison of (71) with the Newtonian force law

r�N �
Gm

r2

allows the value of C to be read off as

C � �2Gm�O��	:

3. Post-Newtonian limit

We now wish to calculate, to post-Newtonian order, the
equations of motion for test particles in the metric (68).
The geodesic equation can be written in its usual form

d2x�

d�2
� ��ij

dxi

d�
dxj

d�
� 0;

where � can be taken as proper time for a timelike geodesic
or as an affine parameter for a null geodesic. In terms of
coordinate time this can be written
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d2x�

dt2
�

�
��ij � �0

ij
dx�

dt

�
dxi

dt
dxj

dt
� 0: (72)

We also have the integral

gij
dxi

dt
dxj

dt
� S (73)

where S � �1 for particles and 0 for photons.
Substituting (68) into (72) and (73) gives, to the relevant

order, the equations of motion

d2x
dt2
� �

Gm

r2

�
1�

��������dx
dt

��������2
�
er � 4

G2m2

r3 er

� 4
Gm

r2 er �
dx
dt

dx
dt
�
�
r

�
1�

��������dx
dt

��������2
�
er

� 4
�2

r
er � �

Gm

r2 er �O�G3m3	 (74)

and��������dx
dt

��������2
� 1� 4

Gm
r
�

S

r2� � 2S
Gm

r1�2� �O�G
2m2	: (75)

[In the interest of concision we have excluded the O��2	
terms from the powers of r, the reader should regard them
as being there implicitly.] The first three terms in Eq. (74)
are identical to their general-relativistic counterparts. The
next two terms are completely new and have no counter-
parts in general relativity. The last term in Eq. (74) can be
removed by rescaling the mass term by m! m�1� �	;
this has no effect on the Newtonian limit of the geodesic
equation as any term Gm� is of post-Newtonian order.

4. The bending of light and time delay of radio signals

From Eq. (75) it can be seen that the solution for null
geodesics, to zeroth order, is a straight line that can be
parametrized by

x � n�t� t0	

where n � n � 1. Considering a small departure from the
zeroth order solution we can write
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x � n�t� t0	 � x1

where x1 is small. To first order, the equations of motion
(74) and (75) then become

d2x
dt2
� �2

Gm

r2 er � 4
Gm

r2 �n � er	n (76)

and

n �
dx
dt
� �2

Gm
r
: (77)

Equations (76) and (77) can be seen to be identical to the
first-order equations of motions for photons in general
relativity. We therefore conclude that any observations
involving the motion of photons in a stationary and spheri-
cally symmetric weak-field situation cannot tell any dif-
ference between general relativity and this R1�� theory, to
first post-Newtonian order. This includes the classical light
bending and time-delay tests which should measure the
post-Newtonian parameter � to be one in this theory, as in
general relativity.

5. Perihelion precession

In calculating the perihelion precession of a test particle
in the geometry (68) it is convenient to use the standard
procedures for computing the perturbations of orbital ele-
ments (see [40,41]). In the notation of Robertson and
Noonan [41] the measured rate of change of the perihelion
in geocentric coordinates is given by

d ~!
dt
� �

pR
he

cos��
J �p� r	

he
sin� (78)

where p is the semilatus rectum of the orbit, h is the
angular momentum per unit mass, e is the eccentricity
and R and J are the components of the acceleration in
radial and normal-to-radial directions in the orbital plane,
respectively. The radial coordinate, r, is defined by

r 

p

�1� e cos�	
(79)

and � is the angle measured from the perihelion. We have,
as usual, the additional relations

p � a�1� e2	

and

h 

�����������
Gmp

p

 r2 d�

dt
: (80)

From (74), the components of the acceleration can be
read off as

R � �
Gm

r2 �
Gm

r2 v2 � 4
Gm

r2 v2
R � 4

G2m2

r3 �
�
r
�
�
r
v2

� 4
�2

r
(81)
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and

J � 4
Gm

r2 vRvJ (82)

where we now have the radial and normal-to-radial com-
ponents of the velocity as

vR �
eh
p

sin� vJ �
h
p
�1� e cos�	

and v2 � v2
R � v

2
J . In writing (81), the last term of (74)

has been absorbed by a rescaling ofm, as mentioned above.
The expressions (81) and (82) can now be substituted

into (78) and integrated from � � 0 to 2�, using (79) and
(80) to write r and dr in terms of� and d�. The perihelion
precession per orbit is then given, to post-Newtonian ac-
curacy, by the expression

� ~! �
6�Gm

a�1� e2	
�

2��

e2

�
e2 � 1�

�1� 4�	a�1� e2	

Gm

�
:

(83)

The first term in (83) is clearly the standard general-
relativistic expression. The second term is new and con-
tributes to leading order the term

2�a
Gm

�
1� e2

e2

�
�:

Comparing the prediction (83) with observation is a
nontrivial matter. The above prediction is the highly ideal-
ized precession expected for a timelike geodesic in the
geometry described by (68). If we assume that the geome-
try (68) is a good approximation to the weak field for a
static Schwarzschild-like mass then it is not trivial to
assume that the timelike geodesics used to calculate the
rate of perihelion precession (83) are the paths that mate-
rial objects will follow. Whilst we are assured from the
generalized Bianchi identities [16] of the covariant conser-
vation of energy momentum, Tab;b � 0, and hence the
geodesic motion of an ideal fluid of pressureless dust,
uiuj;i � 0, this does not ensure the geodesic motion of
extended bodies. This deviation from geodesic motion is
known as the Nordvedt effect [42] and, while being zero
for general relativity, is generally nonzero for extended
theories of gravity. From the analysis so far it is also not
clear how orbiting matter and other nearby sources (other
than the central mass) will contribute to the geometry (68).

In order to make a prediction for a physical system such
as the solar system, and in the interest of brevity, some
assumptions must be made. It is firstly assumed that the
geometry of space-time in the solar system can be consid-
ered, to first approximation, as static and spherically sym-
metric. It is then assumed that this geometry is determined
by the Sun, which can be treated as a pointlike
Schwarzschild mass at the origin, and is isolated from
the effects of matter outside the solar system and from
-19
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the background cosmology. It is also assumed that the
Nordvedt effect is negligible and that extended massive
bodies, such as planets, follow the same timelike geodesics
of the background geometry as neutral test particles.

In comparing with observation it is useful to recast (83)
in the form

� ~! �
6�Gm

a�1� e2	
�

where

� � 1�
a2�1� e2	2

3G2m2e2 �:

This allows for easy comparison with results which have
been used to constrain the standard post-Newtonian pa-
rameters, for which

� � 1
3�2� 2�� �	:

The observational determination of the perihelion preces-
sion of Mercury is not clear-cut and is subject to a number
of uncertainties; most notably the quadrupole moment of
the Sun (see e.g. [43]). We choose to use the result of
Shapiro et al. [44]

� � 1:003� 0:005 (84)

which for standard values of a, e and m [45] gives us the
constraint

� � 2:7� 4:5� 10�19: (85)

In deriving (84) the quadrupole moment of the Sun was
assumed to correspond to uniform rotation. For more mod-
ern estimates of the anomalous perihelion advance of
Mercury see [43].
V. CONCLUSIONS

We have considered here the modification to the gravi-
tational Lagrangian R! R1��, where � is a small rational
number. By considering the idealized Friedmann-
Robertson-Walker cosmology and the static and spheri-
cally symmetric weak-field situations, we have been able
to determine suitable solutions to the field equations which
we have used to make predictions of the consequences of
this gravity theory for astrophysical processes. These pre-
dictions have been compared to observations to derive a
number of bounds on the value of �.

Firstly, we showed that for a spatially flat, matter-
dominated universe the attractor solution for the scale
factor as t! 1 is of the form a�t	 / t1=2 if � 1

4 < �< 0.
This is unacceptable as subhorizon scale density perturba-
tions do not grow in a universe described by a scale factor
of this form. We therefore have the constraints

� � 0 �or � <�1=4	; (86)

in which case the attractor solution for the scale factor as
103005
t! 1 changes to that of the exact solution a�t	 /
t�2�1��	
=3.

Secondly, we showed that the modified expansion rate
during primordial nucleosynthesis alters the predicted
abundances of light elements in the universe. Using the
inferred observational abundances of Olive et al. [34] we
were able to impose upon � the constraints

�0:017 � � � 0:0012; (87)

for 0:5 � 
10 � 50, or

�0:0064 � � � 0:0012; (88)

for 1 � 
10 � 10.
Next, we considered the horizon size at the time of

matter-radiation equality. After showing that the horizon
size is different in this theory to its counterpart in general-
relativistic cosmology, we discussed the implications for
microwave background observations. This argument runs
in parallel to that of Liddle et al. for the Brans-Dicke
cosmology [35]. The horizon size at matter-radiation
equality will be shifted by�1% for a value of �� 0:0005:

Finally, we investigated the static and spherically sym-
metric weak-field situation. We calculated the null and
timelike geodesics of the space-time to post-Newtonian
accuracy. We then showed that null geodesics are, to the
required accuracy, identical in this theory to those in the
Schwarzschild solution of general relativity. The light
bending and radio time-delay tests should, therefore, yield
the same results as in general relativity, to the required
order.

Our prediction for the perihelion precession of Mercury
gave us our tightest bounds on �. Assuming that Mercury
follows timelike geodesics of the space-time, we used the
results of Shapiro et al. [44] to impose upon � the con-
straint

� � 2:7� 4:5� 10�19: (89)

This constraint is due to the unusual feature of the static
and spherically symmetric space-time that as r!1 it is
asymptotically attracted to a form that is not Minkowski
space-time, but reduces to Minkowski space-time as
�! 0.

Combining the above results we therefore have that �
should be constrained to lie within the range

0 � � < 7:2� 10�19: (90)

This is a remarkably strong observational constraint upon
deviations of this kind from general relativity.
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