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Bayesian estimation of pulsar parameters from gravitational wave data
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We present a method of searching for, and parametrizing, signals from known radio pulsars in data from
interferometric gravitational wave detectors. This method has been applied to data from the LIGO and
GEO 600 detectors to set upper limits on the gravitational wave emission from several radio pulsars. Here
we discuss the nature of the signal and the performance of the technique on simulated data. We show how
to perform a coherent multiple detector analysis and give some insight into the covariance between the
signal parameters.
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I. INTRODUCTION

Several kilometer-scale gravitational wave interferome-
ters are now under construction or actively collecting data
with unprecedented sensitivity [1,2]. To make the best use
of these data, sophisticated analysis methods have been
developed to search for astrophysical signals that are
doubtless buried in the noise. A promising class of sources
of gravitational waves are rapidly rotating, and structurally
asymmetric, neutron stars. Several mechanisms have been
proposed that could support a varying quadrupolar mass
distribution in these neutron stars, and the subsequent
continuous emission of gravitational radiation [3,4].

In this paper we present a detailed end-to-end descrip-
tion of an analysis technique which we have developed
to infer the parameters of such sources using data from
interferometric gravitational wave detectors [5]. Here we
test the performance of the technique on simulated data.
Whether a signal is clearly present or not, the method can
be used to set upper limits on emission strength.

This method was successfully applied first to GEO 600
and LIGO data from their first science run (S1) to set upper
limits on the strength of gravitational wave emission from
pulsar J1939� 2134 [6]. The search was modified and
expanded to 28 isolated pulsars using data from LIGO’s
second science run (S2) [7]. This paper investigates the
methods used in these two papers and sets performance
benchmarks for the algorithm.

Searches for periodic gravitational wave signals from
neutron stars are conventionally classed as blind, directed
or targeted. A search is blind if no source parameters (such
as sky position or spin evolution) are known a priori, so
that the size of the parameter space to be explored is
maximal. Blind searches represent a computationally de-
manding problem, and highly efficient analysis techniques
must be used [8,9]. Even with these methods, a fully
address: rejean@caltech.edu
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coherent search using many months of data is computa-
tionally intractable, and the size of the parameter space has
the effect of decreasing the sensitivity of the search, as
there is a good chance the noise will imitate a relatively
strong source somewhere in the space [10]. Directed
(known location) and targeted (known location and phase
evolution) searches have smaller numbers of unknown
parameters, and vastly smaller parameter spaces, making
the detection level lower and increasing their sensitivity to
gravitational waves.

Radio pulsars are a particularly interesting class of
targeted sources because (i) we can monitor their rotation
and make a very good guess at the gravitational waveform
they produce and (ii) their locations are known to high
precision. In addition, the data pertaining to each pulsar
can be restricted to a very narrow spectral window. Real
interferometric data are usually contaminated by a large
number of instrumental spectral lines, so the effects of
these can be reduced significantly by analyzing only those
narrow bands containing pulsar data.

This paper is structured as follows: Sec. II describes the
nature of the gravitational wave signal that we are expect-
ing from pulsars. Section III describes how we filter and
greatly reduce the size of the data set using a semistandard
heterodyne technique. In Sec. IV we present the Bayesian
methodology used for this analysis and describe the two
likelihood functions used in previous work. We demon-
strate the performance of the algorithm on simulated data
in Sec. V. Section VI concludes the paper with a brief
summary.
II. NATURE OF GRAVITATIONAL WAVE SIGNAL

Here we summarize the form of gravitational waves
emitted from a rotating rigid triaxial pulsar, described in
detail in [11]. We take the special case of a triaxial ellipsoid
rotating about its principal axis and therefore emitting all
its gravitational radiation at twice the rotation frequency. A
-1 © 2005 The American Physical Society
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freely precessing neutron star, with its spin and angular
momentum axes nonaligned, would also emit at its rotation
frequency but is expected to be strongly damped [12]. The
regularity of signals from the majority of radio pulsars
suggests that most of them are not precessing on a short
time scales, if at all.

The gravitational wave amplitude from a triaxial neutron
star seen from Earth is

h0 �
16�2G

c4

Izzf
2
r

r
�; (1)

where r is the distance to the pulsar, Izz its moment of
inertia about the rotation (principal) axis, fr the rotation
frequency of the pulsar, and � its equatorial ellipticity,
defined in terms of its principal moments of inertia as

� �
Ixx � Iyy
Izz

: (2)

The gravitational wave strain on the detector will be fre-
quency modulated, due to the relative motion of the Earth
and the pulsar, and amplitude modulated by the antenna
pattern of the interferometer. Following [8,11], we can
describe this measured signal as

h�t� � 1
2F��t; �h0�1� cos2�� cos��t�

� F��t; �h0 cos� sin��t�; (3)

where F� and F� are the antenna responses to the� and�
polarizations, respectively,  is the polarization angle of
the signal (determined by the position angle of the spin
axis, projected on the sky), � is the inclination of the pulsar
with respect to the line-of-sight, and ��t� is the phase of
the gravitational wave signal [13].

We choose to time the signal phase evolution ��T� with
respect to the solar system barycenter (SSB), which is an
inertial reference frame, so that to third-order in barycen-
tric time, T,

��T� � �0 � 2��fs�T � T0� �
1
2

_fs�T � T0�
2

� 1
6

�fs�T � T0�
3�; (4)

where �0 is the phase of the signal at a fiducial time T0, fs

is the frequency of the signal ( � 2fr), _fs is the first
frequency derivative, and �fs is the second frequency de-
rivative, all at time T0. The transformation between the
barycentric time (T) and the topocentric time at the detec-
tor (t) is

T � t� �t � t��Roemer � �Shapiro ��Einstein � �Binary;

(5)

where �Roemer is the classical Roemer delay, �Shapiro is the
Shapiro delay due to the curvature of space-time near the
Sun, �Einstein is the Einstein delay due to gravitational
redshift and time dilation, and �Binary contains corrections
related to the pulsar’s orbit, which is zero for isolated
102002
neutron stars; see [14] for more details on these terms.
However, for pulsars in binary systems this term should
include all the classical and relativistic corrections for the
shifts in the time of arrival of the signal due to the motion
of the source within the binary system. We will not con-
sider binary pulsars in this analysis, but for more details on
pulsar timing of binary systems see [15,16], and references
therein.

The second term in Eq. (5), the Roemer delay, is the
largest component (up to 	8:5 min) and due to the motion
of the Earth within the solar system. In terms of the Earth’s
motion it is

�Roemer �
rd 
 k
c
�
�rd 
 k�2 � jrdj

2cd
; (6)

where rd is the position of the detector with regard to the
SSB, k is a unit vector in the direction of the neutron star, c
is the speed of light and d is the distance from the detector
to the pulsar. In order to calculate the Roemer delay we
need accurate knowledge of the position of the Earth with
regard to the SSB. For our barycentering software [17] we
use the solar system ephemerides published by the Jet
Propulsion Laboratory [18]. The second term in Eq. (6)
is the timing parallax. This takes account of the curvature
of the wave fronts emitted from the source and is only
significant for the closest sources.

The Shapiro delay �Shapiro is a relativistic correction for
the curvature of space-time near the SSB. Since this cur-
vature is not negligible there will be an extra time delay in
the arrival of a signal. In principle this delay can be as large
as 120 �s for signals passing near the edge of the Sun and
therefore becomes important for the analysis of signals
from millisecond pulsars over periods of	1 yr. The maxi-
mum contribution from Jupiter however is only 200 ns and
would not affect the sensitivity of a search.

The Einstein delay describes the combined effect of
gravitational redshift and time dilation due to the motion
of the Earth. This correction takes into account the varying
gravitational potential experienced by a clock on the Earth
as it follows its elliptical orbit around the Sun. Again this
does not significantly affect signal searches.

III. THE COMPLEX HETERODYNE METHOD

Current ground-based interferometric detectors have
broadband sensitivity to gravitational waves from frequen-
cies of several tens of hertz up to several kilohertz. As a
search for a continuous wave signal involves integrating
for months or even years, the datasets involved can become
very large indeed. However, the signal we are trying to
extract in a targeted search is actually contained in only a
very narrow frequency band, so accurate knowledge of the
spin parameters of the source (from radio or x-ray obser-
vations) allows us to reduce the size of this data set con-
siderably. To do this, we perform a complex heterodyne,
followed by filtering and resampling of the data, to reduce
-2
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its size by a factor of about 	106 without loss of relevant
information. Similar techniques have been applied in a
wide range of optical, radio and gravitational searches
for sinusoidal signals, most notably (in this context) [19].

We choose to perform a complex, slowly evolving,
heterodyne on a targeted source to precisely unwind the
apparent phase evolution of the source. However, for a
signal from a pulsar recorded by an interferometric detec-
tor, there is still a time varying component remaining in the
heterodyned signal from the antenna response pattern of
the interferometer.

Since the source moves through the antenna pattern on a
time scale that is much longer than the original periodic
signal, after heterodyning we can resample the data with a
much reduced sampling rate. In practice the new sampling
rate is determined by our wish to monitor variations in the
interferometer noise floor, which changes on time scales of
minutes, hours, and days. Since we keep both the real and
imaginary part of the sample for each minute, our effective
bandwidth is 1/60 Hz centered on the heterodyning fre-
quency which is the instantaneous frequency of the signal
at the detector.

We take the calibrated output of a gravitational wave
detector to be

s�t� � h�t� � n�t�; (7)

where h�t� is a gravitational wave signal and n�t� is noise
that is stationary over some time period but not necessarily
Gaussian. Using Eq. (3) we recast the signal, h�t�, to

h�t� � A�t�ei��t� � A��t�e�i��t�; (8)

where

A�t� �
1

4
F��t; �h0�1� cos2�� �

i
2
F��t; �h0 cos�; (9)

and A� is the complex conjugate of A. For a targeted pulsar
we assume the frequency and frequency derivative terms
are known from electromagnetic observations so that

��t� � ��t� �t� ��0 (10)

can be calculated to high precision. The heterodyning step
involves multiplying the data from the interferometer by
e�i��t� to give

shet�t� � s�t�e�i��t�

� A�t�ei�0 � A��t�e�i�0�2i��t� � n�t�e�i��t�: (11)

The heterodyning process removes the rotational phase
evolution from the term in A, although this term will still
vary over the day as the source moves through the antenna
pattern of the interferometer. The second (upper sideband)
term in A� will oscillate at nearly twice the gravitational
wave signal frequency.
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We then apply a low-pass antialiasing filter to the het-
erodyned data stream prior to averaging. We note that,
because the original time series was real, we lose no
independent information by rejecting the upper sideband.
We use a series of three third-order infinite impulse re-
sponse (IIR) Butterworth filters to do this, with frequency
cutoffs that can be adjusted to the characteristics of the
data. The main requirement is to prevent spectral distur-
bances from outside our final 1=60 Hz data band being
aliased into our calculation of the averaged data. The
selection of the IIR filters and the sampling rate ultimately
depends on the opposing needs to over-resolve the time
scales on which the noise is nonstationary and for a narrow
band to avoid nearby spectral lines.

Finally we resample the filtered data to the post-filtering
Nyquist rate and average the results (now s0het) over a
minute to form

Bk �
1

M

XM
i�1

s0het�ti�; (12)

where k is the minute index and M is the number of
Nyquist samples in 1 min (typically 	100).

In practice there are computational advantages to per-
forming the heterodyning, filtering and resampling process
described above in two steps, starting with a fixed hetero-
dyning frequency and a filter that reduce the sampling rate
to about 4 Hz. A second (variable) heterodyne can then be
performed on the data to remove the Doppler shifts due to
the motion of the Earth. The advantage is that the delay
corrections between topocentric and barycentric time-of-
arrival need only be calculated 4 times, rather than (for
LIGO and GEO) 16 384 times, per second.

With the high frequency term in Eq. (11) suppressed we
have

Bk �
1

4
F��tk; �h0�1� cos2��ei�0

�
i
2
F��tk; �h0 cos�ei�0 � n�tk�

0; (13)

where n�tk�
0 is the heterodyned and averaged complex

noise in bin k. By the central limit theorem, we would
expect the noise, n�tk�0, to be well described by a Gaussian
distribution, although the width of this distribution may
change over time as the detector sensitivity evolves.

The heterodyned gravitational wave signal in this re-
duced data set depends on the same four unknown parame-
ters in Eqs. (3) and (4): h0,  , �0, and �, which can be
conveniently held as a vector, a. We proceed in the next
section by calculating the (Bayesian) probability of the
data given these parameters and finally, through the appli-
cation of Bayes’s theorem and marginalization, we obtain
posterior probabilities for each of these parameters given
the data collected.
-3
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IV. BAYESIAN FORMALISM

We take a straightforward Bayesian approach for the
following analysis and calculate the posterior probability,
p�ajfBkg; I�, of the pulsar parameters a given the binned
data, fBkg. Bayes’s theorem tells us that

p�ajfBkg; I� �
p�ajI�p�fBkgja; I�

p�fBkgjI�
; (14)

where a is the set of parameters inferred from data fBkg,
given our model I, and with likelihood p�fBkgja; I�. I
remains constant throughout the analysis, and will be
dropped from the following expressions to avoid clutter.
It should of course be noted that all the inferences we make
from the data assume this model to be true. Note that the
posterior probability distribution given here assumes that a
signal is present in the data.

Our prior beliefs in the value of the parameters are held
in p�a� and we will use the least informative priors for most
of the parameters over their respective ranges. A change in
polarization angle of �=2 on the sky is equivalent to a
change of signal sign (i.e., a change in signal phase, �0, of
�), so consistent priors are �0 uniform over �0; 2�� and  
uniform over ���=4; �=4�. The prior probability density
function for cos� is taken as uniform over ��1; 1�, corre-
sponding to a uniform probability per unit solid angle for
the orientation of the spin axis.

The prior probability for h0 is more interesting. In
principle the prior for h0 should reflect all our initial beliefs
on the gravitational wave strength, h0. If, for example, we
truly believe that gravitational wave emission is powered
by the loss of kinetic energy from the pulsar (of known spin
down rate), and that the moment of inertia of the pulsar is
reasonably well constrained, then we should construct a
prior that falls away sharply at strain levels which are
above those consistent with this spin down upper limit.
Of course we know that current detector sensitivities are
insufficient to detect such a signal, and as a result the prior
would overwhelm the broader likelihood function. We
would learn nothing new from the experiment since the
posterior probability distribution function (pdf) would
largely resemble the prior pdf we chose.

At this stage in gravitational astronomy, a more useful
statement would be concerned with what the observations
told us that was independent of spin down arguments, and
therefore the prior should reflect this greater sense of
ignorance. We cannot exclude the prior possibility of h0 �
0, so a fully scale-invariant Jeffreys prior ( / 1=h0) would
not be appropriate. However, we are interested in being
able to set conservative upper limits on the strength of any
signals, and this argues in favor of using a uniform prior for
h0. A uniform prior favors larger values of h0 over smaller
values (e.g., the prior probability for the range 0.1 to 1 is 10
times less than for 1 to 10), and represents, for most, an
acceptable state of optimistic ignorance. The resulting
upper limit for h0 will therefore reflect the maximum value
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that could reasonably be thought of as consistent with the
data and has some additional merit because of that. In
addition, a posterior based on a uniform prior for h0 can
be interpreted as a (marginal) likelihood for h0 and more
easily incorporated into future analyses with other data.

For further discussion on choosing priors in cases, simi-
lar to this one, when the level of any signal may be below
the sensitivity of the experiment, see [20]. Ultimately, if
there is a strong detection the choice of the prior should not
play an important role in the results since the likelihood
function would be sufficiently strongly peaked to define the
posterior. Conversely, if no signal is present at the sensi-
tivity level of the instrument, the prior takes on a greater
significance.

The full 4-dimensional posterior pdf contains all the
information from our analysis but is difficult to interpret
directly. It is therefore useful to reduce the dimensionality
by marginalizing (integrating) over the less interesting
(nuisance) parameters. The marginal distribution for one
parameter can be viewed as a weighted average of all the
distributions of this parameter given all the possible com-
binations of the other parameters. The parameter in which
we are most interested is the gravitational wave amplitude
h0, with a marginal pdf of

p�h0jfBkg� /
Z Z Z

p�fBkgja�p�a�d�0d d cos�; (15)

where the integral is performed numerically, over the full
ranges of the nuisance parameters. The pdf for h0 can then
be normalized trivially.

Even without a detection, placing upper limits on h0 can
be physically interesting as we are essentially constraining
the equatorial ellipticity of the neutron star. We define the
upper limit of h0 bounding 95% of the cumulative proba-
bility (from h0 � 0) as the value h95 that satisfies

0:95 �
Z h95

h0�0
p�h0jfBkg�dh0: (16)

Note that such a limit can be placed on h0 even if most of
the probability is to be found some distance from h0 � 0
and a strong signal is detected.

In order to calculate the likelihood function we need to
have a model of the signal in the processed data. The model
of the signal that we are searching for in the data set, fBkg,
is obtained by processing the original gravitational wave
signal h�t� in the same way that we processed the data to
give

y�tk; a� �
1

4
F��tk; �h0�1� cos2��ei�0

�
i
2
F��tk; �h0 cos�ei�0 : (17)

We note that the model is complex and that the only time
varying component is the antenna pattern of the interfer-
ometers. The Nyquist frequency for this signal is well
-4
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below our reduced sampling rate of one Bk per minute. In
the following two sections we will present two different
ways of evaluating the likelihood function depending on
whether the variance of the data is known or unknown.

A. Gaussian model—known variance

Here we give the expression for the likelihood function
assuming that we know, or can estimate accurately, the
variance of the noise. We assume that the data comprises n
samples of a signal, y�tk� [see Eq. (17)], embedded in
complex Gaussian noise N�0; �k� of zero mean and known
overall variance �2

k, so that

Bk � yk � N�0; �k�: (18)

If the set of fBkg are independent, the likelihood of the data
is simply the product of n bivariate normal distributions.
Note that the distribution is bivariate because the data are
now complex. The real and imaginary parts of the Bk’s
have independent noise components, each with a variance
�2
k=2. The likelihood of the parameters is therefore

p�fBkgja; f�kg� � �
�������
2�
p

�k��2n exp

 
�
Xn
k�1

jBk � ykj
2

2�2
k

!
:

(19)

This Gaussian model for the likelihood was used for the
first GEO 600 and LIGO analysis for signals from pulsar
J1939� 2134 [6]. For this analysis, the noise level �k was
not known but was estimated for each Bk from the noise
floor in a 4 Hz band of data around the signal frequency,
assumed stationary for at least 1 min. This gives 240� 2
points contributing to the estimate of the variance, making
the uncertainty in the point estimate of �k small enough to
be ignored. The procedure is valid as long as the mean
noise floor in the band is representative of the noise floor at
the signal frequency, if there are no strong contaminating
signals in the band and if the noise is sufficiently stationary.
Although these requirements were largely met for [6], just
one millisecond pulsar was involved in the study and they
cannot be expected to be met in general. To address this an
alternative model was developed for the S2 analysis [7].

B. Gaussian model—unknown variance

In the previous section we evaluated the likelihood
function given the noise level, �k, for each Bk. Generally
however, the noise level may not be known in advance or
may not be well estimated from the data. Here we de-
scribed the likelihood function appropriate to this situation,
which was used in the analysis of the LIGO S2 data [7].

If �k is estimated from a tighter bandwidth, or over a
shorter period, fewer data contribute and the uncertainty in
its value may be too large to use a point estimate alone.
Within our Bayesian framework the standard (and correct)
approach is to treat the noise level as another nuisance
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parameter and marginalize over it, without computing a
point estimate at all [21].

We begin by calculating the likelihood of a subset of mj

consecutive data points from fBkg which have a constant
noise level �j. Once we have that expression, we will
calculate the global likelihood simply using the product
rule assuming that each segment of data is independent. We
will again define n to be the total number of data points Bk
and let M be the number of segments of data that we have
assumed have the same noise level, so that

n �
XM
j�1

mj: (20)

We can write the likelihood of the parameters, based on the
jth subset of data and marginalized over �j as

p�fBkgjja� /
Z 1

0
p�fBkgj; �jja�d�j

/
Z 1

0
p��jja�p�fBkgjja; �j�d�j; (21)

where p��jja� is the prior for the noise floor and the
likelihood p��jja�p�fBkgjja; �j� is given by Eq. (19). As
�j is a nonzero scale parameter we take a Jeffreys prior,
uniform in log�j:

p��jja� /
1

�j
��j > 0�: (22)

Our final conclusions would be essentially unchanged if a
uniform prior was used instead of this Jeffreys prior [22].
Here we assume that the �j associated with each subset
fBkgj is constant over the mj samples. In other words, we
assume that the noise level of the interferometer, in a
narrow frequency band around the gravitational wave sig-
nal, is stationary for this time. However, we allow the noise
floor to change between each subset of data fBkgj. This
allows us to dynamically track the noise floor seen in real
interferometric data, which will inevitably vary on some
time scale, as the instrumental performance varies. The
length of the jth subset, over the which the data is assumed
stationary, can also be adjusted to reflect the known time
scale of these variations.

Using Eqs. (19), (21), and (22), the likelihood of the
parameters based on a subset fBkgj of constant noise �j is

p�fBkgjja� /
Z 1

0

1

�
2mj�1
j

exp

 
�

Xk2�j�

k�k1�j�

jBk � ykj2

2�2
j

!
d�j;

(23)

where mj � k2�j� � k1�j� � 1. This reduces to

p�fBkgjja� /

 Xk2�j�

k�k1�j�

jBk � ykj
2

!
�mj

; (24)
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which is equivalent to a student’s t-distribution with 2mj �

1 degrees of freedom. Recall that the likelihood derived in
Eq. (24) is for a set of mj data points Bk with the same �j.
The joint likelihood of all the M stretches of data, taken as
independent, is therefore

p�fBkgja� /
YM
j

 Xk2�j�

k�k1�j�

jBk � ykj2
!
�mj

: (25)

We note that there is (of course) no explicit reference to the
noise level, but the lengths of the stationary intervals, mj,
can be adjusted to reflect the performance of the detectors.
V. PERFORMANCE ON SIMULATED DATA

A. Expected sensitivity

The analysis described above is optimal (in a Bayesian
sense) for the data available from one or more science runs.
It is however instructive to examine the long-term perform-
ance of the method on a large series of simulated data sets,
both to confirm that the average performance complies
with our expectations and to ease comparisons with meth-
ods based on sampling theory.

To do this, we calculated the h95 upper limits from 4 000
simulated data sets, of length 10 days, varying the location
of the putative source in the sky and the location of the
detector in each set. The locations of the sources were
picked randomly from a uniform distribution over the
sky, and the detector locations were the GEO 600 and the
two LIGO sites.

From these we can express the average 95% upper limit
hh95i as a function of observation time T and single-sided
FIG. 1. Distribution of 95% upper limits on h0 for 4 000
simulations, using sources randomly located on the sky with
Sn�f�=T � 1.

102002
noise power spectral density, Sn�f�. Empirically, from
these simulations,

hh95i � �10:8� 0:2�
�����������������
Sn�f�=T

q
; (26)

where the range accounts for the location of the detector.
Figure 1 shows the distribution of h95 that contributed to
this, for Sn�f�=T � 1. Note that the width and skew of the
distribution are relatively large, so the actual upper limit
from an observing run could reasonably be up to a factor of
2 larger than hh95i.

B. Combining data from a network of detectors

Several gravitational wave detectors are currently col-
lecting data, and ideally we should be able to use the
observations from all detectors in a coherent manner in
order to draw the best possible inference about the source
parameters. In a Bayesian analysis all observations enter
via the likelihood function. Assuming that the noise from
each interferometer is independent, by the product rule the
global likelihood is simply the product of the individual
likelihoods. For example, by combining observations from
GEO 600 and the three LIGO interferometers, we would
get

p�fBkgJointja� �
Y4

i�1

p�fBkgija; i� (27)

where the product is over the 4 km Hanford interferometer
(H1), the 2 km Hanford interferometer (H2), the 4 km
Livingston interferometer (L1), and GEO 600.

This likelihood contains all the information on the
source parameters that is contained in the data, optimally
combining the data from all the interferometers in a co-
herent way. Note that the observation periods can be differ-
ent and so can the sensitivity of the detectors, although for
detectors with very different sensitivities, this will closely
approximate the likelihood based on just the most sensitive
instrument.

For illustration, we generated four sets of data of 10 days
length with Gaussian noise (� � 0 and � � 1) as if from
GEO 600 and the three LIGO interferometers. As these
IFOs are modeled as having the same sensitivity, we would
expect the coherent results to be approximately

���
4
p

times
tighter than the individual results (distinguished from a
factor of 4 increase in observing time only by the differing
antenna patterns of the instruments). The four posterior
pdfs for each detector, as well as the joint multidetector
posterior pdf for h0, are shown in Fig. 2. The individual
95% upper limits are 0.15 for GEO 600, 0.16 for H1, 0.18
for H2, and 0.13 for L1 giving an average of 0.155. The
combined 95% upper limit, on the other hand, is 0.08,
which is indeed approximately a factor of 2 better than
the average of the limits from the individual detectors. This
technique was first applied to real gravitational wave data
in [7]. The equivalent multidetector analysis using the
-6



FIG. 3 (color online). Time series of Bk showing the effect of a
changing noise level. The dots are the jBkj and the line repre-
sents the variance of the Bk’s. The top figure represents the first
data set with constant variance and the bottom figure represents
the second data set with alternating variance.

FIG. 2. Multidetector posterior pdfs with simulated data. The
solid line represents the joint marginalized posterior pdf for h0

using the data from four separate interferometers. The dashed
lines are the corresponding pdfs from the individual detectors.

FIG. 4. Averaged marginalized posterior pdfs for h0 for three
scenarios: constant unit variance (solid line), alternating noise
level between � � 10 and � � 1=�2

���
2
p
� (dashed line), and

alternating noise level between � � 100 and � � 1=�5
���
2
p
�

(dotted line).
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F -statistic method [8] has recently been developed by
Cutler and Schutz [23].

It is important to realize that the posterior curve derived
from a particular observation represents a probabilistic
statement about the value of h0 based on the data in hand
and may, if we are unlucky, be wildly at odds with the truth.
As a result the upper limit derived from one instrument
alone will occasionally be lower than that from the coher-
ent combination of instruments.

C. Effects of changing the noise level

The widths of the marginal posteriors depend on both the
level of the noise and the covariance of the parameters.
Here we demonstrate the noise dependence by analysing
three sets of data with different, sometimes modulated,
noise variances. Each data set corresponds to 10 days of
observations. The first contains Gaussian noise with� � 0
and � � 1. For the second data set, the noise level alter-
nates each 30 min between � � 10 and � � 1=�2

���
2
p
�. For

the third data set, the noise level alternates each 30 min
between � � 100 and � � 1=�5

���
2
p
�. Two time series plots

showing representative stretches of data from the first and
second sets are shown Fig. 3.

For this test, we repeated and averaged the posterior pdfs
for 100 generations of the data sets described above. The
average marginalized posterior pdfs for h0 are shown in
Fig. 4.

Using the 66% upper limit on h0 to characterize the
width of the pdfs we have h0 < 0:095 for case 1, h0 <
0:047 for case 2, and h0 < 0:019 for case 3. The second
posterior is narrower than the first by a factor of 2.02 and
102002
the third by a factor of 5.05. For no signal, these results are
roughly what we would expect: in the two cases with
alternating noise levels, about half of the data has very
low sensitivity compared to the other half, and we can
assume this noisy half does not play a significant part in
the posterior. Therefore these cases are approximately
equivalent to a continuous observation at the greater sensi-
-7
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FIG. 6. Equally spaced contours of constant probability, show-
ing the covariance between h0 and cos�, for Gaussian noise with
no signal but a uniform prior for h0.
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tivity level but for half the full observing period, and the
reduced time lowers the sensitivity by

���
2
p

. Thus compared
to the first case with constant noise, we would expect the
two sets with alternating noise levels to have widths which
are narrower by factors of about 2 and 5, which is what we
see.

D. Covariance between parameters

To illustrate the covariance between the signal parame-
ters we generated a 10 day time series containing a signal
with the following parameters and Gaussian noise of unit
variance: h0 � 0:25, cos� � 0:1, �0 � 180
,  � 0:0
. It
is clear from the emission model that if cos� � 0, h0 and
cos� are strongly anticorrelated, as are  and �0. The
correlation can be seen clearly in the probability density
contour plots in Fig. 5.

The covariance between cos� and h0 contributes
strongly to the overall width of the marginal pdf of h0,
making the precise value of h0 somewhat difficult to de-
co
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FIG. 5. Equally spaced contours of constant probability den-
sity for (top) the joint posterior probability of cos� and h0 and
(bottom)  and �0. The marker indicates the location of the
simulated signal.
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termine even under conditions of relatively high signal-to-
noise ratio. The correlation between h0 and cos� is also
visible when no gravitational wave signal is injected in the
data (h0 � 0), largely because of our choice of a uniform
prior for h0 which holds out high hopes for a strong signal
in the data (Fig. 6). When no such signal is seen, this is
interpreted as an indication that the pulsar is oriented
unfavorably and the posterior probability slightly increases
around cos� � 1, where only the ‘‘�’’ polarization is
present.
VI. CONCLUSIONS

In this paper we have presented an end-to-end Bayesian
method of searching for, and parametrizing, gravitational
waves from known pulsars. The method involves process-
ing the raw data to reduce the number of samples required
for the analysis. We calculated the likelihood function for
given model parameters from the decimated data, so re-
ducing computational requirements. The algorithm has
been validated by retrieving the correct signal parameters
from simulated data. We have also shown than it is easily
adapted to deal with a network of detectors.

This methodology was initially developed for targeted
searches with known locations and spin evolutions of the
sources. Further work has now been done studying the
feasibility of expanding the numbers of parameters by
taking advantage of Monte Carlo Markov chain techniques
[24]. These techniques are required when the number of
unknown parameters is significantly increased, when the
method presented here would be too computationally in-
tensive. In a future paper we will address how this method
has been adapted to search for gravitational emission from
pulsars in binary systems. The algorithm presented in this
paper, with the binary modification, is currently being
applied to GEO 600 and LIGO data from the S3 and S4
science runs.
-8
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