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Improving the efficiency of the detection of gravitational wave signals from
inspiraling compact binaries: Chebyshev interpolation
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Inspiraling compact-object binary systems are promising gravitational wave sources for ground and
space-based detectors. The time-dependent signature of these sources is a well-characterized function of a
relatively small number of parameters; thus, the favored analysis technique makes use of matched filtering
and maximum likelihood methods. As the parameters that characterize the source model vary, so do the
templates against which the detector data are compared in the matched filter. For small variations in the
parameters, the filter responses are closely correlated. Current analysis methodology samples a bank of
filters whose parameter values are chosen so that the correlation between successive samples from
successive filters in the bank is 97%. Correspondingly, the additional information available with each
successive template evaluation is, in a real sense, only 3% of that already provided by the nearby
templates. The reason for such a dense coverage of parameter space is to minimize the chance that a real
signal, near the detection threshold, will be missed by the parameter space sampling. Here we investigate
the use of Chebyshev interpolation for reducing the number of templates that must be evaluated to obtain
the same analysis sensitivity. Additionally, rather than focus on the ‘‘loss’’ of signal-to-noise associated
with the finite number of filters in the template bank, we evaluate the receiver operating characteristic
(ROC) as a measure of the effectiveness of an analysis technique. The ROC relates the false alarm
probability to the false dismissal probability of an analysis, which are the quantities that bear most directly
on the effectiveness of an analysis scheme. As a demonstration, we compare the present ‘‘dense
sampling’’ analysis methodology with the ‘‘interpolation’’ methodology using Chebyshev polynomials,
restricted to one dimension of the multidimensional analysis problem by plotting the ROC curves. We find
that the interpolated search can be arranged to have the same false alarm and false dismissal probabilities
as the dense sampling strategy using 25% fewer templates. Generalized to the two-dimensional space used
in the computationally limited current analyses, this suggests a factor of 2 increase in computational
efficiency; generalized to the full seven-dimensional parameter space that characterizes the signal
associated with an eccentric binary system of spinning neutron stars or black holes, it suggests an order
of magnitude increase in computational efficiency. Since the computational cost of the analysis is driven
almost exclusively by the matched filter evaluations, a reduction in the number of template evaluations
translates directly into an increase in computational efficiency; additionally, since the computational cost
of the analysis is large, the increased efficiency translates also into an increase in the size of the parameter
space that can be analyzed and, thus, the science that can be accomplished with the data.
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I. INTRODUCTION

Inspiraling compact binaries of stellar mass neutron
stars or black holes are among the most important gravi-
tational wave sources accessible to the current generation
of ground-based interferometric gravitational wave detec-
tors [1–4]. They are also very ‘‘clean’’ systems, in the
sense that the gravitational wave signal arising from the
inspiral depends only on general relativity (i.e., the struc-
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ture of the binary components is unimportant) and can be
calculated to great accuracy by the well-understood tech-
niques of post-Newtonian perturbation theory [5–7]. For
these reasons, matched filtering and maximum likelihood
techniques are well-suited for the detection and character-
ization of the signal from these systems [8,9] and an
implementation based on these methods is currently used
in the analysis of data from the LIGO and GEO detectors
[10]. Current implementations of matched filtering for this
problem involve a dense search strategy, where the binary
parameter space is sampled by templates spaced to ensure
that real signals, with signal-to-noise greater than a given
threshold (typically 8) have a certain minimum correlation
(typically 97%) with at least one template. Here we inves-
tigate an alternative algorithm for detection, involving
interpolation between templates spaced less densely, and
-1 © 2005 The American Physical Society
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compare the efficiency of this interpolated search algo-
rithm with the dense search algorithm using the receiver
operating characteristic (ROC) of each search, which takes
into account both the false dismissal and the false alarm
fractions of each.

The gravitational wave signature of inspiraling binary
systems depends on a set of 15 parameters that characterize
the system (i.e., component masses, orbital energy and
angular momentum at a given epoch, component spins,
orientation relative to detector line of sight). To identify an
incident signal using a matched filter requires the applica-
tion of a fair sampling of filter ‘‘templates,’’ each defined
by a unique choice of the parameters associated with the
physical system. Current implementations of matched fil-
tering used in the analysis of gravitational wave detector
data involve a very dense sampling of the two-dimensional
parameter subspace corresponding to the binary compo-
nent masses (intrinsic parameter space) and assuming zero
eccentricity orbits and no body spins:1 the templates are
spaced so closely that the correlation between templates at
neighboring points in the subspace is 97% [13,14].

We refer to this as the ‘‘dense’’ search strategy. The
rationale underlying the dense search strategy is to reduce
the probability that a weak signal, characterized by pa-
rameters that fall between those sampled, will be missed by
the sampling. Here we describe a straightforward and
practical way of using interpolation to take advantage of
the correlation between the matched filter output associ-
ated with nearby points in the parameter space to signifi-
cantly reduce the number of matched filter evaluations
without sacrificing the efficiency with which real signals
are recognized.

We are not the first to observe the significance of the
high correlation between neighboring templates nor to
consider the opportunity for and advantages of interpola-
tion as part of the implementation of matched filtering for
the analysis of binary inspiral signals. The significance of
the high correlation as an indication that fewer templates
should be able to recover signals with the same efficiency
was first made in [14]. Croce et al. [15,16] explored the use
of Cardinal interpolation with a truncated series of sinc
functions to estimate the value of the matched filter output
when the filter used corresponds to the actual parameters
that describe the signal. They found a sampling of parame-
ter space that would ensure the interpolated estimate would
be no less than 97% of the maximum over a two-
dimensional intrinsic parameter space. Their sampling
1The rationale for choosing a subspace is that the computa-
tional cost of a full parameter space search is high and that many
systems are believed to be adequately represented by this sub-
space. Even for this two-dimensional subspace the minimum
computational cost for a matched filter search over component
masses in the range 0:2M� <m1 � m2 < 30M� in the LIGO
detector band is several hundred GFlops/s [11]. When significant
body spin is allowed, the computational cost grows by several
orders of magnitude [12].

102001
and interpolation reduced by a factor of 4, compared to
the dense search, the number of templates required to
search over a two-dimensional intrinsic parameter space.
Here we find that we can achieve an increase in efficiency
by a factor of 3:5 for one-dimensional parameter space,
with a simpler template spacing and a simpler and quicker
to evaluate interpolation function.

Cardinal interpolation with sinc functions provides per-
fect reconstruction of a bandlimited function from equi-
spaced samples. In the present case, however, the function
being interpreted is not bandlimited and—in any event—
we do not have the infinite number of samples that would
be required for perfect reconstruction. As an alternative to
cardinal interpolation with a truncated series of sinc func-
tions, we consider interpolation using Chebyshev polyno-
mials, which have two important properties: first, they have
(very nearly) the minimum maximum error of all polyno-
mial interpolating expressions of fixed degree; and second,
they have the practical advantage of being quick and easy
to calculate.

To understand and demonstrate the performance of the
interpolated search, we consider a one-dimensional pa-
rameter space in the chirp mass and evaluate the minimum
number of templates required to obtain a given detection
efficiency using both the (Chebyshev) interpolation and
dense strategies. We go further, however, and calculate also
the false alarm probability of both search strategies. The
relationship between the false alarm and false dismissal
probabilities is referred to as the receiver operating char-
acteristic, or ROC. Clearly, given two analysis strategies
with the same efficiency, the strategy with the lower false
alarm fraction has superior discriminating power. We find
that interpolation strategy using Chebyshev interpolation is
superior to the dense analysis strategy or interpolation
using the sinc function, from the perspective of either
computational efficiency or discriminating ability.

The paper is organized as follows: In Sec. II we describe
the motivation behind our choice of interpolating function
and the difference between our choice and the choice made
in [15,16]. In Sec. III we describe in detail the dense and
interpolated search strategies, the two-dimensional tem-
plate space used in current gravitational wave data analyses
for inspiraling binary neutron stars, the one-dimensional
restriction that we use here to compare the effectiveness of
the interpolating search strategy, the use of ROCs for
comparing different analysis strategies, and (finally) com-
pare the performance of the interpolated and dense search
strategies by evaluating the sensitivity of each at fixed
computational cost and the computational cost required
by each to achieve the same sensitivity.
II. INTERPOLATING IN PARAMETER SPACE

The Wiener matched filter W, corresponding to an ex-
pected signal characterized by �, is a scalar-valued func-
tion of the (vector-valued) instrument data d, noise power
-2



2In fact, as noted in [15,16], the � is quasibandlimited: i.e.,
there exists a Bc such that the error one makes by undersampling
at frequency B> Bc is proportional to exp���B� Bc�	.
Nevertheless, interpolation with the Cardinal function is still
an approximation and, as we are about to see, other interpolating
functions can achieve equivalent accuracy at smaller computa-
tional costs.

IMPROVING THE EFFICIENCY OF THE DETECTION . . . PHYSICAL REVIEW D 72, 102001 (2005)
spectral density (PSD) Sn:

W�dj�� � W��jSn;d�: (2.1)

In our particular problem W�dj�� is a continuous function
of � and � corresponds to the parameters that characterize
our binary system model: e.g., binary system component
masses, orbital energy and angular momentum, component
spins, etc. Given a data set d, we wish to find an interpolat-
ing function ~W��� and a set of points �k in the space of
possible signals such that

Wk � ~W��k� � W�djSn; �k�: (2.2)

There are, of course, an infinite number of continuous
functions ~W��� that take on the values Wk at the �k: the
question is, how do we choose among them?

Focus attention first on the case where � is a scalar x.
One particular choice of interpolant ~W�djSn; x�, which is
especially important in the context of communication the-
ory, is based on the Whittaker Cardinal function sinc:

C�x� �
X1

k��1

Wksinc
x� xk

�
; (2.3)

where

sinc �x� �
sin�x
�x

; (2.4)

xk � x0 � k�: (2.5)

Shannon [17] showed that the Cardinal interpolation C�x�
of W�djSn; x� is the unique interpolant ~W that (i) takes on
the values Wk at the xk, (ii) has no singularities, and (iii)
and whose spectrum is limited to a bandwidth �2���1.
Correspondingly, if W�djSn; x� is bandlimited in x and
has the values Wk at the equidistant sampled points xk,
then W�djSn; x� is equal to C�x�. In the case where � is
multidimensional the interpolation can be performed sepa-
rately on each index: e.g., in the case of two dimensions
[i.e., � equal to ��1; �2�]

C��� �
X1

j;k��1

Wjksinc
�
�1
��1 � �1;j�sinc

�
�2
��2 � �2;k�;

(2.6)

where

�1;j � �1;0 � j�1; (2.7)

�2;k � �2;0 � k�2 (2.8)

and �1;0, �2;0 are constants.
Cardinal interpolation using the Cardinal function sinc

forms the basis of the interpolation formula used in
[15,16]. If W�djSn; �� is bandlimited and we choose our
samples of W appropriately, then we can do no better than
using the Cardinal function to interpolate values of W
between the samples. In our problem, however,
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W�djSn; �� is not bandlimited and we do not have an
infinite number of sample points Wk; correspondingly,
the Cardinal function C��� is at best an approximation to
W�djSn; ��. With that understanding the Cardinal interpo-
lation C��� is not preferred and we are led to seek other
approximations to W�djSn; �� that have favorable
properties.2

One possibility, chosen from approximation (as opposed
to interpolation) theory, is the use of a Chebyshev poly-
nomial expansion to approximate W�djSn; ��. Without loss
of generality consider a continuous function f�x� on
��1; 1	. The Weierstrass Approximation Theorem states
that for any � > 0 we can find a polynomial Pn of order n
such that

max
x2��1;1	

jf�x� � Pn�x�j � �: (2.9)

The minimax polynomial approximation to W�djSn; x�
is a natural candidate for the interpolation ~W�x�.
Unfortunately, finding the minimax polynomial is a very
difficult process; nevertheless an excellent approximation
to the minimax polynomial does exist. Define the error
E�xjf; Pn� associated with the polynomial approximation
Pn�x� by

E�xjf; Pn� 
 f�x� � Pn�x�: (2.10)

The Chebyshev Equioscillation Theorem [18] states P�n is
the minimax polynomial if and only if there exist n� 2
points �1 � x0 < x1 < � � �< xn�1 � 1 for which

E�xkjf; P�n� � ��1�kE; (2.11)

where

jEj 
 max
x2��1;1	

jE�xjf; Pn�j: (2.12)

As a corollary, E�xjf; P�n� vanishes for x 2 ��1; 1	 at n�
1 points x0k, with xk < x0k < xk�1. This result, together with
the Mean Value Theorem, allows us to write the error term
associated with the minimax polynomial P�n as

E�xjf; P�n� �
f�n�1����
�n� 1�!

Yn
k�0

�x� x0k�; (2.13)

where � 2 ��1; 1	. Correspondingly,

jEj � max
x2��1;1	

��������
Yn
k�0

�x� x0k�
�������� max
�2��1;1	

jf�n�1����j
�n� 1�!

: (2.14)
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Focus attention on the order n� 1 polynomial

Q�n�1�x� �
Yn
k�0

�x� x0k�: (2.15)

This polynomial has leading coefficient unity. A unique
property of the Chebyshev polynomial Tn�1 is that, of all
order n� 1 polynomials Qn�1 with leading coefficient
unity,

max
x2��1;1	

j
Tn�x�

2n�1 j � max
x2��1;1	

jQn�1�x�j: (2.16)

Additionally, Tn�1�x� has exactly �n� 2� extrema on
��1; 1	, the value of jTn�1�x�j at these extrema is 1, and
the extrema alternate in sign. Correspondingly, if the error
term E�xjf; P�n� associated with the minimax polynomial
P�n were polynomial—i.e., f�n�1���� were constant in
Eq. (2.13) so that E�xjf; P�n� was equal to Q�n—then by
the Equioscillation Theorem Q�n�1 would be equal to Tn�1

and the x0k—where the error vanishes—would be the n�
1 roots of Tn�1. This suggests that we find the order n
polynomial p�n such that

p�n�x
0
k� � f�x0k� 8 k � 0 . . . n; (2.17)

where, again, the x0k are the roots of Tn�1. The polynomial
p�n is a near minimax polynomial approximation to f�x�.
For this polynomial approximation Powell [19] showed
that, as long as f�x� is continuous on ��1; 1	,

1 �
�cheb

�0
� �n 
 1�

1

n� 1

Xn
k�0

tan
�
�k� 1=2��

2�n� 1�

�
;

(2.18)

where

�0 � max
x2��1;1	

jE�xjf; P�n�j; (2.19)

�cheb � max
x2��1;1	

jE�xjf; p�n�j: (2.20)

Powell also showed that �n grows slowly with n: in par-
ticular,

�n 
2

�
logn: (2.21)

Somewhat tighter bounds on �n can be placed when f is
also differentiable [20].

As defined above, the near minimax polynomial p�n is
the interpolating polynomial that agrees with f at the n� 1
roots of Tn�1. Alternatively, using several properties of
Chebyshev polynomials, the Chebyshev interpolating pol-
ynomial can be expressed as a linear combination of
Chebyshev polynomials:

p�n�x� �
Xn
k�0

akTk�x� �
1

2
a0; (2.22)
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where

aj �
2

n� 1

Xn�1

k�1

f�x0k�Tj�x
0
k�; (2.23)

where, again, the x0k are the n� 1 roots of Tn�1.
III. COMPARISON: DENSE AND INTERPOLATED
SEARCH

In this section we describe the dense and interpolating
search strategy and compare their efficiency when applied
to the problem of identifying the gravitational wave sig-
nature of coalescing neutron star systems in the LIGO
detectors.

A. Two search strategies

The conventional search strategy used in the current
analyses of LIGO, GEO, and TAMA data
(cf. [10,11,13,14]) begins with the placement of templates
at discrete points �k on the parameter space �. To choose
the template locations we define the inner product of two
signals g�t� and h�t�,

hg; hi � 4
Z 1

0
df<

�
~g�f�~h��f�
Sn�f�

�
; (3.1)

where ~g�f� is the Fourier transform of g and Sn is the
detector noise power spectral density. Denoting by h�tj��
the signal characterized by �, the match ���j; �k� is

���j; �k� �
hh�tj�j�; h�t; �k�i��������������������������������������������������������������������

hh�tj�j�; h�t; �j�ihh�tj�k�; h�t; �k�i
q : (3.2)

By construction j�j � 1. The template locations are
chosen so that consecutive templates in any of the direc-
tions �j have an overlap �0, referred to as the ‘‘minimum
match’’ and typically chosen to be 97%.

With the templates placed, the dense search strategy
proceeds:
(1) E
-4
valuate the Wiener filter W�djSn; �k� at each of the
template locations �k.
(2) D
etermine the template �j whose Wiener filter out-
put is greatest.
(3) I
f the filter output at �j exceeds the given threshold,
report an event with the parameters �j.
We refer to this as the dense search strategy.
Following the discussion in Sec. II we are in a position to

describe an alternative strategy, which we refer to as the
interpolated search strategy. First, fix the order of the
interpolating polynomial. This determines the template
locations �k on the parameter space �. Then
(1) E
valuate the Wiener filter W�djSn; �k� at each of the
template locations �k.
(2) F
orm the interpolating polynomial from the
W�djSn; �k�.
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FIG. 1 (color online). This figure demonstrates the interpo-
lated search. The ambiguity function is sampled and recon-
structed over the chosen parameter space of �0 � 13–17 sec
(only a part of the parameter space has been shown in the figure)
with the help of the Chebyshev interpolating polynomial. The
approximate location of the peak of the interpolating function is
first located and the zero of the derivative is obtained by applying
successive approximations around the peak. Finally a template is
placed at this estimated signal location. Note that, by placing a
template at the maximum of the interpolating polynomial, the
match has improved over the one obtained by simply evaluating
the maximum of the interpolating polynomial.
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(3) D
etermine the location �0 where the interpolating
polynomial is maximized.
(4) P
erform a final Wiener filter evaluation at �0.

(5) I
f the final evaluation exceeds the given threshold,

report an event with the parameters �0.

We illustrate the interpolated search strategy using

Fig. 1. In Fig. 1 we use 37 interpolating search templates,
that is, we sample the ambiguity function at 37 points in the
�0 space (the marked points on the dotted curve). We
construct the interpolating function (the solid curve) and
find its maximum by setting its derivative to zero. In order
to avoid local extrema, we first find the approximate loca-
tion of the peak of the interpolating function and then find
the zero of its derivative by successive approximation near
the region of the peak. One can clearly see that the proper
value of the ambiguity function at the maximum of the
interpolating function is more than the maximum value of
the interpolating function and this is what we gain by
placing a template at the maximum of the interpolating
function.

B. A one-dimensional parameter space for
comparative studies

We are interested in understanding the performance of
the interpolated search strategy relative to the dense search
strategy, which is currently used in the analysis of data
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from the LIGO, GEO, and TAMA detectors [10]. The
current analyses focus on templates corresponding to bi-
naries with circular orbits and no component spins. The
corresponding two-dimensional parameter space is
spanned by the masses of the individual components. The
templates vary most rapidly, however, along the axis
spanned by the so-called chirp mass

M :� �3=5M2=5; (3.3)

whereM is the system’s total mass and� its reduced mass.
The linear density of templates needed by the dense search
in the direction @M is approximately 100 times the linear
density needed in the orthogonal direction. For the com-
parison we perform here, we focus attention on the number
of template evaluations needed for binaries with equal
mass components that vary only in M. We expect that
the ratio of performance, measured as the number of
templates required by the two search strategies to achieve
the same search results, will be the same in the comple-
mentary dimension and in the other dimensions that will be
introduced in future searches that accommodate compo-
nent spins and orbital eccentricity.

C. Templates

The strain response of an interferometric gravitational
wave detector to quadrupole formula approximation gravi-
tational waves incident from an inspiraling binary neutron
star system can be written

h�tjta;�0��h0��f�t� ta��0�M	
2=3 cos��t� ta��0�;

(3.4a)

where

f�tjta; �0� :�
1

�M

�
5

256

M
�0 � ta � t

�
3=8
;(3.4b)

��tjta; �0� :� �a � 2�
Z ta��0

t
dtf�tjta; �0�;(3.4c)

for t < ta � �0. Here ta is the moment when the instanta-
neous wave frequency is equal to fa and �0 is the elapsed
time from that moment until (in this approximation) the
system coalesces, which is directly related to the system’s
chirp mass M:

�0 �
5

256�fa

1

��Mfa�
5=3
: (3.5)

The elapsed time to coalescence �0 is a useful surrogate
for the chirp mass M: templates equispaced in �0 have
constant cross correlation, independent of �0. Choosing fa
equal to 40 Hz, which is commonly taken as the lower edge
of the LIGO detector bandwidth at design sensitivity [21],
�0 ranges from approximately 43 sec for a binary system
consisting of two 1M� compact objects to 0.15 sec for a
binary consisting of two 30M� black holes.
-5
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It is convenient to work with the Fourier transform of the
strain response of the detector. For neutron star binaries in
the LIGO or Virgo band, the Fourier transform can be
evaluated to an excellent approximation using the station-
ary phase approximation [9]:

~h�f� �N f�7=6 expfi���a � �=4���fjta; �0�	g;

(3.6a)

where

�a � ��tajta; �0�; (3.6b)

��fjta; �0� � 2�fta � fa�0
6�
5

�
f
fa

�
�5=3

: (3.6c)

The factor N is a constant amplitude.
It is important to distinguish between the nature of the

parameters that characterize the template. Changes in the
parameter �0 change the waveform shape: we term such
parameters dynamical parameters. On the other hand, pa-
rameters such as ta or �a translate the waveform, but do
not alter its shape: we term these kinematical parameters.3

In our problem only the subspace of dynamical parameters
needs to be spanned by discrete templates: the values of the
kinematical parameters for the Wiener filter with the maxi-
mum output can be determined by other means.
Correspondingly, at the level of approximation associated
with the quadrupole formula the family of templates that
must be evaluated is one dimensional.

D. Dense search template placement

There are many different ways of parametrizing the
template space. Choosing �0 as a dynamical variable has
the advantage that ���0; �00� depends only on the difference
�0 � �00; consequently, in the dense search templates are
spaced uniformly in �0 [11,13,14]. To determine that spac-
ing we evaluate

H ���0� � ���0; �0 ���0�; (3.7)

where now � has been maximized over the kinematical
parameters ta and �a. This maximization can be per-
formed in a computationally efficient manner as shown
in the literature [13]. We call H the dynamical ambiguity
function or simply the ambiguity function. It quantifies the
fractional match between the template at �0 and the signal
at �0 ���0. Figure 2 shows H for power spectral density
specified in the initial LIGO science requirements [21].
The requirement that H ���0� is equal to a constant for
any two consecutive templates determines the spacing ��0

between templates that differ only in �0. For our example
problem, which has just one dynamical parameter, the
3In the literature, dynamical and kinematical parameters are
also known as intrinsic and extrinsic parameters, respectively.
Unlike the dynamical parameters, the kinematical parameters
can be handled quickly and easily in the filtering algorithms.
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requirement that H ���0� is 97% (the conventional
choice) for neighboring templates leads to a template
spacing ��0 equal to 30 ms.

E. Interpolated search template placement

In the dense search templates are equispaced in �0, with
the spacing between adjacent templates—and thus the
number of templates—chosen such that the dynamical
ambiguity function takes on a specified value. When pre-
sented with data an event is signaled when the amplitude at
one of these templates exceeds a threshold.

In the interpolated search, on the other hand, the domain
��min

0 ; �max
0 	 is mapped onto ��1; 1	 and the placement and

number of templates is chosen to simplify the construction
of the Chebyshev interpolating polynomial of the template
output over this domain. When presented with data, the
maximum value of the Chebyshev interpolating polyno-
mial is found and an event is signaled when the amplitude
at that location exceeds a threshold.

In the interpolated search our goal is to minimize the
order of the interpolating polynomial (and, thus, the num-
ber of template evaluations) required for a given accuracy
of interpolation. We have some control over this through
the choice of mapping from ��min

0 ; �max
0 	 to ��1; 1	. The

linear map

�0 � 2
�0 � �min

0

�max
0 � �min

0

� 1 (3.8)

is the most obvious of such mapping. While we have not
made an exhaustive search of all possible mappings, how-
ever, we have observed that better fits are possible with a
lower-order polynomial when we use the mappings

� � cos��0� � � cos
�
�
�0 � �

min
0

�max
0 � �min

0

�
: (3.9)
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Moreover, with this mapping, the roots of the Chebyshev
polynomial are equispaced over the parameter range in �0.
Note that the Chebyshev polynomials can also be written as
Tn�x� � cos�n	�x�	, where x � cos	, so in this case
Tn��� � cos�n��0�. Since the �0 space is sampled uni-
formly due to the above mapping, Chebyshev interpolation
is now equivalent to a type II discrete cosine transform in
��0. Equispaced sampling of the parameter space could be
beneficial if the signals are distributed uniformly over the
�0 space. Nevertheless, for a nonuniform distribution of
signals, different transformation could be preferred to give
optimum results. Once we have fixed the order n of the
interpolating polynomial, templates are placed at values of
� that are roots of the Tn�1���. This fixes the templates.
The coefficients of the interpolating polynomial are found
using Eq. (2.23) and then the interpolating polynomial is
constructed using Eq. (2.22).

In Fig. 3 we have plotted the match by placing normal-
ized test signals (without noise) at regular intervals of �0.
For each injected signal �0, we plot the maximum of the
interpolating polynomial (dashed curve) and the match
obtained by placing a template at the maximum of the
interpolating polynomial (solid curve). We see that the
match is a (nearly) periodic function of �0, with the period
equal to the template separation. This suggests that the
detection probability is also periodic and this fact has been
used in carrying out the simulations—the signals are in-
jected within one such ‘‘period’’ in the parameter space.
Moreover, one can see that with just 37� 1 interpolated
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FIG. 3 (color online). Normalized test signals (without noise)
were injected densely at regular intervals along the �0 parameter
space. For each injected signal �0, we plot the maximum of the
interpolating polynomial (dashed curve) and the match obtained
by placing a template at the maximum of the interpolating
polynomial (solid curve) according to the interpolated search
strategy. This figure illustrates that the match is a (nearly)
periodic function of �0 with the period equal to the template
separation. Moreover, with just 37� 1 interpolated search tem-
plates the minimal match is 0:97. To maintain the same minimal
match 133 templates are needed for the usual dense search.
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search templates one gets a minimal match of 0:97,
whereas the dense search requires about 133 templates to
achieve the same level of minimal match. This amounts to
a factor of 3:5 over the dense search and this is so for just
one dimension. Note that the gain factor obtained by Croce
et al. in [15] is 4 in two dimensions, which scales to 2
per dimension. Because the metric (Fisher information
matrix) determines the lattice spacing as well as the corre-
lation, they are interdependent. This suggests that the
Chebyshev interpolation method can be extended to a
parameter space of higher dimensions with about a similar
gain factor per dimension.

F. Comparison

We are interested in two, related, comparisons: first, the
relative ‘‘sensitivity’’ of a search carried out with a fixed
number of template evaluations using the dense search
strategy and the interpolated search strategy; second, the
number of template evaluations required by the interpo-
lated search in order to achieve the same sensitivity as the
dense search. To give meaning to the sensitivity of these
two strategies we use the ROC.

The ROC is a plot of true positives as a function of the
fraction of false positives for a binary classifier system as
its discrimination threshold is varied. Both the dense
search and the interpolated search are binary classifiers:
i.e., they classify an interval of data d as including a signal
or not including a signal. A true positive is a classification
of d as including a signal when in fact it does; a false
positive is a classification of d as including a signal when it
does not. In both of the search strategies described here the
discrimination threshold is matched filter output that must
be exceeded for a data interval to be classified as including
a signal. The false positive fraction is also known as the
type II, or false alarm, error fraction and is denoted 
. The
fraction of true positives is also known as the detection
efficiency �, which is one minus the type I, or false
positive, error fraction (which is denoted �). At fixed 
 a
more sensitive search method has a greater �. The ROC
associated with a search method no better than a toss of a
(possibly loaded) coin is given by the diagonal 
 � �.

Using numerical simulations we have evaluated 
 and �
as a function of the detection threshold for both the inter-
polated search and the dense search, for different numbers
of templates (dense search) and different interpolating
polynomial order (interpolated search).

To evaluate the false positive fraction 
 we generate a
large number of data segments, each 215 samples long, and
each consisting of Gaussian noise whose power spectrum
(assuming a 1024 Hz sample rate) is that specified as the
initial LIGO science requirement [21]. (The Gaussian ran-
dom numbers are themselves generated using the
Mersenne Twister Pseudo Random Number Generator
[22] and then filtered in the Fourier domain by scaling
the Fourier components by the square root of the PSD.) For
-7
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the purpose of this comparison, we look for signals in the
interval �0 2 �13s; 17s	. Both the dense and interpolated
search methods are applied to this data. The ratio of the
number of events signaled to the number of data segments
examined as a function of the threshold � is 
 for that
threshold. Approximately 50 000 realizations of detector
noise are used to evaluate 
, which gives reliable results
for 
 greater than approximately 10�3.

To compute �, the true positive fraction, we proceed in a
similar fashion. Now, however, with each noise instantia-
tion we add a signal, with �0 drawn uniformly and ran-
domly from the interval covered by the search: i.e.,
�0 2 �13s; 17s	. We inject signals of SNR 8. In almost all
cases 50 000 realizations of detector noise plus signal are
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FIG. 4 (color online). The variation of the false and true
positive fractions, 
 and � with threshold � for the dense and
interpolated search methods, each making use of 40 template
evaluations. The top panel shows the false positive fraction. Note
how the false positive falls much sooner for the interpolated
search than for the dense search. The bottom panel shows � when
a signal of amplitude signal-to-noise 8 is present in the range
�0 2 �13s; 17s	. Note how the � is always greater for the
interpolated search than for the dense search. For the same
computational cost (determined by the number of template
evaluations), the interpolated search will always perform better
than the dense search.

102001
used to evaluate the efficiency, which gives reliable results
for efficiencies greater than approximately 10�3. However,
for the flat search with 40 templates and the interpolated
search with 30 templates, we have used 400 000 realiza-
tions. The larger number of realizations in these cases
results in smoother curves.

The top panel of Fig. 4 shows the variation of 
 for both
methods using 40 templates: i.e., a 100 ms template spac-
ing for the dense search and an order 39 interpolating
polynomial in � [cf. Eq. (3.9)]. For any threshold 
 is
always greater for the dense search than for the interpo-
lated search; similarly, as shown in the center panel of
Fig. 4, for any given threshold the efficiency � is always
greater for the interpolated search than for the dense
search. Finally, the bottom panel of Fig. 4 shows the
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FIG. 5 (color online). ROC curves for dense searches (solid
curves) and interpolating searches (dashed curves). For a given
number of templates, the solid curves are ‘‘lower’’—less false
dismissal probability for the same false alarm—than the dotted
curves in the regime of low false alarm showing that the
interpolated search performs better than the dense search for
low false alarm. The bottom panel shows an analogous plot for
high minimal match (fine bank) 0:98. Here the performance of
the dense search with 160 and 140 templates is comparable to
that of the interpolated search with 120 and 100 templates,
respectively.
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TABLE I. Number of template evaluations required to obtain
the same efficiency at a false alarm fraction of 10�3 in a dense
search and an interpolated search. Note how the interpolated
search is computationally more efficient for the same sensitivity.

No. of templates

Dense Interpolated � at 
 � 10�3

40 31 0.859
50 41 0.890
60 49 0.905
80 64 0.919
100 89 0.924
140 105 0.927
160 115 0.929
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ROC for a 40 template dense search and an order 39
interpolated search, both of which involve 40 template
evaluations to decide if a signal has been detected.
Comparing both ROCs it is clear that the interpolated
search is more sensitive at any given 
 than the dense
search. This is always true: i.e., for a fixed number of
template evaluations the interpolated search will always
have a better efficiency at a given 
 than the dense search,
though as the number of templates grows large the frac-
tional difference in sensitivity will decrease.

Figure 5 and Table I address the second of our two
questions: the number of template evaluations required of
an interpolated search to have the same sensitivity as a
dense search. Figure 5 shows the ROCs for dense searches
using 140 and 160 templates, together with the ROCs for
interpolated searches using 120 and 100 templates. The
interpolated search with an order 120 interpolating poly-
nomial is clearly as sensitive as a dense search with 160
templates, and an interpolating search with an order 100
polynomial is as sensitive as a dense search with 140
templates. Table I shows similar pairings of the number
of templates in a dense search and the number of templates
in an interpolating search necessary to achieve the same
sensitivity.
IV. CONCLUSION

We have shown that the use of near minimax interpolat-
ing polynomials to fit the output of matched filters to the
filter parameter values can greatly improve the sensitivity
of a matched filter based search for gravitational waves
from compact binary inspiral. Since the lattice for dense
search and the correlations are dependent on the metric
(Fisher information matrix) and any interpolation exploits
these correlations, we believe that the Chebyshev interpo-
lation method can be extended to a parameter space of
higher dimensions with about a similar gain factor per
dimension. Using such a polynomial to find the parameters
of the signal template leading to the best match, we can
reduce the computational cost of a search over a two-
102001
dimensional parameter space by a factor of 2 compared
to the methods currently in use, without any loss of sensi-
tivity or discriminating power. This factor of 2 becomes a
factor of 10 when the search is over the seven-dimensional
parameter space that includes not only the masses but also
the spins of the binary components [23]. This savings in
computational cost is estimated under the assumption,
which we believe well-founded, that we will obtain the
same savings when the interpolation is extended to addi-
tional dimensions.

Other suggestions have been made for reducing the
number of filter evaluations without sacrificing detection
efficiency. One promising proposal involves a hierarchical
search strategy, wherein a low-threshold trigger generated
by the evaluation of the matched filters associated with a
much coarser sampling of parameter space followed by (if
necessary) a higher threshold evaluation matched filters
over a much finer sampling of parameter space [24–28].
The interpolation strategy we describe here can be imple-
mented together with the hierarchical strategies that have
already been proposed to further improve the computa-
tional efficiency of binary inspiral analysis. While the gain
in efficiency of the interpolated search over the dense
search is approximately constant in the desired false alarm
probability, the balance between the coarseness of the grids
in the hierarchical steps, the number of hierarchical steps,
and the gain in computational efficiency associated with
the interpolation is not obvious and requires further study.
Nevertheless, since the major contribution to the computa-
tional cost of a multigrid search is thought to arise in the
initial stage of the search, the gain in computational effi-
ciency—and, correspondingly, the size of the parameter
space that can be studied with fixed computational resour-
ces—could be substantial.
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