Erratum: Exclusive double-charmonium production from e^+e^- annihilation into a virtual photon [Phys. Rev. D 67, 054007 (2003)]

Eric Braaten and Jungil Lee*

(Received 11 October 2005; published 11 November 2005)

DOI: 10.1103/PhysRevD.72.099901

PACS numbers: 12.38.Bx, 13.20.Gd, 14.40.Gx, 99.10.Cd

In Ref. [1], we calculated the cross sections for exclusive double-charmonium production from e^+e^- annihilation into a virtual photon. We made an error in the calculation by omitting a relative minus sign between diagrams that differ by the interchange of identical fermions in the final state. That error was also made in Refs. [2,3]. In Ref. [1], the error was the omission of a relative minus sign between the sum of the four Feynman diagrams in Fig. 1 and the sum of the two QED Feynman diagrams in Fig. 2. We also made a separate error in the calculation of the cross section for $\eta_c + h_c$. We show corrected text in italics and corrected numbers in boldface type, except in display equations.

The expression in Eq. (17) for the coefficient A in the amplitude for $J/\psi + \eta_c$ should be corrected as follows:

$$A = \frac{128\pi\alpha_s}{s^2} (\langle O_1 \rangle_{J/\psi} \langle O_1 \rangle_{\eta_c})^{1/2} \left(\frac{N_c^2 - 1}{2N_c^2} + \frac{e_c^2 \alpha}{N_c \alpha_s} + \frac{1}{r^2} \frac{e_c^2 \alpha}{\alpha_s} \right).$$
(17)

The sign in front of the $1/r^2$ term has been reversed. In the expression for the coefficient Y in Eq. (19b), the overall sign should also be reversed:

$$Y = -\frac{\alpha}{\alpha_s} \left(1 + \frac{\alpha}{3\alpha_s} \right)^{-1}.$$
 (19b)

In the subsequent sentence, the numerical value of Y should have the opposite sign: Y = -0.0344.

- In Sec. II, the descriptions for the changes in various cross sections due to the QED contribution should be corrected as follows:
 - (i) Section II C (S wave + S wave) above Eq. (20): If we set $\sqrt{s} = 10.6$ GeV and $m_c = 1.4$ GeV, the electromagnetic correction *increases* the cross section by **29**%.
 - (ii) Section II D (S wave + P wave) above Eq. (23): If we set $\sqrt{s} = 10.6$ GeV and $m_c = 1.4$ GeV, the QED corrections change the cross sections by +5.0%, -5.5%, and +11% for J = 0, 1, and 2, respectively.
 - (iii) Section II F (S wave + D wave) below Eq. (26): If we set $\sqrt{s} = 10.6$ GeV and $m_c = 1.4$ GeV, the QED correction *increases* the cross section by about 15%.

(iv) Section II F (S wave + D wave) below Eq. (27): The QED contribution increases the cross section by 41%.

There are several corrections to the text in Sec. V:

- (i) The relativistic corrections increase the central values of the cross sections by about 2 for $J/\psi + \eta_c$, by about 5 for $J/\psi + \eta_c(2S)$, by about 4 for $\psi(2S) + \eta_c$, and by about 8 for $\psi(2S) + \eta_c(2S)$.
- (ii) The largest individual correction factor for $J/\psi + \eta_c$ is $(1.28)^2$ coming from the expansion of the amplitude. The corresponding factors for $J/\psi + \eta_c(2S)$, $\psi(2S) + \eta_c$, and $\psi(2S) + \eta_c(2S)$ are $(1.80)^2$, $(1.64)^2$, and $(2.16)^2$, respectively.

TABLE II. Cross sections in fb for e^+e^- annihilation into double-charmonium states $H_1 + H_2$ without relativistic corrections. The errors are only those from variations in the next-to-leading order pole mass $m_c = 1.4 \pm 0.2$ GeV.

	-				
$H_2 \setminus H_1$	J/ψ	$\psi(2S)$	$h_c(1P)$	$\psi_1(1D)$	$\psi_2(1D)$
η_c	3.78 ± 1.26	$\textbf{1.57} \pm \textbf{0.52}$	$\textbf{0.308} \pm \textbf{0.017}$	$\textbf{0.106} \pm \textbf{0.025}$	1.04 ± 0.23
$\eta_c(2S)$	1.57 ± 0.52	$\textbf{0.65} \pm \textbf{0.22}$	$\textbf{0.128} \pm \textbf{0.007}$	$\textbf{0.044} \pm \textbf{0.010}$	0.43 ± 0.09
$\chi_{c0}(1P)$	$\textbf{2.40} \pm \textbf{1.02}$	$\textbf{1.00} \pm \textbf{0.42}$	0.053 ± 0.019		
$\chi_{c1}(1P)$	$\textbf{0.38} \pm \textbf{0.12}$	$\textbf{0.16} \pm \textbf{0.05}$	0.258 ± 0.064		
$\chi_{c2}(1P)$	0.69 ± 0.13	$\textbf{0.29} \pm \textbf{0.06}$	0.017 ± 0.002		
$\eta_{c2}(1D)$	$\textbf{0.35} \pm 0.05$	$\textbf{0.14} \pm 0.02$			

*Permanent address: Department of Physics, Korea University, Seoul 136-701, Korea.

TABLE III. Cross sections in fb for e^+e^- annihilation into S-wave double-charmonium states $H_1 + H_2$ including relativistic corrections. The errors are only those from variations in the next-to-leading order pole mass $m_c = 1.4 \pm 0.2$ GeV.

$H_2 \setminus H_1$	J/ψ	$\psi(2S)$
$\overline{\eta_c} \ \eta_c(2S)$	$7.4^{+10.9}_{-4.1}$ $7.6^{+11.8}_{-4.1}$	6.1 ^{+9.5} -3.4 5.3 ^{+9.1} -2.9

- (iii) The lower bound provided by Eq. (46) is about an order of magnitude larger than the central value **3.8** fb of the calculated cross section for $J/\psi + \eta_c$ in Table II.
- (iv) The proportion of $J/\psi + \eta_c$, $J/\psi + \eta_c(2S)$, and $J/\psi + \chi_{c0}(1P)$ events, 1.00:0.63 \pm 0.25:0.58 \pm 0.24, is *consistent* with the proportions 1.00:0.41:0.63 of the cross sections in Table II.
- (v) The cross sections for $J/\psi + \chi_{cJ}(1P)$ for J = 1 and 2 are predicted to be smaller than for J = 0 by factors of about **0.16** and **0.29**, respectively.
- (vi) The prediction in Table II for the cross section for $J/\psi + \eta_{c2}(1D)$ is smaller than that for $J/\psi + \eta_c$ by about a factor **0.09**.
- (vii) The prediction in Table II for the cross section for $\psi_2(1D) + \eta_c$ is smaller than that for $J/\psi + \eta_c$ only by about a factor **0.27**.

In Ref. [1], we also made an error in the calculation of the cross section for $\eta_c + h_c$. The result that was obtained for the ratio R in Eq. (23) was zero. The correct result is

$$R[\eta_c + h_c] = \frac{\pi^2 \alpha_s^2}{144} X^2 H(r) r^4 (1 - r^2)^{1/2} \frac{\langle O_1 \rangle_{\eta_c} \langle O_1 \rangle_{h_c}}{m_c^8},$$
(23)

where the function H(r) is

$$H(r) = 2r^2(r^2 - 2)^2 + (3r^4 - 6r^2 + 4)^2.$$

The dependence on α appears only in the overall factor X^2 because the QED contribution comes from diagrams with the same topology as the QCD diagrams in Fig. 1 of Ref. [1]. The QED contribution from the photon-fragmentation diagrams in Fig. 2 of Ref. [1] vanishes because the + parity of h_c does not allow the direct coupling to a single virtual photon. The pure QCD contribution to the result in Eq. (23) is obtained by substituting X = 4/9. This result was first calculated correctly in Ref. [4]. The angular distribution for $\eta_c + h_c$ is

$$\frac{dR}{dx}[\eta_c + h_c(\lambda)] = \frac{\pi^2 \alpha_s^2}{144} X^2 r^4 (1 - r^2)^{1/2} \frac{\langle O_1 \rangle_{\eta_c} \langle O_1 \rangle_{h_c}}{m_c^8} H(\lambda, x),$$

where

$$H(0, x) = \frac{3}{4}(1 - x^2)(3r^4 - 6r^2 + 4)^2, \qquad H(\pm 1, x) = \frac{3}{8}(1 + x^2)r^2(r^2 - 2)^2.$$

The error in the calculations produced errors in the numerical predictions for some of the cross sections given in Tables II and III of Ref. [1]. Those tables are reproduced here, with the corrected values given in boldface.

We thank Chaehyun Yu for his help in checking some of the calculations.

- [1] E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003).
- [2] G. T. Bodwin, J. Lee, and E. Braaten, Phys. Rev. Lett. 90, 162001 (2003).
- [3] G.T. Bodwin, J. Lee, and E. Braaten, Phys. Rev. D 67, 054023 (2003).
- [4] K. Y. Liu, Z. G. He, and K. T. Chao, hep-ph/0408141.