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I present the two-loop self-energy functions and pole masses for fermions in an arbitrary renormalizable
field theory in the approximation that vector bosons are treated as massless. The calculations are done
simultaneously in the mass-independent MS, DR, and DR’ renormalization schemes, with a general
covariant gauge fixing, and treating Majorana and Dirac fermions in a unified way. As examples, I discuss
the two-loop strong interaction corrections to the gluino, neutralino, chargino, and quark pole masses in
minimal supersymmetry. All other two-loop contributions to the fermion pole masses in softly broken
supersymmetry also can be obtained as special cases of the results given here, neglecting only the
electroweak symmetry breaking scale compared to larger mass scales in two-loop diagrams that involve W

or Z bosons.
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I. INTRODUCTION

The CERN Large Hadron Collider and a future electron-
positron linear collider should discover and, together, thor-
oughly explore [1] the mechanism behind electroweak
symmetry breaking. The small ratio of the scale of elec-
troweak symmetry breaking to the Planck mass scale sug-
gests that supersymmetric particles will also be found at
these next-generation experiments. If so, then a primary
goal of both experimental and theoretical research will be
to unravel the mechanism behind supersymmetry breaking.
The most important clues will be the masses of the
superpartners and the Higgs scalar bosons. Therefore it is
important to be able to compute the physical masses accu-
rately in terms of the underlying Lagrangian parameters,
including at least the leading two-loop effects.

In this paper, I will present results for the two-loop
contributions to fermion self-energy functions and physical
pole masses in a general renormalizable field theory, in
terms of the running renormalized couplings and masses.
The approach used is intended to be as flexible as possible,
so that a common framework of calculation can be used to
treat both Majorana and Dirac fermions, including chiral
interactions, in both supersymmetric and nonsupersym-
metric theories. As a simplifying approximation, vector
bosons will be treated as massless in the two-loop parts
in this paper. In the standard model and extensions of it that
do not enlarge the gauge group, this amounts to neglecting
the effects of electroweak symmetry breaking compared to
the masses of heavier particles in two-loop diagrams that
have W and/or Z boson propagators. (The effects of non-
zero W and Z boson masses can be included as usual in the
one-loop part.) This will likely be a good approximation
for the pole masses of the top quark and most of the
supersymmetric particles, because of the exclusions of
light squarks, sleptons, and gluinos already achieved by
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the CERN LEP e*e™ collider [2] and the Fermilab
Tevatron pp collider [3,4].

The mass defined by the position of the complex pole in
the propagator is a gauge-invariant and renormalization
scale-invariant quantity [5—13]. The pole mass in principle
does suffer from ambiguities [14] due to infrared physics
associated with the QCD confinement scale, but these are
probably relatively too small to cause a practical problem
for strongly interacting superpartners. The pole mass
should be closely related in a calculable way to the kine-
matic observable mass reported by experiments [15]. In
recent years, many important higher-order calculations of
self-energy functions and pole masses in the standard
model have been performed, including two-loop [16—19]
and three-loop [20,21] contributions for quarks and two-
loop results for electroweak vector bosons [22-28]. In
addition, there are important two-loop results for top and
bottom quarks [29-31] and the gluino [32] in low-energy
supersymmetry. The general treatment of the present paper
will confirm and extend the results of those papers.

The notation and strategy used here are very similar to
those found in my previous papers on scalar self-energy
functions and pole masses at two-loop order in a general
theory [33,34]. In the next section, I review the conventions
used, discuss the formalism for self-energy functions and
pole masses for fermions in a two-component notation, and
review the methods used for numerical evaluation of the
required two-loop integrals.

II. NOTATIONS AND SETUP

A. Notations for fields, interactions, and indices

In this paper, the spacetime metric tensor is
n*? = diag(—1, +1, +1, +1). 2.1)

I use a two-component notation for fermions, as in

© 2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.72.096008

STEPHEN P. MARTIN

Ref. [35] and similar to that found in Ref. [36]. Left-
handed spinor fields ¢, always carry undotted spinor in-
dices «, B,... = 1,2, and right-handed spinor fields 1,[/:2
always carry daggers and dotted spinor indices ¢, 8, ... =
1, 2, with

gl = (W)l

However, the spinor indices are most often suppressed, as
described below. The spinor indices are raised and lowered
with the two-index antisymmetric symbol with compo-
nents €2 = —€?! = €,; = —€;, = 1, and the same set
of sign conventions for the corresponding dotted spinor

indices. Thus

'70& = eaﬁ lﬁﬁy

(2.2)

@ = gaBy 2.3)

L=eapptt yti=etbyl 24
Spinor bilinears can be combined to form vector quantities
using the matrices o, 4 and Ezﬁ defined by

_ 1 0 _ 0 1
Oyp = 0pg = 0o 1/ o= —01 = 1 0),

- 0 —i _ 10
Oy = —0) = ; 0 y O3 = — 03 = 0 1 .

(2.5)

When constructing Lorentz tensors from fermion fields, the
heights of spinor indices must be consistent in the sense
that lowered indices must only be contracted with raised
indices. As a convention, indices contracted like *« and
&?, can be suppressed. For example,

EX=EXa (2.6)
eyt = elxte, 2.7)
glory = elariby,, (2.8)
forxt = gt 1P 2.9)

The behavior of the spinor products under Hermitian con-
jugation (for quantum field operators) or complex conju-
gation (for classical fields) is as follows:

(&t = xtet, (2.10)
(DT = yorét, 2.1D)
(fT?MX)T = X‘rﬁug. (2.12)
The following identities also hold:
[+ + o"TH],F = —2q»" 8%, (2.13)
[GHo” + 5vau]g = —277’”52’ (2.14)
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Tr[o#F"] = Ti{o*0”] = —2nH". (2.15)

In terms of two-component fermion notation, a single
Dirac fermion is given in the chiral representation by

v=( )

where ¢ is the two-component fermion that describes the
left-handed part of ¥ and y is the two-component fermion
that describes the conjugate of the right-handed part of V.
The Dirac matrices are

(0 o
(g ©)

(2.16)

(2.17)

In this paper, I consider a general renormalizable field
theory, containing' a set of real scalars R;, two-component
Weyl fermions ¢;, and vector bosons V4. Scalar field
indices are i, j, k, ..., fermion flavor indices are
LJ,K,...,and q, b, ¢, ... run over the adjoint representa-
tion of the gauge group, while w, v,... are spacetime
vector indices. Repeated indices of all types are summed
over unless otherwise noted.

The masses and couplings are evaluated by taking the
fields in the Lagrangian in a squared-mass eigenstate basis,
after the Higgs fields are assumed to have been expanded
around their vacuum expectation values as determined by
the loop-corrected effective potential (so that tadpole
graphs do not contribute). The kinetic part of the renor-
malized tree-level Lagrangian is then written as

Lyin = —30,R0*R;, — \m?R? — iyt15#d 4
- %(mljlp]l/fj + C.C.)
=30, Ve —9,Va)orvy —ImZvavi.  (2.18)

The nongauge interactions of the scalar and fermion fields
are given by the renormalized Lagrangian:

L= —LAVFRR R, — LAVA"R R R(R,,
— 3075k R; + c.c.),

where A/F and AF" are real couplings and the Yukawa
couplings y/Xi are symmetric complex matrices on the
indices J, K, for each i. Raising or lowering of fermion
indices implies complex conjugation of the Lagrangian
parameters, so

(2.19)

1y, (2.20)

mpy = (m yixi = (/K"

Actually, without loss of generality, m'/ can be taken to
have only real and nonnegative entries, but the index height
convention is maintained for clarity. The heights of real

'A complex scalar can be written as two real scalars, and a
Dirac fermion as two Weyl fermions, so this entails no loss of
generality.
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scalar and vector indices have no significance and in any
given equation are chosen for convenience.

The scalar squared masses m? and the fermion squared
masses mgmX’ = m? 87 are taken to have been diagonal-
ized (by an appropriate rotation of the fields if necessary).
However, the fermion mass matrix m'’ is not necessarily
diagonal; instead it must have nonzero entries only when /
and J label two-component fermions with the same
squared mass and in conjugate representations of the un-
broken gauge group. In particular, when dealing with Dirac
fermions, it is most useful to work in a basis in which the
corresponding matrix m!/ contains 2 X 2 blocks of the

form
0 m
m 0
on the diagonal.

Next consider the gauge interactions of the theory. Let
T be the Hermitian generator matrices of the gauge group
for a (possibly reducible) representation R. They are
labeled by an adjoint representation index a corresponding
to the vector bosons of the theory, V4. They satisfy
[T9, T?] = if*cT¢, where £ are the totally antisymmet-
ric structure constants of the gauge group. The results
below are written in terms of the invariants:

(T°T%);) = C(i)&, (221
Tr[TT?] = I(R) 5%, (2.22)
facdfbcd — C(G)5ab, (223)

which define the quadratic Casimir invariant for the repre-
sentation carrying the index i, the total Dynkin index
summed over the representation R, and the Casimir invari-
ant of the adjoint representation of the group, respectively.
When the gauge group contains several simple or U(1)
factors with distinct gauge couplings g, the corresponding
invariants are written C,(i), I,(R), and C,(G). The nor-
malization is such that for SU(N), C(G) = N and each
fundamental representation has C(i) = (N> — 1)/2N and
contributes 1/2 to I(R) for each Weyl fermion or complex
scalar. For an U(1) gauge group, C(G) = 0 and a repre-
sentation with charge ¢ has C(i) = ¢ and contributes g to
I(R). The two-loop results given below will be presented in
terms of these group theory invariants for the representa-
tions carried by the scalar and fermion degrees of freedom.

The preceding paragraph applies to the two-loop parts,
in which the gauge group is treated as unbroken and m2 =
0. In the one-loop parts of the self-energy functions and the
fermion pole masses, the effects of nonzero vector boson
masses will be retained. This means that the gauge group
cannot be treated as unbroken, and the interactions of the
vector bosons with the fermions have a more general form.
They can be written as
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Lgauge = _g;”vzlpﬂﬁ'ulpjr

where g%’ are couplings obtained by going to the tree-level
mass eigenstate basis for the fermions and vector bosons.
In the special case of an unbroken gauge symmetry, one
has gf’ = g.[T"],’.

The computations in this paper are performed with a
vector boson propagator obtained by covariant gauge fix-
ing in the usual way:

(2.24)

—i8,,(nH" + Kk k" L,2)[1/(k* + m3)], (2.25)
where for later convenience I use the notation
L.f&x)=[f(x) = f(x)]/x, (2.26)
with the appropriate limit for massless vectors:
i £,f()] = (1 = £)f'(0). (2.27)

Here £ = 0, 1, and 3 correspond to the Landau, Feynman,
and Fried-Yennie gauge-fixing choices, respectively. The
self-energy functions depend on &, but the pole masses do
not. For the two-loop computations below, the vector bo-
sons are treated as massless, so the propagators are

—i8u[n™ /K — (1 = kK" /(k?)*]

Infrared divergences are dealt with by first computing with
a finite vector boson mass, and later taking the massless
vector limit. All contributions involving gauge boson loops
implicitly include the corresponding contributions of ghost
loops.

(2.28)

B. Regularization and renormalization

For each Feynman diagram, the integrations over inter-
nal momenta are regulated by continuing to d = 4 — 2e
dimensions, according to

fd“k—» (Zﬁu)zfjddk.

In the dimensional regularization scheme, the vector bo-
sons also have d components, while in the dimensional
reduction scheme they have d ordinary components and 2€
additional components known as epsilon scalars. This
means that the four-dimensional metric in the vector propa-
gator of Eq. (2.25) is replaced by

(2.29)

W) ) — g/ (2 i) + /R + )
(2.30)

where g*” is projected onto a formal d-dimensional sub-
space, and g*” onto the complementary 2e-dimensional
subspace, and m? is the epsilon-scalar squared-mass pa-
rameter. (In general, there should be a different m? for each
a, but it should cause no confusion to omit the additional
subscript in this paper.) Counterterms for the one-loop
subdivergences and the remaining two-loop divergences
are added, according to the rules of minimal subtraction, to
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give finite results, which then depend on the renormaliza-
tion scale Q given by

Q% = 4me " u>. (2.31)
Logarithms of dimensionful quantities are always written

in terms of

InX = In(X/Q?). (2.32)

The resulting renormalization schemes are known as MS
[37] and DR [38], respectively, for the cases in which g#”
is not and is included.

The epsilon-scalar squared-mass parameter m? appear-
ing in the DR scheme is unphysical. One could set m?
equal to zero at any fixed renormalization scale, but then it
will be nonzero at other renormalization scales, since it has
a nonhomogeneous beta function [39]. Furthermore, under
renormalization group evolution it will feed into the ordi-
nary scalar squared masses in the DR scheme. Fortunately,
a redefinition (given in [40] at one-loop order and at two-
loop order in [41]) of the ordinary scalar squared masses
completely removes the dependence on the unphysical
epsilon-scalar squared-mass m2 from the renormalization
group equations and the equations relating tree-level pa-
rameters to physical observables in softly broken super-
symmetric theories. The resulting DR’ scheme [40] is
therefore an appropriate one for realistic models based on
supersymmetry, such as the minimal supersymmetric stan-
dard model (MSSM). In this paper, calculations will be
presented simultaneously in all three schemes, using the
following two notational devices. First,

_[1 for MS
SMS_{O for DR, DR. (2.33)

Second, terms that involve the unphysical parameter m?2

should be construed below to apply only to the DR scheme,
not the DR’ or MS schemes.

C. Self-energy functions and pole masses for fermions
using two-component notation

The full, loop-corrected Feynman propagators with
four-momentum p* are denoted as shown in Fig. 1, which

p p
— —

& 6] a B
—p—— —p— —— ]
J 1 I J

ip-a Cf P, cy
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defines C/, D', and D;; as functions of the masses and
couplings of the theory and of the external momentum
invariant

s = —p2 (2.34)

They are given, starting from tree level, as
DY =ml[(p* + m?) + ... (2.35)
D”=m”/(p2+m%)+... (236)
Cl=381/(p*+m3) + ... (2.37)

with no sum on [ in each case. In general, D" is a complex
symmetric matrix, and Dy, is obtained from it by taking the
complex conjugate of all Lagrangian parameters appearing
in its calculation—but not taking the complex conjugates
of loop integral functions whose imaginary (absorptive)
parts correspond to fermion decay widths to multiparticle
intermediate states.

The computation of the full propagators can be organ-
ized, as usual in quantum field theory, in terms of
one-particle irreducible self-energy functions. These are
defined in Fig. 2. (The same remark applies for the rela-
tionship between the functions O, Q,; as for D'/, D,;.)
Then one has the matrix diagrammatic identity shown in
Fig. 3. To write this in terms of the self-energy functions,
denote N X N matrices (where N is the number of two-
component left-handed fermion degrees of freedom, so that
ILJ=12...N)

Cc,/ = (", =c], (2.38)
D =DV, D, =D, (2.39)
3 =3N,=5] (2.40)
Q= Q,=9,, (2.41)
m" = ml/, m;; = my,. (2.42)

Then Fig. 3 implies that the propagator functions obey the
4N X 4N matrix equation:

& B a B
—p—— —— —— —p—
I J I J
45&/3 D"’ —i6o” Dry

FIG. 1. The full loop-corrected propagators for fermions in two-component notation are associated with functions C{ (s), D/ (s), and
Dy,(s), as shown. Here s = — p? is the external momentum invariant. The shaded boxes represent the sum of all connected Feynman

diagrams, and the external legs are included.
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ipo,s /s ip- 7P /s
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—i8,P Q1 —i5d@'QIJ

FIG. 2. The self-energies for fermions in two-component notation are associated with functions 3/ (s) (for chirality-preserving
propagation) and Q*/(s) and €,,(s) (for chirality-violating propagation) defined as shown. Here s = — p? is the external momentum
invariant. The shaded circles represent the sum of all one-particle irreducible, connected Feynman diagrams, and the external legs are

not included.

ip-aCT  —iD
( —iD ip~0'C>
=<ip"7£1_ET/s] f{m + Q] >_1. (2.43)
im+ Q] ip-o[l—2X/s]

The pole mass can be found most easily by considering the
rest frame of the fermion, in which the space components
of the external momentum p# vanish. This reduces the
spinor-index dependence to a triviality. It follows from
Eq. (2.43) that the (complex, if the fermion is unstable)
poles of the full propagator are the solutions for s of the
nonlinear N X N matrix eigenvalue equation:

Det[s1—(1—3/s) '(m+ Q)1 —-327/s) ' (m + Q)] =0.

(2.44)

level squared masses m?. Write the one- and two-loop
contributions to the self-energy functions as

(I)J (2)J
S/ = 1622 (mzyz L (249
1 1
O = s QO 4 s QO (2.46)
[P0 1 @)
Q=0 + (16772)29,, .., (2.47)

where the superscripts (1) and (2) refer to the one- and two-
loop contributions, respectively. Then define the quantities
(with sums on I’, J/, K, and K’ but not on I or J):

H(w E(I)Jm 2/s + m”/E(Jl,)’/m“'/s + my QW
This can be solved iteratively by first expanding each of the M gy
self-energy functions in a Taylor series in s about the tree- + Qpm’, (2.48)
|
P = 3P m3/s + mp S0 m' [s + myp QO + Q7
+{2(1)KE(Wm + m”/E(Ig)I/E(l)K 74 E(I)KmKK E(I)K’ JJ’}/ + Q(I)Q(I)JK
+ {SPKQW m 4 S VK g QI 4 gy SOTQOIK 4 QS K0/ (2.49)

*—D—P—*—D—*
«D—P—%—D—*

- —1

FIG. 3.

0 - +Q—» %
1 (> <« -

—1

%Q—»+Q—+
«O—»%

The diagrammatic version of the fermion self-energy identity in Eq. (2.43).
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which play a role analogous to the self-energy functions of
scalar or vector bosons, with Eq. (2.44) taking the form

: H(Wﬂ =0,

Y +
! (1672)2 !

Det[s5{ - (m%é{ 16

(2.50)

It follows that the pole squared masses for the fermions are
given by (with no sum on the index [):

=M} — i \M; = m? + 11

Spole,]
pote, 1672

1 @1 (i o1y
+ +
(167%)? |:H1 I s

=S o - m%)}

J#I

(2.51)

where one must put s = m? + ie (note with an infinitesi-
mal positive imaginary part; this is necessary to give the
correct negative imaginary part to the pole mass) every-
where on the right-hand side. Terms that are of three-loop
order have been dropped.

In writing Eq. (2.51), it is assumed that the fermions that
mix with each other are not degenerate, so that the last term
is part of a well-defined perturbative expansion. If (nearly)
degenerate fermions do mix, then the appropriate version
of (nearly) degenerate perturbation theory should be used
instead to solve Eq. (2.50). One can also obtain a solution
iteratively, by first taking s = m? as the argument of the
self-energy functions in Eq. (2.50), solving for s to obtain
the next value for the argument Re(s) of the self-energy
functions, and repeating until sufficient numerical conver-
gence is obtained. However, despite the formal gauge
invariance of the pole mass, this iterated procedure does
not give a gauge-invariant result at two-loop order when
massless gauge bosons are present, because of the branch
cut in the one-loop self-energy that is present except in the
Fried-Yennie gauge ¢ = 3. This is because the pole mass
result obtained by the iterative procedure is not formally
analytic in the gauge coupling for ¢ # 3, as explained in
more detail in the analogous case for scalars in Ref. [34].

For taking the limit s — m? in Eq. (2.51), it is convenient
to define (again with no sum on /):

N 11y
f1? = lim [H?)’ + H(,”’(—’) } (252)

2
s—my as

since this combination is independent of the gauge-fixing
parameter &, and free of logarithmic divergences of the
form In(1 — s/m?) that do appear in the individual terms
when there are massless gauge bosons. The results for one-
loop self-energy functions and pole squared-mass contri-
butions 3"/, QW Q) and TI" will be reviewed in
Sec. III. The two-loop contributions to 252)1, Q@ ngj) ,

and H;Z) are presented in Sec. IV.
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D. The Feynman diagrams

The one-loop and two-loop Feynman diagrams needed
for the results just mentioned are shown in Fig. 4. They are
labeled according to a system described in Ref. [33].

E. Two-loop basis integrals

The results below will be written in terms of two-loop
integral basis functions, following the notation given in
[42,43]. The one-loop and two-loop integral functions are
reduced using Tarasov’s algorithm [44,45] to a set of basis
integrals A(x), B(x,y), I(x,y,2), S(xv,2), T(xy,z2),
Ux,y,z,u), and M(x,y,z u,v), corresponding to the
Feynman diagram topologies shown in Fig. 5. Here
X, ¥,z u, v are squared-mass arguments. The additional
arguments s and Q% are not shown explicitly, because
they are the same for all functions in a given equation.
The functions A(x) and I(x, y, z) do not depend on the
external momentum at all, with A(x) = x(Inx — 1) and
I(x,y,z) = S(x, y, 2)|,=0. Each of the basis integral func-
tions contains counterterms that render them ultraviolet
finite. The precise definitions, and the calculation of these
functions and a publicly available computer code (TSIL) for
that purpose, are described in [42,43].

Several shorthand notations will be used. As explained
in Refs. [42,43], it is convenient to define:

70, y,z) = IE%[T(x, y, 2) + B(y, z)Inx], (2.53)
V(x,y,zu) = —aU(x,y, z, u)/dy. (2.54)

A prime on a squared-mass argument of a function is used
to denote a derivative with respect to that argument, so:

B(x,y') = aB(x, y)/dy, (2.55)

I(x,y,z) = 0l(x, y,7)/0x. (2.56)

A prime on a function itself indicates a derivative with
respect to the external momentum invariant s, so:

B'(x,y) = dB(x, y)/0s (2.57)

U'x,y,z,u) = 0U(x, y, z, u)/ds. (2.58)

But, note that below primes also appear on fermion indices,
where they are used for a completely different purpose;
fermions are labeled by indices 7 and I’ if they combine to
have a common squared-mass m?.

Each of the functions in Egs. (2.53)—(2.58) can be re-
duced to combinations of other basis functions; see
Egs. (3.1), (3.22), (4.14), (4.26), (5.3), and (6.18) of
Ref. [42] for formulas in the notation of the present paper.
However, this explicit reduction is not done below in cases
where it would needlessly complicate the expressions.
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= T~ ’ \
' N ' N
’ \ ’ ! \ F=-=-=--4
! 1 1
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-~ ol .
' N
~ 7’ ! \
| | ~ |
/ \
1 1 Vi \ !
1 1 ’ \ 1 ,'
e — - 1 1 z A -
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' - N
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1 1 P
1 1 7 \
1 1 Vi \
1 1 - — - ya AN
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— N
Vvrrrv Mvrrvre Mvvrrv Vrvvvy Yrvvy (%)
PN VAEEREN
; \ ! |
\ )
B A);:L;\A
Vrvvrer VFrvvss Yrvvs

FIG. 4. The one-loop and two-loop Feynman diagrams for fermion self-energies in the approximation of this paper. Dashed lines
stand for scalars, solid lines for fermions, and wavy lines for massless vector bosons. Diagrams involving vector boson loops also
include the corresponding ghost loop diagrams. The label for each diagram refers to a corresponding function obtained as the result of
the two-loop integration. All counterterm diagrams for each diagram are included in these functions, rendering them ultraviolet finite.
For each diagram, fermion mass insertions (indicated by adding a bar to the corresponding subscript F in the name) are to be made in
all possible ways. Diagrams indicated by (*) vanish identically in the MS scheme with massless vector bosons but not in the DR
scheme with nonzero epsilon-scalar masses.

A(z) B(x, y) I(x, y, 2) S(x, y, z) T(x, y, ) Ux, y, z, u) M(x, y, z, u, v)

FIG. 5. Feynman diagram topologies for the one- and two-loop self-energy basis integrals used in this paper. The letters x, y, z, u, v
refer to the squared masses of the corresponding propagators. The dot on the T diagram means that T(x, y, z) = —aS(x, y, z)/x.
The precise definitions of these Euclideanized scalar integral functions, and methods for their evaluation, are described in
[42,43].
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ITI. FERMION SELF-ENERGY FUNCTIONS AND
POLE MASSES AT ONE-LOOP ORDER

In this section, I review the results at one-loop order. The
chirality-preserving and chirality-violating parts of the
fermion self-energy function are, respectively,

E(W = vy KB pg(m2, m> ) + g¢ Kg4 IBpy(m%, m2),
(3.1

QO — yIKiyJK’imKK,B_S(m%O mz)

- g?(lg?({mkk pr(mK: 3), (3.2)

where

B rs(x,y) =[(y —x — 5)B(x,y) — Ax) + A(y)]/2,

3.3)
st(xr y) = _B(xr }’), (34)
Bry(x, v) = (v — x — s)B(x, v) + A(v) — A(x) + sdyg
+ L,[{v(s + x) — (x — 5)?}B(x, v)
+ (x — 5)A(W)]/2, (3.5)
B, (x, v) = 3B(x, v) + {B(x, év) — 20y (3.6)

These follow from direct evaluation of the first two
Feynman diagrams, with and without mass insertions, in

Fig. 4. [The result for lej) follows from Eq. (3.2) by
replacing the coupling parameters by their complex con-
jugates.] Here I have allowed for the possibility of general
fermion-fermion-vector interactions and vector masses
arising from spontaneous breaking of gauge symmetries.
In the following, I will also make use of

= [(y - X S)Bl(x’ y) - B()C, J’)]/z, (37)

B/FS(x’ )’)

BL(ry) = —B'xy), (3.8)

where the prime means a derivative with respect to s.

In the special case of massless vectors corresponding to
unbroken gauge symmetries, one makes the simplifica-
tions:

gi% g4/ Bpy(mg, m3) — gaC,(1)67{Bpy(m7,0),  (3.9)
— ¥ g4 m* K Bz, (m}, m2) — g2C,()m" Bz, (m3,0),
(3.10)

where
>The minus sign in Eq. (3.10) occurs because the left-handed

fermions with labels K and K’ necessarily occur in conjugate
representations of the unbroken gauge group.

PHYSICAL REVIEW D 72, 096008 (2005)

B ry(x,0) = £[s — (x + 5)B(0, x) — A(x)] — s + 58553
3.11)
B, (x,0) = (3 + £)B(0, x) — 28 (3.12)

It follows that the quantity defined in Eq. (2.48) is

H(IO)J

" = i (3.13)

where the contribution from scalar exchange is

H(l 0J _ (y yJKz

I'Ki

+ mypy" Kty g im?? VB g (m%, m2) /s

JK'i

+ (mypy" Ky K i g

+ yikiyyxim K m? \Bgg(mk, m?),  (3.14)

and the contribution from vector exchange is

(gig¥/mj + mu/g%’ g/'K)BFV(me m2)/s

JJ)

HEI,I)J

- (mll’gK gk/mKK + g7 81/ ‘mygm

X By (m%, m2). (3.15)

In the special case of massless vector bosons, the latter
expression reduces to

M = 2g2C,(1)8m3[Bry(m?, 0)/s + By, (m3, 0)],
(3.16)
with the well-known limit:
lim, Y = 262C,(1)8]m2[5 — by — 3Inm?].
I (3.17)

The above expressions can be inserted in the formula
Eq. (2.51) to obtain the one-loop contribution (and part
of the two-loop contribution) to the pole squared mass.

IV. FERMION SELF-ENERGY FUNCTIONS AND
POLE MASSES AT TWO-LOOP ORDER

In this section I present the results for the two-loop
contributions to the self-energy functions and pole squared
masses of fermions as defined in Fig. 2. The results are
divided into parts due to diagrams with no vector propa-
gators, one vector propagator, and two vector propagators,
with superscripts (2,0), (2,1), and (2,2), respectively:

7 _ 52 O)J 2,107 (2,2)J
7 =30+ A0+ 3,

@.1)

QO = QRO { @I 4 @I (4.2)
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7 (20)

21
H(z) ' ~ (1)

+ Y 4+ 12,

+ 11 (4.3) A. Contributions from diagrams with no vector

propagators

In the next three subsections, these results are expressed in The fermion self-energy functions following from the

terms of the basis integrals. The two-loop fermion pole  two-loop diagrams of Fig. 4 without vector or ghost propa-
squared masses then follow by plugging Eq. (4.3) and the gators are

results of Sec. III into Eq. (2.51).

|

2,00 _ JKj LN 2,2 2 2 2 K'Ni LL' 2 .2 .2 .2 2
3 = yiiy"Mygniy jMSFFSF(mi’mK’ermj’mN)+y YUNjMgg' M MSffSF(mi’mK’mL’m/’mN)

LL' 2

NN — (2 2 2 2 K'Ni
m™ Mgz (ms, my, my, mj, my) +y

2

LN'j 2 0 2 2
+ YrniYLN M V- mg gmyy Mgppgp(ms, mg, my, mi, my)

ijk LL' 2 2 2 ik\,K'Lk 2
+ A ygpem MSSFFS(mj) , Mk, mL; mk) + AU mKK’MSSFps(m ms;, mL, mK; mk)]

JKj gL yijkk ) 1 yikn y jk 2 m
+ yigiy T EAIY pggs(my, m7, m3, mp) + SAM N poso(my, m7, m3, my, my)

LNi LI T S B LNi L'N'j 2 00 2 0 0

+ Re[y""'y vV psspr(my, mi, m3, my, my) + Re[y"V'y JmLL'mNN’]VFSSFF(mK» mg, mj, my, my)}
JLif  KNj 2 0 0 0 L'Nj, KK’ 2 0 m2

+ vk y v i Vsprrs(my, my, mg, my, m ) + e YN mEE my Vg ps(m?, mE, m3, m3, m i,

KNj L'N'j 2 2 2 KK' 2 2 2
+ ytNVy ijL/mNN’VSFffS(m,',m](,mL’mN’mj)+yK’NijN’jm m? VSFffS(mi’mL’mK’mN’mj)]’

4.4)

2,001] — ,ILi\JKj NN' _ 2 2 2 2 2 L'Nj _ 2 2 2 2 2
QRO = yoy J[yKNiyLN’jm MSFFSF(mi’ my, mg, my, m}v) + yrniy JmLL’MSFFSF(m,‘, My, my, my, mN)

K'Ni 2

K'Ni 2.2 .2 2 2 L'N'j 2 2 2 2
+ YV y v img g Mgppsp(ms, mp, myg, my, my) + y2 N y= Y myemy pmyy Mg g (mi, mg, mi, ms, my)

2 2 ik, K'L'k 2 2
+ AV yKLkMSSFFS(m:’ m;, my, mK’ m ) + )ll] mKK’mLL/MSSFFS(m,: mj, my, m](, mk)]

IKi JK' 1 kk~7_ 2 1y ikn y jkn 2 2
+ y'fly /m,(,(/{zx\f Yggs(m, m?, m )+ TATRn AR = oo (M, m2, m mk, 2)

2 .2

+ Re[yLNiyLNj]VFSSFF(m%(: mi, mj, mL, mN) + Re[yLNl

LN IR
y "mLL’mNN']stsff(mK, m;, ms, my, my)}

IKi. JLi 2 2 2 2 2 2
+y My [YKNJYLN’ m" VSFFFS(m,r my, my, mN, m; ) + )’KNjy JmLL’VSFFFS(mp My, My, My, M )

2 2

2 K'Nj
+ y JyLijKK’VSFTVFS(m," my, Mg, mN’ mj) +yt Ny

L NJmKK'mLL/mNN'VSFfFS(mi’ m%(, m%, mN’ m?)],
4.5)

where the functions corresponding to each diagram are

Mgrrsr(x, v, 2, u, v) = [(ux — yz — sv)M(x, y, z, u, v) + yU(u, y, x, v) + zU(x, z, u, v) — ulU(y, u, z, v) — xU(z, x, y, v)
- S(x, u,v) + S(y,z,v) + sB(x, 2)B(y, u)]/2, (4.6)

MSFFSF('X’ y’ Z’ u’ U) = [(-x + u—v— S)M(-xx y: Zr M, U) - U(y: l/t, Z’ U) - U(Z, -x) y: U) + B(-x’ Z)B(y’ u)]/zr (47)
M rer vz, v) =[(x —y —v)M(x, y, 2, u, v) + Ux, z, u, v) — Uy, u, z, v) + B(x, 2)B(y, u)]/2, (4.8)
Mrg vz, v) =[(u—y — s)M(x,y,z, u,v) + Ulx, z,u, v) — Uz, x, y, v)]/2, (4.9)

MgGragyzuv) =[x —y—z+uwMxy zuv)+ UKz uv)+ Uy x,v)—Upyuzv) - Uzxy v)]/2

(4.10)
M iy, 2 u, v) = —M(x, y, 2, u, v), 4.11)
and
MSSFFS(X’ Y, 3 u, U) = [(U - M)M(X, Y, %, U, 'U) + U(Z’ XY, U) + U(l/t, Y, X U) - B(X, Z)B(y’ u)]/2, (412)
M goms(6 v, 2, v) = [(x — 2 = )M (x, y, 2, u, v) = U(y, u, 2, v) + Uw, y, x, v)]/2, (4.13)
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Mrrs(hy, zuv) = =M(x, y, 2, u, v), (4.14)
and
Y psss(x y, 2 u) = AW[A(Q) — Alz) + (v —x = $)B(x,y) = (z = x — 5)B(x, 9)]/2(y — 2), (4.15)
Y poss(x v, v, u) = A(w)[1 + A(y)/y + B(x,y) + (y — x — 5)B(x, y)1/2, (4.16)
Y 7556 3, 2 ) = A(w)[B(x, 2) — Blx, )]/ (y — 2), 4.17)
Y 7556 ¥, v, u) = —A(u)B(x, y), (4.18)
and

Virsssso v,z u,v) =[(s +x = )U@, y,u,v) — (s + x — 2)U(x, z, u, v) — I(y, u, v) + I(z, u, v)1/2(y — 2), (4.19)

Viessssy, you,v) =[(y —x = 9)V(x, y, u,v) — Ulx, y, u, v) — 1(y, u, v)]/2, (4.20)
VFSSSS(X’ 2 u, U) = [U(-x) y,u, U) - U(X, Z, U, U)]/(y - Z), (421)
VEssss( vy, v) = =Vix, y, u,v), (4.22)

and

Vsrrrs(6y, 2, v) =[(s —x + y)(y + u — v)Ux, y, u, v) — yS(x, u, v) + (y + u — v)I(y, u, v)
+ [A(u) — A@)][(s — x + y)B(x, y) + AW]1/4(y — 2) + (y < 2), (4.23)

Verrrs v, v) =[s —x+y) v —y— )Vl yu,v) + (s —x+2y +u—v)U(x, y, u, v) — S(x, u, v)
+ O+ u—vIy,uv)+ Iy uv)+ [AW) — AW)](s — x + y)B(x, y) + B(x, y)

+1+A0)/y1l/4, (4.24)

Vo prrs(6 Y, 2w, v) = [yUx, y, u, v) — z2U(x, 2, u, v)]/(y — 2), (4.25)

Vsrrrs v, v) = Ul y, u,v) = yV(x, y, u, v), (4.26)

Vrrrs(6 v, 2w, v) = [(y + u — v)U(x, y, u, v) + [A(u) — A(v)]B(x, y)]/2(y — 2) + (y < 2), (4.27)
Vmes(o vy u,v) = [Ux y, u,v) + (v —y — w)V(x, y, u, v) + [A(u) — A(v)]B(x, y)]/2, (4.28)

Vgrrstyzuv) =[(s—x+ UKy, u,v)— (s —x+ U z,u,v) + I(y,u,v) — I(z,u, v)]/2(y — 2), (4.29)
Vrrsy v, v) =[Uk y,u,v) + (x —y —)V(x, y, u,v) + 1(y, u, v)]/2, (4.30)

Vagrrst vz u,v) ={(s—x+y)y+tu—v)Uxyuv)+ @—v+yIyuv)+[Au) —AW)]
X[(s = x+y)B(x,y) + AQ)/4y(y — 2) + (v = 2) +{2(u — v)[S(x, u, v) + xT(x, u, v)]
+ux+tu—v—9)Tux,v)+v(is+u—v—x)Tw,x,u)+ (v—u
X [A(x) + A(u) + A(v) — x —u — v + 5/4]}/4yz, (4.31)
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Vagrrs@yyuv) =y +tu—v)x—y =)V y uv) + (sv —su+xu—xv+y)U(x y,u,v) + 2(u — v)
X [S(x, u,v) + xT(x, u,v)] +ulx +u—v—5)T(u,x,v) +vis +u—v—x)T(v, x, u)
+yy+u—v)IQ, uv)+ (v —uwllly,uv)+Akx) +24A(v) —x —u—v + s/4]

+[A(w) — A@)][y(s — x + y)B(x,y") + (x — $)B(x, y) + y — u + v]]/4y?, (4.32)
Vgrrst Yz uv) =[Ul y,u,v) — Ulx, z, u,v)]/(y — 2), (4.33)
V grrs6 Y, you,v) = =V(x, y,u,v), (4.34)

and
Vesser( y, zu,v) =[x —y + )y —u — v)U(x, y, u, v) + yS(x, u, v) + (u + v — y)I(y, u, v)
+ [A(u) + A()][(s + x — y)B(x,y) — AW]1/2(y — 2) + (y < 2), (4.35)

Vesser oy, ,v) =[x —y +s)u+v —y)V(x, y,u,v) + (x =2y +u + v+ s)U(x, y, u, v) + S(x, u, v)
+ (u+v=IY,uv) = Iy, uv) +[A) + A@W)][(s + x — y)B(x,y") — B(x, y)

—AQ)/y —111/2, (4.36)
Vst vz, v) = [0 = x = )UKy, u,v) + 10, u, v))/(y —2) + (v < 2), (4.37)
Vst F6 3y, 4, 0) = (x =y + 9)V(x, y, u,v) + Ux, y, u,v) + 1(/, 4, v), (4.38)
Vzsspr(6 v 2w, v) = [y —u = v)U(x, y, u, v) + [A(w) + A()IB(x, »)]/(y = 2) + (v < 2), (4.39)
V pgorp (6 v, v) = (1 + v — YV o, 0) + Ulx, y, 1 v) + [A) + A@)]BGx ), (4.40)
Vs vz v) = UG 21, v) — Ul y, 1, )]/ — 2), (4.41)

Vg7 (6 30y, 4, 0) = 2V(x, y, 4, v). (4.42)

Note that for diagrams with the V or Y topology, the limits of identical (or degenerate) squared masses in the second and
third arguments required separate expressions to avoid the threats of vanishing denominators. Also, the limit y — 0
appropriate for massless fermions is only needed when the corresponding propagator has no mass insertion. For the case
VppFs» this limit is trivial, since yV(x, y, u, v) vanishes as y — 0. The remaining nontrivial case involving a massless
internal fermion is

Verrrs(x,0,0,u, v) = [(s — x)(v — u)V(x, 0, u, v) + (s — x + u — v)U(x, 0, u, v) — S(x, u, v) + 1(0, u, v)
+ 2[A(u) — A(v)][s — A(x) — xB(0, x)]/(s — x)]/4, (4.43)

where the function V(x, 0, u, v) is defined in Eq. (2.20) of Ref. [33] and given in terms of the basis integral functions in
Egs. (A.11)—(A.13) of that paper. Two useful special cases are

Vsrrrs(x, 0,0, u, u) = [(s — x)U(x, 0, u, u) — S(x, u, u) + 1(0, u, u)]/4, (4.44)
and for s = x,
Vsrrrs(x, 0,0, u, v)l =, = {[A@) — u][A(v) = v] + uv + (u + V)10, u, v)/2}/2(u — v)
+ {2 —v+ )T uv)—3vT(v,u,x) + 5uT(u, x, v) + 100, u, v) — 3A(u) + A(v)
— A(x) + 3u — v + 2[A(v) — A(u)]A(x)/x + 3x/4}/8. (4.45)

The corresponding contribution to the two-loop pole masses [see Egs. (2.51), (2.52), and (4.3)] is given in terms of the
above results by
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H? ,0) 2(20)1 + Eg%())l’ ml!" /m% + m”,Q(z,o)n/ + Q%/O)mn/ + (leiyJKiyJLjylem% + yl’l(iyJKiijjyl//ij”/mll”
+ yiiy*y’! Ljyl’ijJJ’m”/)BFS(m%() m?)Bps(m3, m3)/m} + yigiy iy Iy Im K my  Byg(my, m?)
X Bgg(m3, m2.) + 2Re[y Ky iy My imypmy ] + vk Sy syre; ! mEE + Ly i my p])
X Bps(m¥k, m?)Bgs(m7, m 2)/’711 + [y + Im! y i/ m3 1B ps(m%, m?) + 2 Re[mpy" Ky K imy ]
X BFS(mK, 2))([|y1LJ|2 + |m””)’1"LJ|2/m%][B S(m,_, 2) - BFS(mLy 2)/””%] + ZRG[””U"YI LJyILJmLL']

X BL (m3, m?)) (4.46)

where s = m? + ie is taken everywhere on the right side. There is no sum on the index I, but all other indices (including I’
and I'") are summed over as usual.

B. Contributions from diagrams with one vector propagator

Next we consider the contributions coming from the two-loop diagrams in Fig. 4 that involve exactly one vector line. It is
convenient to organize these in terms of certain linear combinations of the quadratic Casimir group theory invariants for the
fermions and scalars appearing in the diagrams as follows:

3PV = 3y K GICK) + Coli) = CalDIGrs(mb, md) + [Co(K) = ColD)]Grps(m], m, m?)
+ Co(DHpps(m?, my, m)} + (ygiyyxim’” m&K + yUKiyI K im0 g2{[C L, (K) — C,()]Gg7¢(m3, m%, m?)
+ Ca(I)HffS(m%, m2, mlz)} 4.47)

Q@D = Ky K023l Ca(K) + Co(i) = Co(DGg(mi, m?) + [Co(K) = Co(DIG s (m], m, m?)
+ Ca(I)HFFS(mI; mK: 2)}(yIKlyJ’K1 o + Yrki yJKlmHI)ga{[C (K) Ca(l)]Gfps(m%: m%(, mZZ)
+ Co(DHppg(mi, mi, m?)}. (4.48)

The loop integral functions appearing here are

Gps(y,2) = [y* = (2 = )’ IM(y,5,2,2,0) + S(0,y,2)/2 + By — 2+ $)T(1,0,2)/2 + (y + 5)T(z, 0, y)
+2(y =2+ 970, y,2) + sB(y, 2> + [3(s = y + DAQ) + 3(s +y — 2DA(2)/2 + 2(y — 2)?
= 2s(y + 2)1B(y, 2) + [(s + 3y = 2A(y)/2y + (v + s — 2/2)A(2)/z + 6(z — y — 5)]B(y, 2) — 335/8
—3y/2+ 5z/2 4+ A(y)/2 — A(y)?/2y + 2A(z) — 2yA(z)/z + 3A(y)A(z)/z — 3A(z)?/2z
+ oyl =y + 9By, ) + (2 +y — $)B(y, 2)/2 + (1/2 + y/2)Az) — A(y)/2 + y — 5/8]
+me[(y —z+ 5)B(y, Z') — B(y,2) — A(2)/z — 1], (4.49)

Grs(v,2) =2(y + 2= $)M(y, y,2,2,0) + 2T(y, 0, 2) + 2T(z,0,y) + 4T(0, y, z) + B(y, 2)*
+[2y =2z =25 +3(s — y — 2A()/y + 3A(zx)1B(y, 2') + [5A(y)/y + 2A(2)/z — 14]B(y, z)
+3A(y)A(2)/yz — 3A(y)/y — 2A(2)/z — 6 + Szs[(s — y — 2)B(y,2) + B(y, 2) + A(z)/z — 1] + 2m2B(y, 2)),
(4.50)

and
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Grrs(x, y,2) =[(y — 2)* —xz + sx — sz]M(0, y, x, 2, y) + [(y — 2)* — (s + x)(y + 2)/2IM(0, z, x, y, 2)

—xU0,x,y,2)/2+(y —z+s/2+x/2)U(x,0,y,y) + (z — y)U(x,0,z2) — yU(y, 2, X, y)
—yU(z,y,x2) + 550, y,2)/4 + S(x, 2, 2)/2 = S(x, 3, ¥)/2 + (2 = y/2)T(z,0, y)

F (s =z 43T, 0,2)/4+[(y +z2 =)y —2) = 3(s =z +y)A@)/4 +3(s + z = y)A()/2]

X B(y,2') + [(z/4 = y/2)A(2)/z + (s + 3y — 2)A(y)/4y — 5/2B(0, x) — 5/21B(y, 2)

+ (x + 5)B(0, x) + 3A(2)*/4z + 3A())A(2)/2z — A(y)*/4y + A(x) + A(y)/4 — (3/2 + y/2)A(2)

+5(y +2)/4 — 95/16 + 635l (z — y + $)yB(y, 2') + (Sy — 3z + 35)B(y, 2)/2 + 3A(y)/2

+ (/2= 3/2)A(2) +y — s/81/2 + m[1 + B(y,2) + (z — y — )B(y, 2) + A(2)/2]/2, (4.51)

Grps(x, y,2) ={4yM(0,y,x,2,y) + 2y + 2z —x — s)M(0,z,x,y,z) + U(0,x,y,2) — 2U(x,0,z,z) — 2U(y, 2, x, y)

—T(z,0,y) + [B(0,x) + 1 — A(2)/z]B(y, z) — 4B(0, x) + 1}/4, (4.52)

Grpst,y,20) =Q2x+y—z2—5)MO,y,x,2,y) + 2y =2z —x — s)M(0,2,x,¥,2)/2 + U(x,0,y,y) — U(x,0, 2, 2)

- U(y’ 2, X, y) - U(Z’ Y, X, Z)/2 + 2T()” 0’ Z) - T(Z’ 0’ y)/2 + [3(S -y Z)A(y)/2y - 3A(Z)/2
+y+ 3z —5]B(y, 7)) + [TA(y)/2y — A(z)/2z — 5/2]B(y, 2) + 3A(y)A(z)/2yz — 3A(y)/2y
—A@@)/z = 1/2+ dygl(s —y — 2)B(y, 2) + 5B(y, 2) + A(z)/z + 11/2 — mZB(y, 2), (4.53)

Grrsx,y,2) ={2Q2s —x+y—2M(O,y,x,z,y) + 2y =2z — x — s)M(0, 2, x, y,2) + 2U(x,0,y,y) — 2U(x, 0, z, z)

and

=20y, zxy) — Uz y.x2) —2T(y,0,2) — T(z,0,y) + [3 — 2A(y)/y — A(2)/z]B(y, z) + 3}/4,
(4.54)

HFFS(X’ Y, Z) = [(y - Z)z — Xz +sx — SZ]M(O: »Xz y) + [(x + S)(y + Z)/2 - (y - Z)z]M(O’ %Y, Z)

+x+)z—x—yV0O0,xy,2) +[B+s/x)(z—y)+5s]UO,x,y,2)/2+ (x/2+y—z+5/2)

XU 0,,y)+ 6 —2Ux07z2) —yUy,zxy) + yU(z, y, x,2) + [sx — 25y + 3xy + 2y* — xz — 2yz]
XT(y,0,2)/4x + (y—z+ $)T(0,y,2) + (xy + yz — 22 + 25)T(z,0,v)/2x + (3/4 + y/x — z/x)S(0, y, 2)
=Sy 3)/2=8(22)/2+ (x+y =D, y,2) + (x =y + DI(x 3, 2)/2x + [(y — 2)°
—s(y+2)+3z—y+5A)/2 +3(y —z+ 5)A(z)/4]B(y, ') + [(2z — 2y — 35/2)B(0, x)

+ (s +3y = 2AQY)/4y + (/22 = 1/4)A(2) — 55/2 — 3y + 32]B(y, 2) + [A(y) — A(2)]

X [25B(0,x") — (1 4+ 5/x)B(0, x)/2] — A(y)? /4y — 3A(z)*/4z + 3[A(y) — A(2)]A(x)/2x + 3A(»)A(z)/2z
+ (z/2x — y/2x + 1/HAY) + (1 — y/2)(1 + z/2x)A(z) — 255/16 — 3y/4 — sy/8x + y?/2x

+52/4 + 52/8x — 2% /2x + S35[2y(z — y + 5)B(y, ') + (5y — 3z + 35)B(y, 2) + (2y/z — 3)A(2)
+3A(y) + 2y — 3s/41/4 + mZ(y — 2+ 5)B(y, 2) — B(y,2) —A(2)/z — 1]/2

+ (1= E{(sy —sx —3x> —xy — sz + x2)U(0, x,y,2) + 2(s + x)(x + y — 2)xV(0, x, y, 2)

—2sx(x +y = U0, x,y,2) + (s + 2x =y + 2)yT(,0,2) + (2 =y = $)z2T(z,0,y) + (s + y — 2)
XaT(0,y,2) +2(x =y + 2)80,y,2) + (v —x = DI(x, 3, 2) + 2(z — x = y)xI(¥', y, 2)

+ 2xs[(y — z + 5)B(y, z) + 2A(y) — 2A(2)]1B'(0, x) + 2x(s + y — 2)B(0, x) B(y, z)

+[AX) + (s + 30)B0, ) ][A(Y) — ARD] + (v = DAY) + (v = 2x — 2)A(2)

+ =y +2)y+z—s/4}/2x, (4.55)
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Hizt,y,2) =Qx+y—z—M©O,y,x,2y) + (x/2+5/2—y+ M0,z x,y,2) + Ux,0,y,y) + Ux,0,2z2)
—4U0,x,v,2) — U, z,x,y) + Uz, v, x,2)/2 + 8xV(0, x, y,z) + 2T(y,0,z) + T(z,0,¥)/2 + 2T(0, y, z)
+[3(s =y — DAY)/2y + 3A(2)/2 — s +y = z]B(y, 2') + [TA()/2y + A(z)/2z — 2B(0, x)
—15/2]B(y, 2) + 3[A(z)/z — 1JA(y)/2y — A(2)/z — 7/2 + &3[3 + A(2)/z + 5B(y, 2)
+ (s =y — 2By N]/2 + meB(y, ) + (1 = E{T(0, y,2) — 25U’ (0, x,y, 2) — 2xV(0, x, y, 2)
- U(0, x,y,z) +2[B(0, x) + sB'(0, x)1B(y, 2)}, (4.56)

Hppg(x, y,2) = {4yM(0,y,x,z,y) + (x =2y — 2z + s)M(0, 2, x, y, z) — 5U(0, x, y, 2) + 2U(x, 0,2, 2) — 2U(y, 2, x, y)
+8(x +y—2)V(0,x 2 + T(z0,y) +[3B(0,x) + A(z)/z — 1]B(y, 2)
+ 8[A(z) = AWIB(O, x) — 1}/4 + dy5/2 + (1 = E(z — x = Y)[xV(0, x, y, 2) + sU'(0, x, , 2)]
+ (@ =»UO.x,y.2) = yT(y,0,2) + 2T(z0,y) + [(s + y = 2)B(y, 2) = A(y) + A(2)]xB'(0, x)
+[A(z) — A1 + 2x/5)B(0, x) + 2A(x)/s]}/2x, (4.57)

Hpro(x,y,2) ={2Q2s —x+y —2)M(0,y,x,2,y) + (s + x — 2y + 22)M(0, z, x, y, 2) + 2U(x,0,y,y) + 2U(x,0, 7, 2)
+ Uz, y,x%2) —2U(y, zx,y) —4(s + x)V(0, x,y,2) —2T(y,0,2) + T(z,0,y) + 4I(x', y, 2)
+[1—2A0)/y + A(2)/z]B(y, 2) + 1}/4 + (1 = O[(s + 0)V(0, x, y,2) = U(0, x, y, 2)
—sU'(0,x,y,z) — I(x, y,2) + sB(y, 2)B'(0, x)]. (4.58)

Note that the terms involving functions G g and G are the only parts that contribute when the external fermion is neutral;
they and the functions Ggpg, G p5g, G7rg, and Gz ¢ are each gauge-invariant and finite in the limit s — m?. In contrast, the
functions Hpps, Hrg, Hppg, and Hz3 ¢ are not by themselves gauge-invariant and have logarithmic divergences as s —
m?, but they combine with one-loop parts to give a finite, gauge-invariant pole mass. This cancellation provides a nice
check on the calculations. The resulting contribution to the pole squared mass [see Egs. (2.52), (2.53), and (4.3)] is

ﬁﬁz’l) = [y + [m!"y i ?/m3 g2 Co(K) + C, (i) — Co(D1f 1 (mF, m, m?) + [C,(K) — C,(i)1f2(m3, m¥k, m3)
+ C, (D f3(m3, mk, m?)} + 2Re[y' Ky Kimmy 16203 Co(K) + C,(i) — Co(D)1f4(m3, m¥, m?)
+ [Cu(K) — Co(D]fs(mf, mi, m?) + Co(I) fo(mj, mg, m7)}, (4.59)

where

S (x, A 7) = lexGFs(y, 2) (4.60)

=y — (x—2)’IM(»,v,2,2,0) + S0,y,2)/2 +2(x + y — 2)T(0, y,2) + (x + 3y — 2)T(y,0,2)/2
+ (x + y)T(z,0,y) + B(y, 2)3(x —y + 2AQY) + 3(x + y — 2)A()/2 + 2[(y — 2)* — x(y + )]}
+ xB(y, 2)* + B(y, 2)[(x + 3y — 2)A(y)/2y + (2x + 2y — 2)A(2)/2z + 6(z — x — y)]
+[1 — A®)/y]A®Y)/2 + [2z — 2y + 3A(y) — 3A(2)/2]A(z)/z — 33x/8 — 3y/2 + 5z/2
+ Oysbyx —y + 2)B(y, 2) + (v + 2 — 0)B(y, 2)/2 + (1/2 + y/2)A(z) — A(y)/2 + y — x/8]
+m2[(x+y—2)B(,7)— B(y,z) — Az)/z — 1], 4.61)
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[y, 2) = im[Grps(x, y, 2) + 2xGrpg(x, y, 2)] (4.62)

=(+y—2’M0O,y,xzy) +[(y — 2> = ¥*IMO0,z,xy,2) + (x +y = 2)U(x,0,y, y)
F(@=x=yUK0,z2) — &+ UM zxy) —yUzyxz) + 550y 2)/4 = S, y,y)/2
+8(,22)/2+(x+3y—2)T(»0,2)/4+ 2z —x = y)7T(z,0,)/2 + [3(x — y + 2A(y)/2
+3@—x—yAQR)/4+ (=) —y—2IBY, ) + [(x + 3y — 2AQY) /4y + (z — 2x — 2y)A(z)/42]

X B(y, z) — A(y)*/4y + 3A(y)A(2)/2z + 3A(2)*/4z + A(x) + A(y)/4 — (3/2 + y/2)A(z) + 5(y + 2)/4
= x/16 + dy5[2y(x —y + 2)B(y, 2') + (B3x + 5y — 32)B(y, 2) + (2y/z — 3)A(z) + 3A(y) + 2y — x/4]/4
+mZ[(z — x — y)B(y, 2) + B(y,2) + A(z)/z + 1]/2, (4.63)

f3(xy,2) = im{Hppg(x, y, 2) + 2xHpps(x, 3, 2) + 2[Bry(x, 0) + xBgy (v, 0)IBrg(y, 2) + 2[Bry(x, 0) + xBg (x, 0)]

X Bps(y, 2) — Bpy(x, 0)Bgs(y, 2)/x} (4.64)

=(x+y—2*MO,y,xzy) +[x* = —2*IMO,z,xy2) +x+y—2UXx0yy +x+y—2)
XU 0,22 — & +)UY,zxYy) +yUzy,x2) + [(2—y)/x —5/4]8(0,y,2) — S(x, y, y)/2
- S(x,z2)/2+2(x+y—2T0,y,z) + (x> + xy —xz — yz + 29)T(z,0,y)/2x
+ (x* —2y% + 2yz — 3xy — x2)T(,0,2)/4x + Bx + y — 2)I(x, y,2)/2x + 3(x + y — 2)I(x, y, 2)
+[(5z = 3x = 5y)A(x)/2x + (x + 3y — 2)A(y)/4y + (2x + 2y — 2)A(2)/4z + 6(z — x = y)]B(, 2)
+x(y+2) = (-2 +30+z—0AK) +3(x =y + 2)A()/2 + 3(x + y — 2)A(z)/4]B(y, Z)
— AWAWY)/x = Ap)* /4y + (1/x = 3/2)A(0)A(2) + 3A(y)A(z)/2z + (x + 2y — 22)A(y)/4x
— 3A(2)?/4z + (2xy + 2xz + yz — 22)A(2)/2xz + 3x/16 + 3y/8 — y*/2x — 15z/8 + 2%/2x
+ 8:[200% — 3yz + 222 — xy — 2x2)B(y, Z) + (5x + 3y — 2)B(y, 2) — (1 + 2y/2)A(2) + 5A()
+ 4z — 2y — 3x/4]/4 + m2[(x + y — 2)B(y, 7)) — B(y,z) — A(z)/z — 1]/2, (4.65)

Faxy,2) = imGg(, 2) (4.66)

=2y +z—x)M(y,y,2 2 0) +2T(y,0,2) + 2T(z, 0, y) + 4T(0, y, 2) + B(y, 2)[B(y, z) + 5A(y)/y
+2A(z)/z — 14] + [2(y —x — 2) + 3(x — y — 2DAY)/y + 3A(2)]B(y, 2') + 3A(y)A(z)/yz — 3A(y)/y
—2A(2)/z = 6 + Sygl(x —y — 2)B(y, 2) + B(y, 2) + A(2)/z — 1] + mg2B(y, 2), (4.67)

fS(xr Y Z) = y_rg[GFFS(-x’ Y Z) + 2G1775(x’ Y Z)] (468)

=2x+y—2M@O,y,x,zy) +2(y —x —2)M(0, 7, x, y, z) + 2U(x,0,y,y) — 2U(x,0,z,z) — 2U(y, 2, x, y)
— Uz, x2) +T(y,02) = T(z 0,y) + [1 — A(z)/z][1 — 3A(y)/2y] + [3(x — y — 2)A(y)/2y
—3A(z)/2 — x +y + 3z]B(y, ') + [5A(y)/2y — A(z)/z — 1]B(y, 2) + Sys[(x —y — 2)B(y, Z)
+ 5B(y, 2) + A(z)/z + 1]/2 — m2B(y, 7)), (4.69)
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fox,y, 2) = lim{H p55(x, y, 2) + 2Hpp5(x,y, 2) + 2[Bry(x, 0) + xBgy (x, 0) B (3, 2) + 2[BRy (x, 0) + xBZ (x, 0)]

X Bgs(y, 2) + By (x, 0)Bxg(y, 2)} 4.70)

20 +y —2)M(0,y,x,z,y) + 2(x —y + 2)M(0, z, x, y, z) + 2U(x,0,y,y) + 2U(x,0,z,z) — 2U(y, z, x, y)
+U(z,y,x,2) =450, y,2)/x + (1 = 2y/x)T(,0, z) + (1 — 2z/x)T(z, 0, y) + 4T(0, y, z) + 2I(x, y, 2)/x
+6I(x',y,2) + [3(y — x — 2)A(x)/x + 3(x — y — 2)A(y)/2y + 3A(z)/2 + x — y + z]B(y, Z)

+[5A(»)/2y + A(2)/z — A(x)/x — 11]B(y, 2) — [1 + A(2)/z13A(x)/x + 3A(y)A(2)/2yz

+ (2/x = 3/2y)A(y) + (2/x + 1/2)A(z) — 2(y + 2)/x — 1/2 + Sygl(y — x — 32)B(y, /) + 3B(y, 2)
—A(z)/z + 1]/2 + m2B(y, 7). 4.71)

The limits y — 0 (for massless internal fermions) can be important when there is no corresponding mass insertion:

f](x,O,Z) =

f2(-x) 0’ Z) =

f3(-x) 0’ Z) =

—(x —2)’M(0,0,7,z,0) — 5(x — 2)U(z,0,0,0)/2 + 5(0,0, 2)/2 + xT(z, 0, 0) + xB(0, z)?
+ [(x/z — 2)A(z) + 7z/2 — 3x/2]B(0, z) — 3A(z)*/z + 11A(2)/2 — 13x/8 — 2z + 5M—s[(z —x)B(0,2)/2
+ A(2)/2 — x/8] — mZ[2A(z)/z + 2B(0, 2)], 4.72)

(x — 2)>M(0,0, x, 7, 0) + (z> — x>)M(0, z, x, 0, z) — xU(0, z, 0, x) + (x — 2)[U(x,0,0,0) — U(x, 0, 7, 2)
—U(z,0,0,0)/4] + (z — x/2)T(z,0,0) — S(0,0,x)/2 + 55(0,0,2) /4 + S(x, z,2)/2

+ [(1 — x/22)A(z) + x/4 — 5z/4]B(0, z) + 3A(z)?/2z + A(x) — 13A(z)/4 + 3x/16 + 2z

+ 85s[3(x — 2)B(0, 2) /4 — 3A(z)/4 — x/16] + m2[A(z)/z + B(0, 2)], 4.73)

(x —2)’M(0,0, x,z,0) + (x> = 22)M(0, z, x, 0, z) — xU(0, z, 0, x) + (x — 2)[U(x,0,0,0) + U(x,0, z, 2)
—9U(z,0,0,0)/4] + (x — z + 22/x)T(2,0,0)/2 — S(0,0, x)/2 — S(x, 7, 2)/2 + (z/x — 5/4)5(0, 0, 2)
+(9/2 — z/2x)I1(0, x, z) + [(x/2z — 1)A(z) + (3/2 + 5z/2x)A(x) — Tx/4 + 3z/4]B(0, z)

+ A(2)[4A(x)/x — 3A(2)/2z — 9/4 — z/2x] — 6A(x) + z%/2x — z/8 + 87x/16

+ Syl (5x + 32)B(0, 2)/4 + 3A(z) /4 — 3x/16] — m2[A(z)/z + B(0, )] (4.74)

C. Contributions from diagrams with two or more vector propagators

We finally turn to the contributions from two-loop diagrams that contain more than one vector (or ghost) propagator.
Again it is useful to organize the results in terms of common group theory factors. The results for the self-energy functions

are

3P = 8]g2C, (D[} Cy(NH (m3) + g2Co(G)Hy(m?) + g21,(K)H(m3, m%) + g21,(i))Hy(m3, m?)], (4.75)

QW = mV g2 C,(D[g3Cy(DH (m}) + g2Co(G)Ha(m7) + g2l (K)Hs(mi, mg) + gala(DHa(mi, m})],  (4.76)

where the required loop integral functions are
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H(x) = —4x>M(0, x, x, 0, x) + 2S(x, x, x) — (s + 4x)T(x,0,0) + 2(s — x)U(x, 0, x, x) + (10x%/s — 25 — 4x — 4x°/5?)

X In?(1 — s/x) + [11s/2 + x — 29x?/2s + (4 — 3s/x + 11x/s)A(x)]In(1 — s/x) — 735/8 — 5x/2

+ (3 +95/2x)Ax) + (6/x — 5/x)A(x)* + Sy[(5x2/s — 5)In(1 — 5/x) + 5x — 5/2 — 5A(x)/x]

+ (1 — ){4sT(x,0,0) + (3s — 11x%/s + 8x3/s2)In%(1 — s/x) + [(2s/x — 14x/s)A(x) — 55 — 6x + 19x%/5]

X In(l — s/x) + 3s + 11x — (s/x + 14)A(x) — sA(x)*/x* + Sy (s — 5x%/s) In(1 — s/x) + sA(x)/x — 5x]}

+ (1 — &HsT(x,0,0) + (s — x)x%/s%In>(1 — s/x) + [Bx — s — 2x%/s + (x/s — s/x)A(x)]In(1 — s/x)

+35/2 — x + A(x) — sA(x)?/x%}, 4.77)

H,(x) = —2(s + x)M(0, x, x, 0, x) + 4T(x, 0, 0) — 8U(x, 0, x, x) + 42 — 32A(x)/x + 10A(x)?/x>
+ (14 — 6x/5)(1 — x/$)In*(1 — s/x) + [24(1/x — 2/5)A(x) — 36 + 52x/s]In(1 — s/x)
+ S58[A(x)/x — 1 + (1 — 2x/s)In(1 — s/x)] + (1 — E}{—4T(x,0,0) + 8A(x)/x — 2A(x)*/x* — 6 — 2x/s
+ (8x/s — 6 — 2x3/s)In%>(1 — s/x) + [(14/s — 8/x)A(x) + 12 — 12x/s — 4x*/s*]In(1 — s/x)
+ 8521 — A(x)/x + 2x/s — DIn(l — s/0)]} + (1 = &)*~T(x,0,0) + A(x)*/x* — A(x)/x + x/s — 3/2
+[(1/x — 1/5)A(x) — 2x/s + 2x*/s*]In(1 — s/x) + (x3/s® — x/s)In>(1 — s/x)}, (4.78)

H,(x) = (x — s)(s + 2x)M(0, 0, x, x, 0) + 2x>M(0, x, x, 0, x) + (x — s)U(x, 0, x, x) — (s + 2x)T(x, 0, 0) — S(x, x, x)
— A(x)?/x + (7 + 65/x)A(x) — 16x — 175/2 + (1 + 2x/5)(x — s)In*(1 — s/x) + (x — )
X [(3/s + 1/x)A(x) — 12x/s — 7]In(1 — 5/x) + Sy513s/4 + (1 — E){s(s — x)M(0, 0, x, x, 0)
+ sT(x,0,0) + 2sA(x)?/x* — 5(1 + s/x)A(x) + 5x + 11s + (1 — x/s)[(4x + 35)In(1 — s/x)
+5(1 + s/x)A(x) — 5x — 65]In(1 — s/x)}/2 + (1 — &) —sT(x,0,0) + (1 + 5/2x)A(x) — 9s/4 — x/2
+ (1 —=x/9)[Bs+x)/2—(x+s)In(1 —s/x) — (1 + s/x)A(x)]In(1 — 5/x)}/2, 4.79)

H,(x) =3(s — x)M(0,0, x, x,0) + (s + x)M(0, x, x, 0, x) + 7T(x, 0, 0) + 4U(x, 0, x, x) + A(x)>/x*> — 64A(x)/3x
+112/3 + (1 — x/$)[81In(1 — s/x) + 9A(x)/x — 85/3]In(1 — s/x)
+ Oyl(x/s — DIn(l — s/x) — A(x)/x — 7/2] + (1 = E{(x — $)M(0, 0, x, x, 0) — T(x, 0, 0)
— 2A(x)*/x*> + 10A(x)/x — 16 + (1 — x/s)[(x/s — 3)In(1 — s/x) + 11 — 5A(x)/x]In(1 — s/x)}/2
+ (1 — *T(x,0,0) — 3A(x)/2x + 11/4 + (1 — x/s)[In(1 — s/x) + A(x)/x — 5/2]In(1 — s/x)}/2, (4.80)

Hy(x,y) = {[—4s(s — x)® + 4052y + 4sxy + 4x%y + 48(x — 25)y*]yT(y, v, x) + 2x(s — x)
X [9y(s + x) — (s — x)> — 36y*1T(x, v, y) + [—2(s — x)* + 225%y — 8sxy — 14x2y + 48(x — 25)y*1S(x, y, y)
+ (s — x)*B(0, x) + [25% + 2sx — 4x? + 24(x — 25)y]A(Y)? + [4(s — x)? — 24(s + x)y]A(x)A(y)
+ [112sxy — 4x(s — x)> — 92s%y + 28x%y + 96(2s — x)y?JA(y) + [(s — x)> — 45y — 10sxy + 14x3y
+ 24(s — 2x)y?JA(x) + (5s5/4 — 2x)(s — x)> — 355%y/2 + 77s%xy/2 — 11sx?y — 10x3y + 85%y? + 50sxy?
+ 20x%y* + 96(x — 25)y*}/15y(s — x)* + S5553s/4, (4.81)

Hy(x,y) = {[6(s — x)> + 12xy + 16y> — 28sy]T(y, y, x) + 20x(x — 5)T(x, y, y) + (20x — 205 + 16y)S(x, y, y)

+ (8 4+ 6x/y — 65/9)A(y)* + 16A(x)A(y) + (105 — 10x + 8y)A(x) + (48s — 64x — 32y)A(y) + 195%/2
— 53sx/2 + 17x* — 34sy + 8xy + 32y?}/3(s — x)* + 2(1 + A(y)/y)B(0, x) — S5, (4.82)
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H,(x,y) = {[48(2s — x)y> — s(s — x)> — 20s%y + 16sxy — 44x>y]yT(y, y, x) + x(x — s)[(s — x)?/2 — 12y(s + x + 6y)]
X T(x,y,y) + [y(13s> — 2sx — 11x% + 965y — 48xy) — (s — x)*/2]S(x, y, y)
+ [235% — 22sx — x* + 485y — 24xy]A(y)? + [(s — x)? + 24(s + x)y]JA(x)A(y)
+[(s — x)3/4 + (x — s)y(s + 11x) + 24(2x — 5)y?JA(x) + [—x(s — x)> + 96(x — 25)y> + 225%y
— 92sxy + 22x*y]A(y) + (55/16 — x/2)(s — x)> + 96(2s — x)y> — 70xy*(s + x) — 25s°y/4 + 23s5%xy/2
+ 19sx%y/4 — 10x3y + 625%y?}/15y(s — x)*> + (s — x)?B(0, x)/60y, (4.83)

Hy(x,y) ={[3(s — x)> — 8sy + 24xy — 16y*]T(y, y, x) + 16x(x — 5)T(x, y, y) + 16(x — y — 5)S(x, y, y)
+ (12x/y — 12s/y — 8)A(y)> — 16A(x)A(y) + 8(s — x — y)A(x) + 8(3s — x + 4y)A(y) + 75> — 20sx
+ 13x2 — 38sy + 64xy — 32y%}/3(s — x)> + [1 + A(y)/y]B(0, x). (4.84)
The corresponding contributions to the pole squared mass are therefore
T 77 = g2C.(D[2Cy(NF 1 (m}) + g2C,(G)Fa(m3) + g21,(K)F5(m3, m}) + g21,(i)Fy(m3, m?)], (4.85)
where the required functions can be written compactly in terms of logarithms and dilogarithms:

Fi(x) = Ei_lg{ZH 1(x) + 2xH (x) + 4By (x, 0) + xBz,(x, 0)][Bfy (x, 0) + XBIFV(X’ 0)]

— [Brv(x, 0)F/x + a[Bg, (x, 0) P} (4.86)

= x[41/4 + 107> — 27Inx + 18In’x + 24{(3) — 1672 In2 + S5 12(Inx — 1)], (4.87)

Fy(x) = lim[2H, (x) + 2xH,(x)] (4.88)
= 2[1093/12 — 87%/3 — (179/3)Inx + 11In’x — 12{(3) + 87> In2 + 65<(3/2 — 2Inx)], (4.89)
Fs(x,y) = lim[2H;(x) + 2xH3(x)] (4.90)

= —37x/3 — 12y + (26x/3)Inx — 2xIn’x + 4y In(x/y) — 2(y*/x)In?(x/y) + 8(x + y)f(/y/x)
— 4(x + y*/0)[Liy(1 = y/x) + 7%/6] + by5x/2, (4.91)

Fy(x,y) = li_rp[ZHAx) + 2xH ,(x)] (4.92)

= —125x/12 + 14y + (19x/3)Inx — xIn?*x — 6y In(x/y) + (y*/x)In?*(x/y) + 8(x — y)f(+/y/x)

+2(y*/x — 0)[Liy(1 — y/x) + 7°/6], (4.93)
ith | 26 37 4m? 8
w _ — T v
F = x[=—Inx — 2In%x — — — — + MS
5(x, 0) x( 3 nx n-x 3 3 5 ),
f(r) = rLi([1 — r]/[1 + 7)) (4.95)
— Li,([r — 11/[1 + 1)) + #2/4}. (4.94) 26 73 872 6=
= Oty — 22— 2 4 VS
F;(x, x) x( 3 Inx — 2In“x 3 3 5 >
Here are some useful special cases: (4.96)
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43 19— _
= x{— + —Inx — In? :
Fa(x, x) x<12 3 Inx — In x), 4.97)
19—  —, 125 277
Fu(x, 0) = x(? Tnx — In?x — 1—25 - T”) (4.98)
F3(0,y) = F4(0,y) = 0 (4.99)

In the MS scheme with Oys = 1. the expressions of
Egs. (4.87) above agree with those found originally in
[16] (see also [18]). In the DR scheme with Oys = 0, the
same equations are in agreement with the results of
Ref. [17]. In particular, the function F3(x, y)/2x found
here was given in three different mass expansions in
Eqgs. (18)—(20) of [17].

V. EXAMPLES AND APPLICATIONS

In this section, I present some applications of the pre-
ceding general results. These are all taken from the MSSM
and include all effects at one-loop order but only terms that
involve the strong gauge coupling constant in the two-loop
part. All of the couplings and masses appearing below are
tree-level running DR’ parameters in the MSSM with no
particles decoupled. (This means that contributions listed
above containing dy5 and m?2 are not present.) The con-
ventions used here for these couplings and masses are
identical to those found in Sec. II of Ref. [46] and Sec. 11
of Ref. [47], and will not be repeated here for the sake of

|

7@ ® o ~ R
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brevity. Note that the formalism allows for arbitrary CP
violation within the MSSM and takes into account sfer-
mion mixing within each generation, but for simplicity the
effects of possible sfermion mixing between generations is
neglected. Throughout the following, each index that ap-
pears on the right-hand side of an equation but not on the
left-hand side is implicitly summed over. The name of a
particle is used in place of its renormalized, tree-level
squared mass when appearing as the argument of a loop
integral function.

A. SUSYQCD corrections to the gluino mass

In this section, I study the specialization of the above
results to the case of the gluino mass. (The results below
partly overlap with recent independent results of
Y. Yamada in [32].) Applying the formulas of Secs. III
and IV, I find that the two-loop gluino pole mass, including
all SUSYQCD effects, can be written as

— T My = m + g3 my + $3 oy, ¢

8 167 2 (16 2)2

where m; is the tree-level running gluino mass (often seen
as M5 in the literature), and

iy’ = Cem2[10 — 6In(m2)]
+ 4Iq{BFS(Qr (?j) - ZRe[Lq_fRE,]mqmgBFS(q’ 511')}’
(5.2)

Re[L;, R; G - ImmMgz0:(G5 4, 4, G §)

+ j(qu]L |2 + |Rq] qklz)szSFFSF(QJ’ q, 9, Qk: ) + |qu qkl quSFfSF(qj’ q, 9, Qk’ g)

= Re[Ly Ry Imym;M755(d ). q. . Gr §) + Re[Lg Ry

LqARZk]mﬁméMsﬁsf(%, 4.9, 4 8)}

+ 8chq{(|L¢7/qu|2 + |R~.qu|2)VSFFFS(‘7/‘; q: q: g’ Qk) - 2Re[L~R>f]m m7VSFFFS(qj: q’ qr gr ‘?k)
+ 2RC[quR2/_L*I\ qk]m Vsppps(Qp 99 8 qk) + (lL qu|2 + |R qulz)mzvspppg(q/y q,.9 8 Qk)

— 2Re[L; R} ImgmsV 77435 4, 4. & Gi) + 2Re[quR* L R; ImZm
+ VFSSFF(q; q], qj, q, g) + 2Re[quR2k(R2/qu + LZIRq‘)]mqm
2Re[L, R} Im

_ 2Re[L"»R2,]mqmgVFSSFF(‘I’ 3,34 8) —
— Ry R} *Yrsss(q, 4, Gj @) — Re[Lj Ry (Lg L

+412[4{Brs(q, G;) — 2Re[Lg R Imym

_ *
qj ‘I R%R'I

#B7s(q, G)HBEs(0,

Gk G

0) — 2Re[L g, R:

Vsrrrsldy ¢ 4.8 )

z Fssff(q’ dj» 4w 9 8)

oMV rsstF (@ dj G g, §) T %lLé,‘sz
)(qu G _qu g,)Imgm

Y rsss (@ @» G Gn)}

5 ]QOg FS(Q 00}

— Brs(q, G;)Brs(Q, Qk)/m + dmymg RC[L R ]RG[LQk o, 1Bz¢(4, ;) B#(0, 0u)]

+ (4C,

- 2CG)1 {f1& q, qj) - 2Re[L~.RT.]m mgf4(g, q, qj)} +4Csl,{f5(& 9. G))
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Here C, = 4/3, C; = 3, and I, = 1/2. The symbol ¢ is
summed over the six symbols (u,d, c,s, 1, b), and the
squark squared-mass eigenstate labels j, k, n are summed
over 1,2. In terms where Q appears, it is also indepen-
dently summed over (u, d, c, s, t, b). The symbols L; and
R;. describe the squark mixing and CP Vlolatlon they
denote the left-handed and right-handed squark content
amplitudes of each squark mass eigenstate, as defined in
Ref. [46]. The loop integral functions were listed in
Secs. III and IV above, in terms of basis functions that
can be evaluated numerically using [43]. Each of them
should be evaluated with s = mz (the tree-level squared
mass), with an infinitesimal positive imaginary part. A
computer program implementing this result is available
from the author on request.

As a nontrivial check, I have verified that this result
for the gluino pole mass is invariant under changes in
the renormalization scale governed by the two-loop
SUSYQCD renormalization group equation for the run-
ning gluino mass [48,49,39], up to consistently neglected
terms at three-loop order in SUSYQCD and two-loop order
in the other couplings.

In the limit that squark mixing and quark masses are

neglected, the expressions above simplify and can be given
J
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analytically in terms of polylogarithms [50]. The result for
the pole squared mass is then:

. l,a 1,b), .
—%%=%+mﬂ%(kmﬂn”@>]
fieo
(16 2)2[ ( )
2,b) . - ~(2,¢), . o
+ Col 15" (3, 6,) + C 1,115 (3, 4))
2,d
+ 2113, 3, 00 (5.4)
where
11 " (x) = 2[10 — 6Inx], (5.5)
~(1,b i
I3 (e y) = 2:[(1 = y/x)? In(1 = x/y) + Tny — 2 + y/x],
(5.6)
(2”) (x) = x[77 + 1072 + 12£(3) — 872 In2
— 78Inx + 27In%x], (5.7)

= (24y — 18x — 4y?/x)Lir(1 — y/x) + 4x(x — y)M(0, y, y, 0, x) + 4(x* — y*)M(0, x, y, 0, y)

@/x0)In*(1 = x/y)] + 8(y — x)f(1/y/x)

+ [(12y%/x — 12y — 2x)Inx + (24y — 16x — 6y>/x)Iny + 41x — 40y — y*/x]In(1 — x/y)
+ (10y — 8x — 2y*/x)In%(x/y) — 18xInxIny + (41x — 14y)Iny + (9x + 20y)Inx + 2y(1 — y/x)7*/3

~(2,b)

Iz (x, y)
+ 2(x — y)’[M(0,0, y, y,0) + 2M(0, 0, x, y, 0) —
—41x — 9y,

(2.0 _

Iz (x, y) = 8x(y — x)M(0, y, 5,0, x) —

(5.8)

4(x — v)>M(0,0, v, y,0) + (4x — 24y + 24y?/x)Li,(1 — y/x)

= 2(x — y)*(x/y* — 2/x)In%(1 — x/y) + [(12x — 8y + 4x3/y*> — 8x%/y)Inx + (4x — 8y — 4x3/y> + 8x2/y)
X Iny + 4(y — x)(x/y + 7y/x)]In(1 — x/y) + [12y?/x — 12y + 4x*/y — 2x3 /¥ + 2x]In*(x/y)

+ (4x2/y — 20x + 24y)In(x/y) + (4x?/y — 2x3/y* — 4x/3 — 8y/3 + 4y*/x)7* — 22x + 4y,

( d)
g (x )’:Z)

The integral M(0, x, y, 0, y)|,—, can be reduced using re-
currence relations to results found in Refs. [18,19] and
was given in the present notation in [43]. The analytic
formulas for the master integral cases M(0, 0, x, y, 0) and
M(0, y, y,0, x)|,—, were also given in terms of polylogar-
ithms in [43]. The integral M(0, 0, y, y, 0) was originally
found in [51] and listed in the present notation in [42]. The
function f appearing in Eq. (5.8) was defined in Eq. (4.94)
above.

5" (x, )3 + 52/x)(1 — 2/x) In(1 — x/2) + 3Inz — 5z/x — 2]/2.

(5.9

(5.10)

[
To illustrate the numerical significance of the two-loop

correction, in Fig. 6 I show the fractional difference be-
tween the real part of the gluino pole mass and the running
renormalized mass (evaluated at a renormalization scale
equal to itself) as a function of the ratio of the squark
masses (assumed degenerate) to the tree-level gluino mass.
Also for simplicity, the top-quark mass is neglected. In
most realistic models of supersymmetry breaking, most of
the squark masses are larger than about 0.8m;. Then the
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The SUSYQCD corrections to the gluino pole mass Mg, in the simplifying approximation of degenerate

squarks, with no squark mixing or quark masses and Yukawa and electroweak effects neglected for simplicity. Here mgquc = m; and
Mgiyino = M (often seen in the literature as M3) are the tree-level running DR’ squark and gluino mass parameters, all evaluated at a
renormalization scale Q = mz(Q), and My inopotle = Mj is the square root of the real part of the pole mass. In the first panel, the dashed
line is the one-loop result, and the solid line is the two-loop result, for the ratio of the gluino pole mass to the running gluino mass
evaluated at itself. The second panel shows the difference between the two-loop and one-loop results. The computations were done by
specializing Egs. (5.4)—(5.10) in the text, using as(Q) = g3/47 = 0.095.

two-loop contribution to the gluino pole mass is
positive, and from 1% to 2% for comparable gluino and
squark masses, but it is larger when m; > mg.

The scale dependence of the calculated pole mass is
shown in Fig. 7. To make this graph, a reference renormal-
ization scale Q, is chosen such that the running gluino
mass evaluated there is equal to it, i.e. Qg = mz(Qy). Then,
for three different values of the ratio m; / mj; at the scale
0o, namely, 0.9, 1.5, and 3.0, the one-loop and two-loop
gluino pole masses are computed as a function of Q. To do
this, the relevant running parameters mg, my, and ag =
g3/4 are evolved using their two-loop renormalization
group equations from Q, to Q, and then the pole mass is
recomputed using Eqgs. (5.4)—(5.10). In the ideal case, the
lines shown would be exactly horizontal. The scale depen-
dence of the one-loop and two-loop results is about the
same if the gluino mass is less than or about equal to the
squark masses (as, for example, in gaugino-mass domi-
nated or “‘no-scale’” models). For heavier squark masses, it
is significantly improved by going to two-loop order. Note
that as usual, the scale dependence of the one-loop ap-
proximation is considerably less than the difference be-
tween the two-loop and one-loop results. This strongly
suggests that the scale dependence should not be used as
an indicator of the accuracy of the two-loop approximation
either. A naive estimate of the size of the three-loop
SUSYQCD contribution to the gluino pole mass can be
obtained by considering the cube of the one-loop fractional
contribution, and so is perhaps of the order of a few tenths
of a percent.

1.20F -
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—
o
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FIG. 7 (color online).  The scale dependence of the computed
gluino pole mass Mginopole = My, in the simplifying approxi-
mation of degenerate squarks with no squark mixing or
quark masses and Yukawa and electroweak effects. Here the
top pair of lines are for m;(Qg)/mz(Qp) = 3, the middle pair
for  mg(Qg)/myz(Qp) = 1.5, and the bottom pair for
mz(Qo)/mgz(Qy) = 0.9, where m; and m; are the running gluino
and squark mass parameters evaluated at a reference renormal-
ization scale Qy = m4(Qy), with ag(Qg) = g3/47 = 0.095. In
each case, the solid line is the two-loop result, and the dashed
line is the one-loop result. The parameters mg, m;, and ag are
each run from the reference scale Q, to the scale Q using two-
loop renormalization group equations, and the gluino pole mass
is then recomputed. The computations were done by specializing
Egs. (5.4)—(5.10) in the text.
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As mentioned above, results equivalent to those above in
the limit of no squark mixing have previously been ob-
tained independently by Y. Yamada in [32], where numeri-
cal results were given and the analytical form for the pole
mass of the gluino was shown explicitly in the limit m; >
mg. I have checked that the results found here do agree
with those in Ref. [32]. (When comparing the numerical
results, it is useful to note that small differences, formally
of three-loop order, arise due to the fact that the present
paper works in terms of perturbative corrections to the pole
squared mass, while Ref. [32] computed results for the pole
mass.)

Further accuracy can be obtained by including the con-
tributions of Feynman diagrams that are of order ag times
Yukawa or electroweak couplings squared. Such correc-
tions could be particularly important if the gluino is rela-
tively light, since we are working in a nondecoupling
scheme. These results are implicitly contained above in
Sec. 1V; obtaining their explicit form is only a matter of
|
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plugging in the couplings and masses of the MSSM. I will
not do that here, because this paper already contains plenty
of lengthy formulas, but only note that it can be done
straightforwardly by use of a symbolic manipulation pro-
gram, for example.

B. SUSYQCD corrections to quark masses in minimal
supersymmetry

As another application of the general results above,
consider the relation between the running and pole masses
of the quarks in the MSSM, found earlier in [29-31].
Using the results of the present paper, I find for the top
quark:

4
o, ~ (1) T
M? LM, = m} + 11, +(167T2)2H,, 5.11)

where

" = g2C,{m2(10 — 6lnm?) + 2Bs(3, 7,) - 4Re[L; R; mmeByg(& 1)} + 210 PBis(t, 4)

+ 2Re[(Y,;¢3)2]st(t, ¢0)

+2RelY ¢, 5 Yie,s, Imme, Bzs(C;, b

X Bry(t, Z) +20,8"[0,8"/(g* + §") — T{IB#, (1, Z) + g*Bpy(b, W)/2,

()

I, = c,(8cC,

(|Y2b¢+|2 + |7 bich; |2)BFS(b ¢ )+ 2Re[Ytbq‘>+Yl¢ Imym, BFs(b (ﬁ )

+ (|Y;1v.?:|2 + |YEA7J.|2)BFS(N1'» 1)+ ZRC[YW.?*. ?N»f»]mtmﬂ 7N 1) + (Y o b

2+ |Y?Cb I>)Bs(C;, ,)

b)) + 5e*mi[10 — 6lnm7] + [(g* + g7)/4 — 2QtT§g’2 +207¢"/(g> + )]

(5.12)

4CG){L R* L* RtAMSFFSF(f': g’ g’ fk» t) + |ijR?k|2m%MSFFsﬁ(f'» g} g, ;k’ t)

— Re[L; R} ImmzMgp (T & & T 1) + 5(IL7 L | + |R; Ry P)miMp 7 675, & 8, T 1)

— Re[Ly R} ImmyMg, (), & & T 1) + RelLy Ry

+ 8C I 3V srrrs(ty, & & ¢, Gi) + 2Re[L; R} szqu

Lth;k ]mtzméMSffo(;’ g’ g; ;ky t)}

Imm V(T 8 &, Gr)

- 2Re[Lf»RT.]mtm"VSFfFS(I/" 8 g’ q, qk) + Em'vsffps(;jy g’ g: q, Qk)

—2Re[L; R

173 1
— Re[L; Ry (L; L} — Ry R} )(L;, L},
= 2Re[L7 R} Jm,mgBrg(8, 1)HBfs(8, 1) —
+ Re[ Ly, Ry IRe[ Ly, R; Im2B (2, 7))Brs(2, ) —
+2(Cs —

5 Ry ImgmeV 7556, 8. 8. q. G1) + ZRC[L R; quR; ]mqmtmgvsfffs(f" £8 g q}
+A4CH{Visspr(8. 1,1, 1, 8) — 2Re[ijR;j]mtmg[stsFF(g’ b
+2(Re[L; R} Ly, R; ] + |L; R, PYmimiVrgr (8, T T 1, §)] + 5117 L

7,8 + V(@ 1 11, 8)]
— Ri RS Y psss(@, 75, 7, 1)

— Ry RV Imomg Y5 8 Ty 7 B,) + (B3 7)

2Re[L;, R Im,mgBL (& 70}

|L; R:,\PBFS(gr 1)Bps(g, T)/mi} + CoCof1(1, 8. 7))
Cq)quz(t, g 1)+ 2qu3(t, g 1) — 2¢, Re[L;jR;j]m,mg{CGf4(t, g 1) +2(Cs —
+2C,f6(t, 8 1))} + CoF (1) + CoC,[Fy(1) + F5(t,8)] + C,l,

Cq)fS(t7 g’ ;/)

[2F5(1, q) + F4(t, )] (5.13)
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The gauge group constants are C, = 4/3, Cg =3, I, =
1/2, Q, = 2/3, and T4 = 1/2. The results for the bottom
quark can be obtained by taking ¢ <> b everywhere, with
Q,— Q, = —1/3 and T, — T2 = —1/2. The one-loop
part given by Eq. (5.12) was given in a different notation
in [52]. It includes all effects, including those due to
the exchange of virtual neutral Higgs scalars [d)o
(h°, H°, G°, A®) for j =1,2,3,4] charged Higgs scalars
[q’r (G*, H*) for j = 1,2], neutralinos [N for j =
1, 2 3,4], and charginos [C for j=1,2] and top and
bottom squarks. In each of the loop integral functions in
Egs. (5.12) and (5.13), one should take s = m? with an
infinitesimal positive imaginary part. [Here I have only
listed the pure SUSYQCD corrections explicitly in the
two-loop part, but the corrections involving Yukawa cou-
plings and scalar trilinear couplings are also given implic-
itly by specializing the results of Sec. IV.]

I have checked that the result given above is consistent
with the two-loop renormalization group equations, in the
sense that the pole mass is invariant under changes in the
renormalization scale given by the two-loop SUSYQCD
renormalization group equation for the top-quark mass. As
another nontrivial consistency check, I have verified that in
the (clearly unrealistic) supersymmetric limit, the top-
quark pole mass given above is precisely equal to the
top-squark pole mass as found in Egs. (5.28)—(5.30) of
Ref. [34]. [In the published and original preprint versions
of that paper, the term in Eq. (5.30) proportional to I, was
missing a factor of 2.]

The two-loop SUSYQCD contribution and Yukawa con-
tributions had already been found in Refs. [29-31], using a
method in which loop integrals are evaluated using an
expansion in small mass hierarchies. In principle, the
present paper generalizes this somewhat, since here I use
|
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two-loop integral basis functions without mass expansions.
However, as was recently pointed out in [31], the actual top
and bottom quark masses are such that the leading terms in
the mass expansion already give an extremely good ap-
proximation throughout most of the parameter space left
available to supersymmetry. [ have also checked agreement
with Egs. (57)—(62) in Ref. [29]. References [29-31] also
include an extensive study of the impact of the two-loop
top and bottom quark mass corrections in the MSSM.

C. SUSYQCD corrections to neutralino
and chargino masses

In this section, I present the two-loop corrections to
neutralino and chargino masses that involve the strong
coupling. These arise from gluon and gluino propagator
lines added to the one-loop Feynman diagrams that involve
quarks and squarks, and so are parametrically of order
asy?, agyi, asg®, asgg’, and agg”. These two-loop con-
tributions are evaluated by specializing the results above
and do not require the neglect of W and Z boson masses.

Using the general results of Secs. III and IV, one can
write the neutralino pole masses as

2 T . L = 2
My, — iUy My, = mg + 1

fori =1, 2, 3, 4, where mfv are the tree-level squared-mass

eigenvalues, and the one-loop part is [52,53],

2nf(|Yfo 1>+ |y N, )Brs(f, f;) + 4n; Re[YfN.f*.Ym.f]mﬁ.meFs(f, i)+ 2|Y1\~/,-1\7‘/-¢2|2BFS(N]‘; o)

+ 2Re[(Vg 5,0 Ty Bag(V, 60 + 21V g, + 1V g, PIBis(C 67)

+ 4Re[Yc/_+Ni¢; Yéf,;,,w]m,c,mc fS(

+28%(|05* + |OF|)Bry(C), W) + 4g* Re[OL0K Iy, me, Bz, (C;, W),

and the two-loop SUSYQCD part (i.e.,

o) +2(8° + g0V IPBry(N, 2) —

Re[(01} ) Img my Br, (N}, 2)}
(5.15)

the part involving the strong interactions) is
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~ () o o
Mg, = 168350 5,5 > + Va5 I)f1(Niv 4, §)) + RelY .5 Yam,q I mefa(Ni, ¢, G;) = 2Re[Y .0 Yog - Ry Lg,]

X Msrse(d 4 6 4o 8) = 2RelY 5 g2 Yeg - Ly Ry ImgMr 5p(d) 0, 4, G0 8)

+ Re[YqN "y Yw, g -Lg L + Yo, g; Yox, quZ R* ]mNimgMSFpsf(C?j’ 4 9 G §)
— 2Re[Y, iLaRa, + Yan, Q»Yﬁﬁiqk 3 Ly Img mMgz6:(G), 4, G, G 8)
+ 2Re[Y o, q*YfN qu,qu + YfN ) YqN‘quq ~ ]m m”MSFTrsF(‘?j’ 99 G &)

+ Re[Yqu e quq Ry + Yoy q/YququZ qu]mN mgquSFFSF(qJ, 4, q G 8)

+ (Wyng: 1 + Wan g, P)WVesser(a, 4j, G 8 @) + 2RelY 3,4 Yaw g Img mgVesser(a, 45, 35 & )

— 2Re[(Y, N, qu + Y;Nq Yan,a )R, LsImgmeV o574, Gy Gio & 9)

- 2Re[Yqu Yan,q, (R, L3, + Ly R; ) Imy, mam;Vism 7 (4 4, G & q)

+(, aNig; qklz + |Yqz\7.qv qk|2)VSFFFs(5Ij’ 4.4, & gi) + 2RelY, N.q%YqN.qj]mN.m Vspfps(flj’ 4.4, & Gr)

= 2Re[Y 5,5 Yan g, Lo Ry Iy meV spprs(@y @ 4 & i) + (Y y,5:Rg 1P + Yan g Lo )miN 57 15(@) 0, . & Gi)
= 2(1Y,5, @

= 2Re[Y 5,4 Yaw g, Ra, Ly Iy mimeV e57.5(@5 40 & @) + HLg L, — Ry Ry )Ly Ly, = Ry

2+ oy g P Re[Lg RG ImgmeV sr775(35 4 0 & 1)

aR3)

X ong Y, ' iy a Y;Nq Yar,3.)Yrsss(4 4j Gr 4n) + (Yquf?j Yava + Y;N,q] aNG: Img mgYgss(d: 45 Gro )1
(5.16)

In Eq. (5.15), f is summed over the symbols e, w, 7, v,, v, V5, U, d, ¢, s, 1, b, with n; = 1 for leptons and 3 for quarks, and
in Eq. (5.16) the symbol ¢ is summed over u, d, c, s, t, b. The indices j, k, n are each summed over the appropriate ranges
(1, 2 for squarks, sleptons, charginos, and charged Higgs scalars, 1, 2, 3, 4 for neutralinos and neutral Higgs scalars,
including the Goldstone bosons) wherever they appear. The masses and couplings appearing on the right-hand side are
always running renormalized DR’ parameters. In all of the self-energy functions appearing in Egs. (5.15) and (5.16), the
external momentum invariant is s = m12\7. with an infinitesimal positive imaginary part.

Similarly, the pole masses for charginos in the MSSM can be written as

Mg — T M¢ (5.17)

= m% + s —
; i G mci 1672 G (1677'2)2

for i = 1, 2, where mé are the tree-level squared-mass eigenvalues, and the one-loop part is [52,53],

Y =

nf(|chp* + |Y 6.8, [*)Brs(f, Fj) + 2nfRe[YfCF* FC.F, Ime mBr(f, Fj)+ (|YC+N o; > + |Yc N, ¢+| )

X Brs(Nj, ) + 2Re[Yerg o Yoo g e myg Brs(N o ) + (Yereogol + [Yer e go)Brs(C 69)

+ 2Re[YC+C ¢0YC+C ¢o]mc me, FS(CJ, ) + ezm2 [10 6111m2 ] + (105> + |0R|2)BFV(1\7]-, W)

+ 2¢” Re[ 05,08 Im¢my Bz, (N;, W) + (g% + 8/2)[(|0/L|2 +|0&P)Bry(C}, 2)

+ 2Re[0% 0¥ Ime,me Bpy(C, 2) (5.18)

and the two-loop part involving the strong interaction is
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(2)
= 833{2(| Y qC.0
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2+ |Y—CQ ) f1(C g, Qj) + Re[Y, Plofto) Yze.0, Ime,m mqf4(C, g, Q,)

- 2Re[ qC Q*Y;C . RQ qu]MSFFSF(Q]’ Q q, qk’ g) + Re[ qC Q*YQC q*LQ L + YqCQ YQC ‘IkR*Q R1< ]

X mCimngSFpsf(Qj: Q: q, Qk) g) 2 Re[ch Q QC qx
X mé-quSFFSF(Qj, 0,9 Gw 8 — 2Re[ch 0 Ygé .

+ 2Re[Y

~«LR T Yoe0 Y

4C,0; QC" R Ry, + chQ YocqLloLa Amgm

* *
7¢.0,Yoc,4.R5,La]

Lo, Ry Jm moMz7 (0, Q. 4. G, )

MSFTVSF(Q/'» 0.9, G 8)

+ Re[Y CQ*Ych*RQ Ry + Yae,0,Y5¢.4, L% qu]mcm momg MSFFSF(QJ, 0,9 G, 8)

+(|YC‘

— 2Re[( qCQ*Y* o Y;CQ

24y, 3C:0; 1)V rsser(, QJ’ Qp g Q) + 2RelY, q€,0:13¢,0, ]mc m VFSSFF(q, Qj’ Qp g0

{/C QA)L Qk]QOngSSFF(q) Q]» Qk, 8, Q)

= 2RelY,¢,0:Y5¢,0,(Lo Ry + Rg L Nme,mgmomVesrw(g, Q) Qn & Q)

+ (Y

qC; Q |2 + Y5 qCi0; q,\l )VSFFFS(Q]y 99 8 4 + 2Re[Y, qC;0;"49C,0; ]mc m VSFFFS(Q], 99 & qx)

— 2Re[Y ¢, Q*ch o,La, Ry Imemg VSFFFS(QJ, .98 g+ (Y CQ*R‘“P + |YqCQ L; 1%

2(0Y,¢.6

Xm stst(Qj’ 9,98 4r) —

— 2Rel[Y, 4C,0 Yzé.0, L;qul\]mC mgm VSFFI_VS(QJ" 44,8 G) + E(LQ,-L*Qn — R,

2+ Yye0 1) RelLg R

g R Imgm SFTV?S(Q/" 9. 9, & 4r)

Ro)\Lo, Lo, — Ro Ry,

)

X [(Y,e, o:Yoe Y—@[Q/_ Yz¢.6,) Y rsss(@ Q) O Q) + (Yqé,.Q"; Yieo, + Y;@,Qj YZC-QNZ)

q
X méimqusss(q’ Q]’ Q~k’ Qn)]}

In the one-loop part Eq. (5.18), ny = 1 for leptons and
ny = 3 for quarks, and the symbols (f, F) are summed over
the 12 ordered pairs: (e, v,), (v, e), (u, v,), (v, @),
(7, v,), (v, 7), (u, d),(d u),(cs), (s c), (tb), (b, t), while
in the two-loop part Eq. (5.19) the symbols (g, Q) are
summed over the last 6 of these. The indices j, k, n are
each summed over the appropriate ranges (1, 2 for squarks,
sleptons, charginos, and charged Higgs scalars, 1, 2, 3, 4
for neutralinos and neutral Higgs scalars, including the
Goldstone bosons) wherever they appear. In all of the
self-energy functions appearing in Egs. (5.18) and (5.19),
the external momentum invariant is s = mzé with an in-
finitesimal positive imaginary part. '

The numerical values of the two-loop neutralino and
chargino pole masses are rather sensitive to the values of
the model parameters. Most often, they can be expected to
be at least several tenths of a percent but larger in some
regions of parameter space. A study of the numerical
significance of these results, and other contributions to
the neutralino and chargino masses that are implicitly
given in Sec. 1V, is deferred to future work.

VI. OUTLOOK

In this paper, I have presented results for radiative
corrections to the self-energy functions and pole masses
of fermions at two-loop order. The main specific motiva-
tion for this work is to allow future experimental data on
superpartner masses to be connected to hypotheses for the

(5.19)

[

mechanism of supersymmetry breaking. However, the
strategy used is designed to be more flexible, with potential
application to any semiperturbative theory that may ap-
pear, anticipated or not, at the TeV scale.

The application to the gluino mass may be particularly
crucial, because of the relative strength of the SU(3)q
gauge coupling, and the color octet representation of the
gluino. When one extrapolates the soft-supersymmetry
breaking parameters to very high energies [54—58] using
two-loop or even three-loop [59] renormalization group
equations, the gluino mass can also have a quite strong
effect on the determination and running of other parame-
ters. It has been found that the combination of the Large
Hadron Collider and a future linear collider may be able to
pin down the gluino mass to 1% or so [1]. In that case, the
two-loop corrections to the gluino mass will definitely be
required. In general, the two-loop contributions for other
fermions are parametrically smaller, but still worth includ-
ing on the grounds that theoretical errors should be made
negligible if at all practicable, in order to cleanly isolate the
experimental implications of new data.

For reasons of relative simplicity (and not principle), the
calculations presented in this paper have neglected the
masses of vector bosons in the two-loop part. Although
this is a quite adequate approximation for many purposes,
it can and should be improved in future work. Also, the
calculations have been presented here in a general form
and require specialization; this can be nontrivial for rea-
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sons related more to fatigue in writing and typing than to
conceptual difficulty. However, this specialization of gen-
eral results seems well suited to symbolic manipulation
programs. In any case, the more lengthy results for specific
contributions to the neutralino and chargino masses, for
example, might be better placed in the innards of computer
codes of the type described in [55—58] rather than explic-
itly on paper.
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