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Competition of color ferromagnetic and superconductive states in a quark-gluon system
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The possibility of color ferromagnetism in a SU�2� gauge field model is investigated. The conditions
allowing a stable color ferromagnetic state of the quark system in the chromomagnetic field occupying
small domains are considered. A phase transition between this state and the color superconducting states is
considered. The effect of finite temperature is analyzed.
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I. INTRODUCTION

Nonperturbative effects of non-Abelian gauge theories
take place in the infrared region. Among such nonpertur-
bative effects are confinement [1,2] and chiral symmetry
breaking (�SB) [3], and also the existence of the QCD
vacuum with gluon and quark condensates and the hadro-
nization process. They can be studied by certain approxi-
mate methods or in the framework of various effective
models. First of all, lattice studies should be mentioned
[2]. For instance, results of a recent supercomputer analysis
of lattice QCD with dynamical fermions demonstrated that
the QCD vacuum behaves as a dual superconductor and
that color confinement is due to the formation of a dual
analog of the Abrikosov string [4] (for a recent study of the
underlying Abelian projected SU�2� lattice gauge theory,
see, e.g., [5]). At the same time, evidences in favor of the
hypothesis that confinement is due to formation of central
vortices have been obtained in lattice numerical experi-
ments with the use of the so-called maximal central gauge
[6]. As for �SB, lattice calculations demonstrated that, if
there are no vortices in the ensemble, the phenomenon of
chiral symmetry breaking disappears together with the
confinement, and the corresponding gauge configurations
belong to a trivial topological sector [7].

Note that the description of creation and dynamics of
central vortices is a very complicated problem. Their de-
scription in the framework of the field theory started al-
ready in 1978 [8]. Recall also the idea of ‘‘spaghetti
vacuum’’ [9,10], that has been developed anew in the
framework of the theory of four-dimensional surfaces
and strings [11,12]. Further development of the continuum
description of central vortices was undertaken in [13,14]
(see also, e.g., [15]).

One of the possibilities to approximately describe the
gluon condensate in the continuum version of the theory
was based on the introduction of the background color
fields of certain configurations (see, e.g., [16,17]). One of
the solutions of the Yang-Mills equations that can serve as
a model for the gluon condensate was a constant chromo-
magnetic field. Its role was demonstrated in [18,19].
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Another example of nonperturbative problems is the
physics of light mesons that can be described by effective
four-fermion models such as the Nambu–Jona-Lasinio
quark model, which was successfully used to implement
the ideas of dynamical chiral symmetry breaking (D�SB)
and bosonization (see e.g. [20,21] and references therein;
for a review of �2� 1�-dimensional four-quark effective
models see [22]).

In the framework of four-fermion models, it was shown
that a constant magnetic field [23] induces the dynamical
chiral symmetry breaking (D�SB), as well as the fermion
mass generation, even under conditions when the interac-
tion between fermions is weak. This phenomenon of mag-
netic catalysis was explained based upon the idea of
effective reduction of space dimensionality in the presence
of a strong external magnetic field [24] (see also paper [25]
and references therein). It was also demonstrated that a
strong chromomagnetic field catalyzes D�SB [26]. As was
shown in [27], this effect can be understood in the frame-
work of the dimensional reduction mechanism as well, and
it does not depend on the particular form of the constant
chromomagnetic field configuration.

A model for the gluon condensate in the form of a
constant chromomagnetic field was proposed in [18,19].
In these papers, the authors calculated the one-loop effec-
tive potential for a constant chromomagnetic field B and
they demonstrated that it reaches its minimum at a non-
vanishing value of B. However this simple analytical
model of the gluon condensate with a uniform chromo-
magnetic field B � const (the so-called ‘‘color ferromag-
netic state’’) [18,19] suffered from an instability [28]. This
problem later has been studied in a number of papers. In
particular, various methods were proposed to stabilize the
solution by introducing a nonzero charged component of
the gauge field. Various attempts also have been made to
improve this by assuming a certain domainlike [9,29] or
non-Abelian structures [30] of the condensate field.
Possibilities of thermalizing the system [31,32] and intro-
ducing a condensate of the time component of the gauge
field A0 � 0 were also considered [16,33].
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The principal difficulty in finding a stable color ferrro-
magnetic state is that a local minimum of the action cannot
be obtained, since the corresponding field configuration
proved to be spatially inhomogeneous. In order to circum-
vent this difficulty, the method earlier applied in analyzing
the quantum Hall effect [34] was used in [35,36]. It was
demonstrated that a spatially homogeneous state of the
gluon field can be obtained by effectively reducing the
dimensions of the problem from D � �3� 1� to D � �2�
1� and employing for gluons the technique used in [34,37]
for the description of the quantum Hall effect in a �2�
1�-dimensional Fermi system. The resulting gauge con-
figuration breaks the color symmetry and the arising color
charge can be compensated by fermions (quarks) in the
system interacting with the color field. It should be men-
tioned that in this case the quark density must be higher
than in the hadronic phase of matter.

At the same time, in the system with high fermion
density, another nonperturbative phenomenon can take
place, i.e., the color superconductivity (CSC). First studies
of gap equations and Ginzburg-Landau free energies for
relativistic fermion systems lead to the conclusion that
superconducting and color superconducting states of the
quark matter are possible [38]. Further detailed investiga-
tion of these phase states of quark matter was undertaken,
e.g., in [39]–[40], [41–45]. Briefly, the mechanism of CSC
can be explained as follows. Quarks in a dense medium
become asymptotically free; their interaction is rather
weak and attraction may arise between them. Com-
ponents with longer interaction range are screened. As a
result, quarks of different colors and flavors with opposite
momenta may compose Cooper pairs, as electrons do in the
superconducting metal, thus leading to the energy gain.
One may expect that, similar to the case of the quark
condensate, the process of diquark condensation can be
catalyzed by intensive external (vacuum) gauge fields. For
a �2� 1�-dimensional model, this was recently discussed
in [46]. It is clear that a medium with the density
�1014g =cm3 needed for color superconductivity to arise
cannot be produced in the laboratory. This dense media
may be found, e.g., in compact stars [47,48].

In the present publication, we investigate color ferro-
magnetism (CFM) and color superconductivity as two
mutually excluding possible phases in a SU�2� gauge field
model. Our aim is to study in more detail the effective
dimensional reduction in the gluon sector leading to stabi-
lization of the ferromagnetic state and also to consider for
the role of fermions in stabilizing the system and their
contributions to thermodynamical quantities in the color
ferromagnetic phase. We analyze the ferromagnetic phase
and compare the energy gains due to either of possible
effects: creation of color ferromagnetism and color
superconductivity.

The paper is organized as follows. Section II contains
the investigation of the gluon sector. Section III contains
the discussion of the quark sector. In Secs. IV and V we
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consider the phase transitions at zero and finite tempera-
tures, respectively, and Sec. VI contains conclusions.
II. THE EFFECTIVE DIMENSIONAL REDUCTION
IN THE GLUON SECTOR

Let us consider the gluon Lagrangian in the Yang-Mills
theory with the SU�2�c color group for the field Aa��a �
1; 2; 3� in the �3� 1�-dimensional space-time

L g � �
1

4
�Fa���2 �

1

2�
�Dab

� Qb
��

2 � �a�D
2�ab�b: (1)

Here Aa� � Aa� �Q
a
�, Aa� is the background field; Qa

� are
quantum fluctuations of the gluon field; Dab

� � �ab@� �
g�abcAc� is the covariant derivative in the background field;
�;� are ghost fields; and �D2�ab � Dac

� D
cb
� , g denotes the

gluon coupling constant (the Feynman gauge � � 1 will be
adopted in what follows). Moreover, summation over re-
peated color indices a � 1; 2; 3, and Lorentz indices � �
0; 1; 2; 3 is implied. The above Lagrangian can be rewritten
in the form demonstrating interaction of the colored
(‘‘charged’’) vector field with a � 1; 2 and a ‘‘neutral,’’
a � 3, i.e., ‘‘electromagnetic’’ field:

Lg � �
1

4
f2
�� �

1

2
j�D�W� �D�W��j

2 � igf��W��W�

�
g2

4
�W��W� �W�� W��

2; (2)

with the following notations adopted: A� � A3
� is the

‘‘neutral electromagnetic’’ field, f�� � @�A� � @�A� is
the corresponding field tensor; W� �

1��
2
p �A1

� � iA
2
�� is the

charged field, D� � @� � igA�. We omitted the ghost
contribution in the above Lagrangian, having in mind
that it will cancel the unphysical degrees of freedom in
subsequent calculations.

Let us assume that the background field is a constant
Abelian chromomagnetic field directed along the x3 axis,
playing the role of the electromagnetic field in the above
equation. Choosing an asymmetric gauge for this field, we
can write

A a
� � �a3A�; A� � ��2x1B; f12 � �f21 � B:

(3)

In the linear approximation, the field equation for quantum
fluctuations of the color field W� in the background chro-
momagnetic field A� has the form:

D 2
�W

� � igf��W� � 0: (4)

We may write the following stationary solutions for two
physical degrees of freedom of the fluctuation field W1;2

interacting with the chromomagnetic field B:

W1;2 � e�i"x0�ik3x3�ik2x2�un�1;2�x1 � k2=gB�;
-2
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where the functions �un�1;2�x1 � k2=gB� are expressed in
terms of the known wave functions of the harmonic oscil-
lator. The energy spectrum has the form:

"2 � k2
3 � 2gB

�
n�

1

2

�
� 2�gB; (5)

where n � 0; 1; 2; ::: is the Landau quantum number. It is
clear that the energy might become imaginary, when the
spin projection is � � �1, the Landau quantum number is
n � 0, and the longitudinal momentum projection is re-
stricted by k2

3 < gB (the so-called tachyonic mode). This
behavior of the solution demonstrates that the linear ap-
proximation for solving the equation for this particular
mode is not valid [28]. Therefore, for this unstable ta-
chyonic mode, which is denoted by the field ’,

W1 �
1� i���

2
p ’; W2 �

1� i���
2
p ’; (6)

the exact nonlinear Lagrangian

Ltach � jD�’j2 � 2gBj’j2 �
g2

2
j’j4; (7)

should be considered. Unfortunately, the procedure of
finding a nontrivial uniform vacuum state ’ � 0 indepen-
dent of x, as it was done in the case of the Higgs model, is
not applicable here due to the presence of A��x� in the
covariant derivatives D� � @� � igA��x�. In [35,36] a
new approach was proposed to achieve the stable vacuum
state. There, the solution with k3 � 0, which is uniform in
the x3 direction, was considered. This choice leads to
stabilization of the solution, if the effective dimensional
reduction D � �3� 1� ! D � �2� 1� is implemented.

It should be emphasized that the solution found in [35] is
stable only with respect to �2� 1�-dimensional perturba-
tions. However, the true vacuum state should be stable with
respect to �3� 1�-dimensional perturbations as well, i.e.,
against nonuniform perturbations along the x3 axis parallel
to the chromomagnetic field direction. In fact, this is the
condition that there should be no tachyonic modes with
nonzero momenta along this axis, k3 � 0.

In order to find this condition, let us consider the un-
stable modes in more detail. It follows from (5) that
unstable modes appear when n � 0, and the sign of the
gluon spin projection is negative, while the longitudinal
momentum is comparatively small, i.e., k2

3 < gB. In order
to exclude tachyonic modes with k3 � 0, the extention of
the chromomagnetic field along the x3 axis L3 should be
finite. In this case, implying a periodicity condition for the
charged field along this axis W1;2�x3 � 0� � W1;2�x3 �
L3�, the momentum becomes discrete: k3 � 2�n3=L3,
where n3 � 0;�1;�2; . . . . Thus, in order to exclude ta-
chyonic modes with jk3j> 0, one should demand that the
lowest nonuniform modes, with n3 � �1, should already
have real energy, i.e., that they were not tachyonic, and this
supplies a restriction on the maximum extension L3 of the
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chromomagnetic field B along the x3 axis,

L3 � Lmax
3 �

2��������
gB
p : (8)

This limitation provides a physical meaning for the choice
of the solution uniform along the x3 axis, which implies a
physically reasonable restriction, i.e., the field should exist
only inside certain domains with finite dimensions [49]. In
other words, when the length L3 (the x3 dimension of the
domain) is fixed, the inequality (8) may be considered as a
limitation for the maximum value of the stable chromo-
magnetic field inside the domain

gB � gB0 �

�
2�
Lmax

3

�
2
: (9)

Thus, we should not consider a solution, which is uniform
in the whole space, but rather a single domain, inside which
the field is constant in magnitude and in direction. This
limitation for its maximum extension and the boundary
conditions implies that the domain is surrounded by other
domains with fields inside having different strength and
orientation in configuration and group spaces, restoring the
symmetries of the whole system. In fact, the above limita-
tion for the L3 extension of the chromomagnetic field
domain implies effective dimensional reduction for the
unstable mode that results in its stabilization. As it was
mentioned above, we restrict ourselves by the simplest
assumption of periodicity of the solutions along the x3

axis. The detailed investigation of the structure of domains
and boundary effects that inevitably occur, when domains
are put together, is out of the scope of this paper.
III. QUARK SECTOR

The gauge configuration that consists of a constant
chromomagnetic field B and a uniform gluon condensate
W1;2 � 0 is color charged. Following [35], one has to
introduce fermions with finite density into the system
that will interact with the gauge field configuration and
preserve its color neutrality. In the case of larger quark
matter density, an effective model describing the interac-
tion of quarks should be employed. Let us first give some
arguments for the choice of the QCD-motivated extended
Nambu–Jona-Lasinio effective model of quarks intro-
duced below. To this end, consider two-flavor QCD with
nonzero chemical potential � and color group SUc�2�. In
the previous section, we decomposed the gluon field Aa��x�
into a condensate background (‘‘external’’) field Aa��x� and
the quantum fluctuations Qa

��x� around it, i.e. Aa��x� �
Aa��x� �Q

a
��x�. By integrating in the generating functional

of QCD over quantum fluctuations Qa
��x� and further ‘‘ap-

proximating’’ the nonperturbative gluon propagator by a �
function, one arrives at an effective local chiral four-quark
interaction of the Nambu–Jona-Lasinio type describing
low energy hadron physics in the presence of a gluon
-3
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condensate. Finally, by performing a Fierz transformation
of the interaction term, one obtains a four-fermionic model
with � �qq�—and �qq�—interactions and an external con-
densate field Aa��x� of the color group SUc�2� given by the
following Lagrangian

Lq � �q
�
	�
�
i@� � gA

a
��x�

�a

2

�
��	0

�
q

�
G1

2Nc
	� �qq�2 � � �qi	5 ~
q�2


�
G2

Nc
	i �qc"�	5q
	i �q"�	5qc
: (10)

In (10), qc � C �qt, �qc � qtC are charge-conjugated
spinors, and C � i	2	0 is the charge-conjugation matrix
(t denotes the transposition operation), ~
 � �
1; 
2; 
3� are
Pauli matrices in the flavor space; �"�ik � "ik, ����� � ���

are totally antisymmetric tensors in the flavor and color
spaces, respectively. Clearly, the Lagrangian (10) is invari-
ant under the chiral SU�2�L � SU�2�R and color SUc�2�
groups.

As it was mentioned above, the physical vacuum of
QCDmay be interpreted as a region splitted into an infinite
number of domains with macroscopic extension. Inside
each such domain, there can be excited a homogeneous
background chromomagnetic field [28], which generates a
nonzero gluon condensate hFFi � 0. Averaging over all
domains results in restoration of the color as well as
Lorentz symmetries [51].

Upon performing the usual bosonization procedure
[20,21], and introducing meson and diquark fields �;�
and �; �, the four-quark terms are replaced by Yukawa
interactions of quarks with these fields, and the Lagrangian
takes the following form (our notations refer to four-
dimensional Euclidean space with it � x4) [52]:

Lq � � �q�i	�r� � i�	0 � �� i	
5 ~
 ~��q

�
1

4G
��2 � ~�2� �

1

4G1
��� �	iqtC"�	5q


� �	i �q"�	5C �qt
; (11)

wherer� � @� � igA
a
��a=2 is the covariant derivative of

quark fields in the background field.
In order to investigate possible phase transitions in the

quark matter in the framework of the initial model (11), we
evaluate the path integral over meson and diquark fields by
using the saddle point approximation, neglecting field
fluctuations around the mean-field (classical) values h�i �
�0 � 0, h�i � �0 � 0 [53], and h�i � �0, h�i � �0.

Within this approximation, we obtain the quark contri-
bution to the partition function

Zq � expWE �
Z
dqd �q exp

�Z
d4xLq

�
; (12)

where
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L q � � �q�i	�r��q� �0	iq
tC"�3	5q


��0	i �q"�3	5C �qt
; (13)

with WE being the Euclidean effective action, and Lq the
quark Lagrangian.

The partition function (12) is calculated in the standard
way (for details see [46]). In principle, the gap �0 is
complex. However, the partition function is real and de-
pends only on the module squared of the gap. Its phase
characterizes just the degeneracy of the vacuum and may
be set here equal to zero. In this sense, it is understood that
the following equations are expressed directly in terms of
the module j�0j, i.e.

2�0 ! j2�0j � �: (14)

In the present study, the background field is assumed
constant and homogeneous, Fa�� � const. Then the Dirac
equation

�	�r�� � 0 (15)

for a quark with flavor i has stationary solutions  k;i with
the energy spectrum "k;i; where k stands for the quantum
numbers of the quark in the background field. In this case
we arrive at the following Euclidean effective action:

WE �
1

2

Z dp4

2�

X
k;i;

log�p2
4 ��2 � �"k;i � ��2�: (16)

Here,  � �1 corresponds to charge conjugate contribu-
tions of quarks with color indices � � 1; 2 (included in the
quantum number k) and the spectrum "k;i; moving in the
background color field F3

��. Clearly, for a vanishing exter-
nal field (Fa�� � 0), we have "2

k � ~p2.
In the case of finite temperature T � 1=� > 0, the ther-

modynamic potential �q � �WE=��L3� [16] is obtained
after substituting p4 !

2�
� �l�

1
2�; l � 0;�1;�2; :::,

�q � �
1

�L3

XNf
i�1

X


Xl��1
l��1

X
k

log
��

2��l� 1=2�

�

�
2

� �2 � �"k;i � ��2
�
: (17)

Next, with the use of the proper time representation we
obtain for the quark thermodynamic potential

�q �
1

2
����
�
p

L3

XNf
i�1

X


Z 1
1=�2

ds

s3=2

�
1� 2

X1
l�1

exp
�
�
�2l2

4s

�

� ��1�l
�X

k

exp	�s��2 � �"k;i � ��
2�
: (18)

In order to find the phase of the system at zero and finite
temperatures, solutions and energy spectrum "k;i of the
Dirac Eq. (15) in the chromomagnetic field should be
used. For the case of a constant Abelian chromomagnetic
-4
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field, Eq. (15) is decomposed into independent equations
for quarks of different colors. Fermions are in the states
determined by the following quantum numbers: color, spin,
sign of the energy, Landau number, and two components of
the momentum p2; p3. The corresponding energy spectrum
is well known [54]:

"2
n;�;p3

� gH
�
n�

1

2
�
�
2

�
� p2

3; (19)

where � � �1 is the spin projection on the external field
direction, p3 is the longitudinal component of the quark
momentum (�1< p3 <1),

p2
? � gH

�
n�

1

2

�
(20)

is the transversal component squared of the quark momen-
tum, and n � 0; 1; 2; ::: is the Landau quantum number. It
should be mentioned that the boson condensate of the
gluon field � may slightly change the structure of the
fermion levels, and besides it may mix quarks of different
colors. The former may be neglected as it will only slightly
influence the total energy of fermions, and the latter mixing
of colored fermions is just the mechanism that provides the
ground state of the quark system with a nonvanishing color
charge.
IV. CSC-CFM PHASE TRANSITION

In electrodynamics, Cooper pairs can be produced only
in the region, where there is no magnetic field, as the
charged condensate forces the magnetic field outside the
sample of a superconducting metal due to the Meissner
effect. In the non-Abelian case the situation is somewhat
different. For instance, in the theory with the SU�2�c group,
quarks in the fundamental representation form a doublet qi
(i � 1; 2), and the diquark condensate has the structure like
h"ijqiqji, which is a scalar in the color space. Hence, no
contradiction between possible superconducting state cre-
ation and the presence of a chromomagnetic field arises
[55]. In the real QCD case with the SU�3�c group, the
condensate has the form h�	��q�q�i, where �;�; 	 �
1; 2; 3, and it is no more color neutral. This condensate
expels the part of the color field, which might interact with
it. In the group space, a neutral chromomagnetic field can
be written in the form of a superposition of commuting
generators �3 and �8, i.e., F12 � B1�3 � B2�8. Therefore,
for instance, the field F12 � �3 can in principle coexist
only with the condensate of the form h�3��q�q�i.

The SU�3�c group has a maximal Abelian subgroup
U�1� �U�1�. In each of the subgroups U�1� either color
ferromagnetism or superconductivity is possible. In the
present publication, we consider the SU�2�c gauge group.
However, having in mind possible generalization for the
SU�3�c group, we shall consider the situation, when color
ferromagnetic and superconducting phases can exist only
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separately, and a phase transition can take place between
them.

First consider the case of zero temperature T � 0. In
order to consider which of two phases, color ferromagnetic
or supeconducting, is preferable, one should compare the
energies of these two phases. The ferromagnetic phase is
described by a constant chromomagnetic field F3

12 �
�F3

21 � const � B and the quark matter interacting with
this field. The thermodynamic potential of this system is
the sum of the chromomagnetic field energy B2=�8�� and
the total energy of quarks Eq that occupy the lowest
Landau levels in this field:

Eq � �qjT�0;��0 � �q0; (21)

where �qjT�0;��0 is determined by the corresponding
limit of formula (18) (the first term in square brackets
and � � 0 in the exponent). The contribution of gluon
quantum fluctuations around the chromomagnetic field can
be neglected assuming the value of the coupling constant is
small, g2=�4�� � 1, in the limit of larger quark density.

In our model, the chromomagnetic field strength B and
its extension L3 (the dimension of the domain along the
chromomagnetic field direction) are related by the inequal-
ity (8) that determines the stability condition and defines
the maximum possible chromomagnetic field strength B0

(9). We will make a numerical analysis of the thermody-
namic potential of quarks and, hence, it is natural to
introduce dimensionless variables �; x, and h�x; �� in place
of the chromomagnetic field B, fermion density � � N=L3

and thermodynamic potential �q0

� � B=B0�� 2 �0; 1��; x � �=�gB0�
3=2;

h�x; �� � �q0=�2g2B2
0�:

(22)

In the absence of a chromomagnetic field the total
thermodynamic potential of fermions is equal to

�q0jB�0 � 2�gB0�
2h�x; 0�: (23)

When a chromomagnetic field is generated in the system,
B � �B0 � 0, the dimensionless energy of quarks be-
comes equal to h�x; ��, and the energy of the field itself
also should be added. Then the total thermodynamic po-
tential becomes

�tot � �q0 �
B2

8�
� B2

0

�
2g2h

�
�

�gB0�
3=2
; �
�
�
�2

8�

�
:

(24)

Generation of the chromomagnetic field changes the ther-
modynamic potential of the system by the amount
-5
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FIG. 1. Total change of the dimensionless energy of the
whole system as a function of the dimensionless chromomag-
netic field �.
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�E

L3B2
0

�
��

B2
0

�
�2

8�
� 2g2

�
h
�

�

�gB0�
3=2
; �
�
� h

�
�

�gB0�
3=2
; 0
��
:

(25)

In the model we have chosen, the chromomagnetic field B
is a variable parameter and is determined by the quantity �,
while B0 and � are assumed to be prescribed quantities. In
this case, � will ’’adjust’’ itself in the interval �0; 1� with
the other parameters being fixed such that the total energy
of the system takes a minimum value, �tot ! �min. Upon
optimization with respect to �, the dimensionless energy
gain due to color ferromagnetism becomes a function only
of the dimensionless fermion density x:

�e�x�Ferr �
��min

B2
0

� min�

�
�2

8�
� 2g2�h�x; �� � h�x; 0��
: (26)

The possible generation of a chromomagnetic field and a
corresponding ferromagnetic phase is in competition with
the possible creation of a color superconducting phase in
the absence of a chromomagnetic field. The system choo-
ses the phase with the lowest energy. The energy gain due
to creation of a diquark condensate � � 0 can be obtained
from equation [(16)] and is equal to [56]

��CSC � �
�2�2

�2 : (27)

Now, to decide which of the phases is preferable, one
should compare the energy gains due to production of a
color ferromagnetic state ��min and the superconducting
state ��CSC. For convenience, we introduce dimension-
less quantities

�eFerr �
��Ferr

B2
0

� �eFerr

�
�3

6�2�gB0�
3=2

�
;

�eCSC �
��CSC

B2
0

� �

�
�

�B0

�
2
�2;

(28)

and compare them with the help of numerical calculations.
First, the dimensionless energy gain �h�x; �� �

h�x; �� � h�x; 0� was calculated as a function of the di-
mensionless fermion density x at fixed �. It was demon-
strated that this difference is always negative, and this
indicates that the fermion energy is lowered when the field
gets nonvanishing values. Moreover the fermion energy
oscillates with growing density. The reason for this is that
Landau levels are filled one by one with a growing number
of fermions. One may expect that at high enough tempera-
ture these oscillations should vanish.

Moreover, �h�x; �� as a function of a dimensionless
chromomagnetic field � at fixed fermion density was
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also calculated. It was demonstrated that the stronger the
field the lower is the energy of fermions until all fermions
turn out to be on the lowest Landau level. When the
fermion density is high enough, this value of � is far above
the interval �0; 1�.

In Fig. 1, the total variation of the dimensionless energy
of the whole system as a function of the dimensionless
chromomagnetic field � is depicted. At zero fermion den-
sity x � 0, the appearance of a nonzero field is not favor-
able and the dependence is parabolic. At finite fermion
densities, the growth of the chromomagnetic field is favor-
able at first, but when all the fermions are on the lowest
Landau level, the energy begins to grow as �2. For higher
fermion density, this saturation occurs when�> 1, i.e., the
system prefers the favorable value of � close to 1 (due to
oscillations, not necessarily � � 1 ).

In Fig. 2, the dimensionless energy gains in color ferro-
magnetic (with an optimal value of � is chosen) and super-
conducting phases are depicted as functions of the
chemical potential �. The choice of the phase by the
system is determined by the condition that the energy
should take its minimum value in this phase.

The consideration of the phase transition in the system
leads to the conclusion that with large enough values of �,
the superconducting phase is preferable. With lowering �,
the ferromagnetic phase can become more preferable, and
a phase transition takes place. However, one may see in the
figure that the energy gain corresponding to the ferromag-
netic phase is an oscillating function of �, and hence the
picture of phase transitions is somewhat more complicated.
With further decrease of�, the superconducting phase may
-6
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FIG. 3. Dimensionless thermodynamic potential gain �! as a
function of � at zero and finite (sufficiently high) temperatures.
The quantity 
 is given by Eq. (30).
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FIG. 2. Dimensionless energy gain in a ferromagnetic phase
(after a choice of an optimal value of � has been done) and in a
superconducting phase as a function of the chemical potential �.
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return, then again the ferromagnetic phase occurs, and this
may repeat several times.

V. PHASE TRANSITION AT FINITE
TEMPERATURE

To describe the system at finite temperature, we should
use the formulas for the thermodynamic potential of fer-
mions �q��;�; T; B0�, presented in Sec. II. Restricting our
consideration only to the main contribution of the ’’classi-
cal ’’ chromomagnetic field B2=�8��, and neglecting small
quantum fluctuations of the gluon field around it, we con-
sider the contribution of fermions, defined by (17) and (18),
where we have to put � � 0 and hence use the formula

�q � �T
X
k;i

ln
�

1� exp
�
�� "k;i

T

��
: (29)

It should be mentioned that unlike the case of zero tem-
perature, at finite temperature the chemical potential �
becomes an independent variable and is no more equal to
the Fermi energy.

As it was done in the case of zero temperature, we
employ dimensionless variables and quantities, and more-
over define a dimensionless temperature


 �
T���������
gB0

p : (30)

Since
���������
gB0

p
� 102 MeV, we have for the temperature T �

108 eV� 1012K.
Now in the case of finite temperature, we also use a

numerical calculation method, which gives only approxi-
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mate results, as we have to deal with an infinite series over
the fermion energy levels. The results are shown in Figs. 3
and 4.

In Fig. 3, the dimensionless ferromagnetic gain of the
total thermodynamic potential, minimized with respect to
the dimensionless chromomagnetic field � � B=B0, is
depicted:

�!��; 
� � min�

�
�2

8�
�

1

B2
0

��q��;�; T; B0�

��q�0; �; T; B0��

�
: (31)

Our calculations demonstrate that, with growing tempera-
ture, oscillations in the plot of! as a function of� become
less evident and, as it is seen in the figure, in the limit of
high temperature, they practically disappear. Another in-
teresting observation is that even at zero chemical potential
the appearance of a finite chromomagnetic field is prefer-
able. This is due to the fact that at nonvanishing tempera-
ture, fermions exist with finite density even at � � 0, and
the appearance of a chromomagnetic field leads to a finite
energy gain.

Figure 4 shows that with growing temperature and at
fixed �, the thermodynamic potential gain �! tends to a
constant value. It is seen that the higher the chemical
potential, the lower temperature 
��� is needed for stabi-
lization of �! to take place. At low values of the chemical
potential, �! decreases with growing temperature and it is
stabilized at high enough temperature. These facts can be
explained in the following way. The discrete character of
the Landau levels is responsible for the nonmonotonic
-7
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D. EBERT, V. CH. ZHUKOVSKY, AND O. V. TARASOV PHYSICAL REVIEW D 72, 096007 (2005)
behavior of �!���. This situation does not change while
the temperature remains considerably lower than the dis-
tance between levels in the vicinity of the Fermi surface. It
is clear that with growing �, the energy levels become
distributed with greater density and hence, lower tempera-
ture is needed in order to smooth away oscillations.

VI. CONCLUSIONS

In the present paper we investigated further the gauge
field model with a constant chromomagnetic field, i.e., the
ferromagnetic state. We demonstrated that the method,
proposed in [35], of finding a stabilized solution for this
configuration, is valid only if a physically justified condi-
tion is fulfilled, i.e., the chromomagnetic field exists inside
certain domains with finite dimensions. This implies that
there is a maximum value of the chromomagnetic field
inside the domain determined by the finite spatial exten-
sion of the region occupied by the field in the direction of
the field.
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The main object of our paper was to study the fermion
sector of the model, and, in particular, to consider transi-
tions between a color superconducting phase and a possible
ferromagnetic phase from the point of view of comparing
the energy gain in these phases. Our observations can be
summarized as follows. At comparatively low densities of
the baryon matter, quarks are confined and exist only in
colorless combinations. With growing chemical potential
baryons approach each other to such close distances that
quarks become free particles. At sufficiently high density,
the color superconducting phase can be formed. However,
for ’’intermediate’’ values of the chemical potential, a
ferromagnetic phase may emerge. There can be a phase
transition between these two phases depending on which
phase has larger energy gain. At zero or comparatively low
temperatures a nontrivial phase structure can be formed,
and this is due to a nonmonotonic dependence of the
energy gain of fermions in the chromomagnetic field on
their density. With growing chemical potential, a ferro-
magnetic state can prove to be favorable, then it is changed
by a superconducting state, and then again ferromagnetic,
and only for high enough chemical potentials, the super-
conducting state becomes always dominating.

At sufficiently high temperatures (�
���������
gB0

p
), the phase

structure is simplified. The fermion energy gain is no more
dependent on temperature and becomes a monotonic func-
tion of �. For low � the ferromagnetic phase becomes
more favorable, and for large enough �, the superconduct-
ing phase, there being only one transition point between
them. In the temperature scale, stabilization occurs at T >
T���, where T��� is the minimal temperature needed to
smooth out oscillations of the thermodynamic potential �
that appear due to the discrete character of the fermion
spectrum in the chromomagnetic field. Theoretical reason-
ing and computer calculations demonstrate that the func-
tion T��� should be decreasing.

Further investigations will help to describe more clearly
the mechanism of formation of the chromomagnetic do-
mains and to consider the boundary conditions in a more
sophisticated manner. Moreover, in order to produce a
more realistic picture of the process of the ferromagnetic
phase formation, quantum fluctuations around the ’’true
vacuum ’’ state should be taken into account. Estimates
showed that at a chemical potential sufficiently high for the
ferromagnetic state to be formed, interactions between
quarks are in no way week and also should be considered
for. Certain changes to the picture of the process may
further be given by the interaction of quarks with the
charged boson condensate, and this also should be consid-
ered. Finally, one should also understand that in the case of
the SU�3�c gauge group, there can be states with a color
ferromagnetism in oneU�1� subgroup, and the color super-
conductivity in the other U�1� subgroup of the maximal
Abelian subgroup U�1� �U�1�. These problems are to be
considered in further investigations.
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