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BCS-BEC crossover in a relativistic superfluid and its significance to quark matter
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The character change of a superfluid state due to the variation of the attractive force is investigated in
the relativistic framework with a massive fermion. Two crossovers are found. One is a crossover from the
usual BCS state to the Bose-Einstein condensation (BEC) of bound fermion pairs. The other is from the
BEC to the relativistic Bose-Einstein condensation (RBEC) of nearly massless bound pairs where
antiparticles as well as particles dominate the thermodynamics. Possible realization of the BEC and
RBEC states in the quark matter is also pointed out.
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Recently, new superfluid states in the ultracold gas of
fermionic alkali atoms �40K;6 Li� were realized [1]. Using
the Feshbach resonance, the long-standing idea of the
crossover from the BCS state to the Bose-Einstein con-
densation (BEC) [2–4] has been extensively examined.
The basic concept of the BCS-BEC crossover is as follows:
As long as the attractive interaction between fermions is
weak, the system exhibits the superfluidity characterized
by the energy gap in the BCS mechanism. On the other
hand, if the attractive interaction is strong enough, the
fermions first form bound molecules (bosons). Then they
start to condense into the bosonic zero-mode at some
critical temperature. These two situations are smoothly
connected without the phase transition.

The possible realization of the BCS-BEC crossover in
various systems has been theoretically investigated. These
include the liquid 3He [3], the trapped alkali atoms [5], and
the nuclear matter [6]. One of the most striking features of
the crossover is that the critical temperature in the BEC
region is independent of the coupling for the attraction
between fermions. This is because the increase of the
coupling only affects the internal structure of the bosons,
while the critical temperature is determined by the boson’s
kinetic energy. Thus, the critical temperature reaches a
ceiling for the large coupling as long as the binding effect
on the boson mass can be neglected. Even in the nuclear
matter where the interaction is relatively strong, the bind-
ing energy of the deuteron is much smaller than the nu-
cleon mass. This fact allows us to work within a
nonrelativistic framework for describing such a crossover.

It is interesting to ask how the situation changes in
relativistic systems where the binding effect can not be
neglected. The color superconducting phase in the dense
quark matter [7,8] and the pion superfluid phase at finite
isospin density [9] would be examples. In this article, we
will show that there could be two crossovers in the rela-
tivistic superfluids. One is the ordinary BCS-BEC cross-
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over, where the critical temperature in the BEC region
would not plateau because of the relativistic effect. The
other is from the BEC state to the novel state, the relativ-
istic BEC (RBEC), where the critical temperature increases
to the order of the Fermi energy.

In order to explore the BCS-BEC and BEC-RBEC cross-
overs in the relativistic system, we start with the following
contact four-Fermi interaction model:

L� ; � � � � �i@6 �m� �0�� 

�G�i y�5C 
�� 	 �i T�5C �: (1)

Here  �  �t;x� is a Dirac fermion field having a spinor
index implicitly. The fermion mass and chemical potential
are denoted by m and �. C � i�0�2 is the charge con-
jugation matrix and G is a coupling constant for the attrac-
tion in the JP � 0� channel. Qualitative results shown
below are not modified even when fermions have internal
degrees of freedom other than spin. Therefore, we will
make our analysis without them for simplicity.

The partition function can be written as

Z �
Z

D D � exp
�
�
Z 1=T

0
d�

Z
dxLE� ; � �

�
; (2)

where LE is the Lagrangian density in the Euclidean space.
Introducing Hubbard-Stratonovich fields ���;x� for
i T�5C and ����;x� for i y�5C � and integrating out
the fermion fields lead to

Z � Z0

Z
D�D�� exp��Seff��;����: (3)

Here Z0 � e���0��;T� is the free fermion part of the parti-
tion function, while Seff��;�

�� is the effective action for
the bosonic fields. In order to include the effect of the
fluctuation, we evaluate the functional integral in the
Gaussian approximation, whose validity will be discussed
later. Expansion of the effective action up to the second
order in � results in
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where ~��i!n;p� is the momentum representation of the
pair field with!n � 2�nT being the Matsubara frequency.
��i!n;p� is a pair susceptibility at the one loop level [10].
The critical temperature for the superfluidity, Tc, is given
by the solution of the equation:

1

G
� ��0; 0�jT�Tc

� 0: (5)

This is nothing but the Thouless criterion which states that
the pair fluctuation becomes tachyonic at low momentum
because of 1=G� ��0; 0�jT<Tc

< 0. This is the signal of
the BCS instability to the formation of Cooper pairs.

The integration over �;�� in Eq. (3) leads to the ther-
modynamic potential in the Gaussian approximation:
���; T� � �0��; T� ��fluc��; T� with

�fluc��; T� � T
X
n

Z dp
�2��3

log
�

1

G
� ��i!n;p�

�
: (6)

Following Nozières and Schmitt-Rink [4], �fluc can be
written in terms of a phase shift ��!;p� defined by
��!;p� � � arg�1=G� ��!� i0;p��. By differentiating
the thermodynamic potential with �, we obtain the fer-
mion number density as follows:

Ntotal � 2
Z dp
�2��3

ffF�Ep ��� � fF�Ep ���g

�
Z dp
�2��3

Z 1
�1

d!
�
fB�!�

@�
@�
�!;p�; (7)

with fF�!� � 1=�exp�!=T� � 1� being the Fermi distribu-
tion function and fB�!� � sign�!�=�exp�j!j=T� � 1�
being the Bose distribution function.1 The first term which
we denote by NMF � NF � N �F represents the contribution
of fermions and antifermions at the mean field level and the
second one which we denote by Nfluc represents the con-
tribution of pair fluctuations. Instead of Ntotal, we will
sometimes use the Fermi momentum pF, which is defined
by Ntotal � p3

F=3�2.
If the attraction is strong enough, bound states appear

and we can extract the bound boson (antiboson) contribu-
tion NB �N �B� from Nfluc [4,5]. By picking up the bound
state poles in @��!;p�=@� in the !-integral of Eq. (7), we
obtain

NB �
Z dp
�2��3

�
2�

@!B�p�
@�

�
fB�!B�p� � 2�� (8)

and
1We use this Bose distribution function so that the thermody-
namic potential is symmetric under �! ��.
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�
fB�! �B�p� � 2��: (9)

Here, !B�p� and �! �B�p� are the solutions of 1=G�
��!� 2�;p� � 0 and correspond to the energy of the
boson and the antiboson, respectively. Then the remaining
part Nunstable � Nfluc � �NB � N �B� can be interpreted as
the contribution of unstable off-shell bosons.

In numerical calculations, a momentum cutoff � is
introduced in order to regularize the ultraviolet divergence
and all the dimensionful quantities are scaled by �. We
take a characteristic parameter set (m=� � 0:2 and
pF=� � 0:1) so that we can analyze the effect of relativity.
We confirmed that the variation of pF does not change our
qualitative arguments below. Also, how the variation of m
affects our results will be discussed later. Figures 1(a) and
1(b) show numerical results of the critical temperature Tc

and the chemical potential � as functions of G with the
total number density Ntotal fixed, which are obtained by
solving Eqs. (5) and (7) simultaneously. The ratios of the
fermion and stable boson densities to Ntotal at T � Tc are
also plotted in Fig. 1(c). Based on these three figures, we
will argue that there are three physically distinct regions;
the weak, intermediate, and strong coupling regions. The
superfluid states realized in the three regions will be inter-
preted as the BCS, BEC, and relativistic BEC phases,
respectively.

In the weak coupling region G=G0 & 0:86, Tc increases
exponentially as is well-known in the weak coupling BCS
theory. Its behavior is well described by the mean field
approximation (the left thin solid line in Fig. 1(a)). �
in this region is almost equal to the Fermi energy

EF �
������������������
m2 � p2

F

q
. Accordingly, the fermion density NF

dominates the total density. From these facts, the superfluid
state realized in this region can be regarded as the BCS
state.

In the intermediate coupling region 0:86 & G=G0 &

1:07, Tc increases much slowly and � decreases mon-
otonously. Once � becomes smaller than m, stable
bosons with the mass MB�Tc� � 2� appear and they
dominate the total density.2 The critical temperature for
the ideal Bose gas is approximately given by

TNR
BEC �

2�
MB

�
NB

2��3=2�

�
2=3
: (10)

This nonrelativistic formula for the BEC critical tempera-
ture with the boson massMB�Tc� � 2� is examined by the
dotted line in Fig. 1(a), which well approximates Tc in the
intermediate coupling region. Therefore, we can interpret
the superfluid state realized in this region is in the BEC
phase. The slowly increasing Tc in the BEC phase is in
2The apparent singularity in the stable boson density in
Fig. 1(c) does not mean a phase transition. The total boson
density Nfluc is a smooth and positive function of the coupling.
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FIG. 1. (a) Critical temperature Tc normalized by the Fermi

energy EF �
������������������
m2 � p2

F

q
(thick solid line) as a function of the

coupling G=G0. G0 is defined by G0 � �2=�2. For other lines,
see the text. (b) Chemical potential �=EF as a function of the
coupling G=G0. The dashed line represents the level where � �
m; m=EF ’ 0:89 in the present case. The dotted line corresponds
to one half of the bound boson’s mass in the vacuum. (c) The
ratios of NF; N �F; NB and N �B to the fixed Ntotal as functions of
G=G0. NMF=Ntotal and Nfluc=Ntotal are also plotted. The line for
NMF is behind that for NF for G=G0 & 1:07 because of the
absence of antifermions.
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contrast to the result of the nonrelativistic calculation
where the critical temperature approaches to a constant
value [11]. In the nonrelativistic framework, the change of
the boson mass due to the binding can be neglected by
definition. Thus, the critical temperature in the BEC phase
096004
is given by TNR
BEC with MB � 2m, which is indicated by the

arrow in Fig. 1(a), and is independent of the coupling. In
our relativistic framework, however, the boson mass
MB�Tc� � 2� can become smaller, and consequently, Tc

becomes larger as one increases the coupling.
We remark that the criterion for the BEC state,�<m, is

model independent. At T � Tc of the BEC, the chemical
potential for the boson �B � 2� should be equal to its
mass MB. On the other hand, MB must be less than 2m for
the binding. Therefore, we have �<m in the BEC region.

Let us discuss the strong coupling region G=G0 * 1:07,
where Tc rapidly increases and the nonrelativistic formula
for the BEC critical temperature breaks down. Because �
is smaller than Tc in this region, antiparticles can be easily
excited. As is shown in Fig. 1(c), the antifermion and
antiboson densities �N �F; N �B� grow rapidly. At the same
time, the fermion and stable boson densities �NF; NB� in-
crease so that the total number density is unchanged. Tc in
this region can be approximated by the ideal BEC critical
temperature in the relativistic limit:

TRL
BEC �

�������������������������
3�NB � NB�

2MB

s
(11)

[12]. We note this approximate formula slightly deviates
from Tc particularly in the large coupling region. This is
because a large number of fermions are accompanied there,
which is favorable in terms of entropy. We refer to the
boson condensed phase with antiparticles in the strong
coupling region as the relativistic BEC (RBEC) phase.

We can also understand the rapid increase of Tc in terms
of the decreasing mean interparticle distance �dp. Let us
estimate the critical temperature in the RBEC phase by
comparing the thermal de Broglie wavelength �=�

���
3
p
T� to

�dp. We estimate �dp by N�1=3
F since fermions give a domi-

nant contribution to the density in the strong coupling
region. Thus, we have T 
 �N1=3

F =
���
3
p

, which agrees with
Tc well (see the right thin solid line in Fig. 1(a)).

An essential difference between the BCS and (R)BEC
phases is that the stable bosons are present above Tc in the
(R)BEC region. As the temperature is increased, the bind-
ing energy of the stable boson decreases. The bound state
pole eventually disappears at a certain temperature, which
we call a dissociation temperature Tdiss. Tdiss as a function
of the coupling is shown in Fig. 1(a) by the dashed line.
Tdiss line appears from the point G=G0 ’ 0:92 where the
fermion pairs start to form the bound bosons. They get
bound deeper with the increasing coupling, and as a con-
sequence, Tdiss increases monotonically. Tdiss line separates
the normal phase into two regions; a normal phase without
stable bosons for T > Tdiss, and a preformed boson phase
with stable bosons for Tc < T < Tdiss. The preformed bo-
son phase in the intermediate and strong coupling regions
may provide us with new insight into the precursory phe-
nomenon above Tc [10].
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We have discussed the character change of the superfluid
state with a specific set ofm and pF. Let us now discuss the
m-dependence of the crossover boundaries with keeping
pF fixed. The crossover boundary from the BCS to the BEC
is characterized by the point where the bound states are
formed in the medium. On the other hand, the crossover
boundary from the BEC to the RBEC is characterized by
the point where the boson mass 2� becomes smaller than
Tc. These two points are well approximated by the cou-
pling G1 where the boson is formed and G2 where it
becomes massless in the vacuum with � � T � 0 (see
the dotted line in Fig. 1(b) which is indistinguishable
from the solid line). We can show that G1�2� increases
(decreases) as decreasing the fermion mass m. It means
that it becomes hard to bind two fermions due to the larger
kinetic energy for a smaller m, while less attraction will be
needed to cancel 2m by the binding. Accordingly, the BEC
region shrinks with decreasing m, while the RBEC domi-
nates the larger region in the coupling space. In the ultra-
relativistic limit m! 0, the BEC region will disappear
because fermions could no longer be bound. Even in this
case, we still have a superfluid phase with 2�< Tc for the
large coupling which is smoothly connected with the
RBEC phase at m> 0.

In summary, we have discussed two crossovers in the
relativistic four-Fermi model with the massive fermion:
One is the crossover from the usual BCS to the BEC of
bound fermion pairs and the other is that from the BEC to
the RBEC of nearly massless bound pairs. In order to avoid
the cutoff artifacts, we have checked each of NF; NB; N �F

andN �B does not exceed ��=2��3 within the coupling range
shown here.

Since we have employed the Gaussian approximation
which corresponds to the resummation of ring diagrams
into the thermodynamic potential, all the interactions
among bosons are neglected in our analysis. However, it
is shown in the nonrelativistic framework that the 2-body
interaction between bosons becomes smaller with increas-
ing the attraction between fermions [11]. The multibody
scatterings among bosons are also negligible in a dilute
gas. Thus, our approximation is valid except for the vicin-
ity of the BCS-BEC crossover boundary and the very dense
RBEC limit. Going beyond the Gaussian approximation so
as to take into account the interactions among bosons in
our relativistic framework is an important future issue.
Other approaches to the BCS-BEC crossover also may be
useful [13].

Finally, we make some speculative remarks on the rele-
vance of the phases discussed above to QCD. The BCS-
BEC crossover, which takes place for �� T, may be
realized in the cold dense quark matter [8]. The fermion
096004
mass m in Eq. (1) in this case should be interpreted as the
current or dynamical quark masses. Also, it is an interest-
ing future problem to generalize our model by taking into

account the plasmino mass mpl 
 g
������������������������
�2 � �2T2

p
with g

being the QCD coupling constant. The plasmino mass can
play a role of the chiral invariant mass constituting the
boson mass. Further study with the plasmino effective
action [14] will give us more insight into the realistic
BCS-BEC crossover in the quark matter. In fact, the BEC
criterion �<mpl leads to g * 1 for �� T, which corre-
sponds to the density relevant to the center of compact
stars.

The BEC-RBEC crossover, which takes place for T �
�
 0, will be relevant to the quark-gluon plasma just
above the deconfinement transition. Possibility of having
not only q �q bound states [15] but also qq bound states [16]
in the deconfined phase has close relevance to the bound
bosons in the RBEC state in this article. The plasmino mass
mpl 
 gT again will play a crucial role to have bound
bosons in the realistic situation.

The above discussions suggest that there is a band of
superfluid phases (BCS-BEC-RBEC) between the had-
ronic phase and the quark-gluon plasma phase in the
QCD phase diagram. Also, the preformed boson phase
may exist between the (R)BEC phase and the quark-gluon
plasma phase. The transport properties in these phases are
also of great interest. In the nonrelativistic framework, it is
shown that the pair fluctuation is dissipative in the BCS
region, while it propagates without viscous damping in the
BEC region [11]. The detailed analysis including all the
relevant hydrodynamic modes may provide a picture for
almost the perfect fluid aspect of quark-gluon plasma.

The generalization of our work so as to allow for the q �q
condensation will be essential to see the realization of the
BEC and RBEC states in QCD. It is known that the one-
gluon exchange generates the attraction in the scalar q �q
channel whose strength is 2 times larger than that in the qq
channel. Even though the qq condensation still has a kine-
matic advantage due to the existence of the Fermi surface,
the dominant q �q attraction may wash out the (R)BEC
phase leading to the large q �q condensation. Whether the
(R)BEC phase survives in the QCD phase diagram should
be settled after taking into account the possibility of the q �q
condensation in our analysis.

The authors would like to thank T. Hatsuda for discus-
sions, comments and reading manuscript. Y. N. is sup-
ported by the Japan Society for the Promotion of Science
for Young Scientists. H. A. is supported by the 21COE
program ‘‘Center for Diversity and Universality in
Physics’’ at Kyoto University.
-4



BCS-BEC CROSSOVER IN A RELATIVISTIC SUPERFLUID. . . PHYSICAL REVIEW D 72, 096004 (2005)
[1] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004); M. Bartenstein et al., Phys. Rev. Lett. 92,
120401 (2004); M. W. Zwierlein et al., Phys. Rev. Lett. 92,
120403 (2004).

[2] D. M. Eagles, Phys. Rev. 186, 456 (1969).
[3] A. J. Leggett, J. Phys. C 41, 7 (1980).
[4] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59,

195 (1985).
[5] Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402

(2002); Phys. Rev. A 67, 033603 (2003).
[6] H. Stein et al., Z. Phys. A 351, 295 (1995).
[7] For reviews, see K. Rajagopal and F. Wilczek, hep-ph/

0011333; M. G. Alford, Annu. Rev. Nucl. Part. Sci. 51,
131 (2001).

[8] H. Abuki, T. Hatsuda, and K. Itakura, Phys. Rev. D 65,
074014 (2002); K. Itakura, Nucl. Phys. A 715, 859 (2003).

[9] D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 86, 592
(2001); Phys. At. Nucl. 64, 834 (2001).

[10] M. Kitazawa et al., Phys. Rev. D 65, 091504(R) (2002);
096004
Phys. Rev. D 70, 056003 (2004).
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