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We study the renormalization group evolution of the Higgs quartic coupling �H . The one loop equation
for �H is nonlinear and it is of the Riccati type which we analytically and numerically solve in the energy
range �mt; EGU� where mt is the mass of the top quark and EGU � 1014 GeV. We find that depending on
the value of �H�mt� the solution for �H�E� may have a singularity or a zero and become negative in the
former energy range so the ultraviolet cutoff of the standard model should be below or equal to the energy
where the zero or singularity of �H occurs. We then numerically solve the two loop renormalization group
equation for �H and compare it with the one loop solution. We find that the two loop running of �H is very
sensitive to the evolution of the top quark Yukawa coupling Yt. This implies a strong dependence on the
top quark mass mt and suggests that the choice of mt as the renormalization point, that we use, reduces
theoretical errors. We find that in the approximation of one loop for 0:397 � �H�mt� � 0:618 the standard
model is valid in the whole range �mt; EGU� while for two loops the bound is 0:368 � �H�mt� � 0:621.
From the properties of �H we then study the predictions for the Higgs mass. We use the effective potential
to derive the relation between the Higgs mass and �H and obtain that this relation is not very sensitive to
the particular choice of the effective potential but for the large Higgs masses the two loop corrections are
significant. We determine that the standard model is valid in the whole range �mt; EGU� for the Higgs
masses 153:5 � MH � 191:1 for one loop case and 148:5 � MH � 193:1 for two loops. The pattern of
the behavior of �H�E� for different values of �H�mt� indicates the existence of a phase transition in the
standard model for �H�mt� � 0:5 which corresponds to the value of the Higgs mass MH � mt.
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I. INTRODUCTION

The standard model (SM) provides a very precise de-
scription of all the present elementary particle data [1]. On
the other hand it has relatively many free parameters (�
19) what is rather unsatisfactory from the fundamental
point of view. The idea of grand unification (GU) [2] is
to look for additional symmetries in the SM at very high
energies. The most notable sign of the presence of GU is
the (approximate) convergence of the three gauge cou-
plings to one common value at the energies
1014–1015 GeV. This allows to substitute the gauge group
SU�3� � SU�2� �U�1� of the SM by only one group and
to reduce the number of gauge couplings to one.

The main tool of the GU models are the renormalization
group equations (RGE) [3] that relate various observables
(like couplings or masses) at different energies and also
allow the study of their asymptotic behavior.

In the perturbative quantum field theory the RGE are
differential equations for the observables which are ob-
tained from the condition that the S-matrix elements do not
depend on the renormalization scheme or renormalization
point. The right hand side of the RGE is an infinite series
expanded according to the number of loops. Most of the
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numerical and analytical results for the RGE [4] are to the
order of one loop only possibly with a partial inclusion of
two loops, while the RGE for most of the observables have
been given for the SM and its extensions up to two loops
[4–6].

The right hand side of the RGE is constructed from the
following terms:

g2
l ; yuy

y
u ; ydy

y
d ; yly

y
l ; y�y

y
�; �H; (1)

where the gl’s are the gauge couplings, yu, yd, yl, y�, are
the Yukawa couplings of the up and down quarks, charged
leptons and neutrinos, respectively, and �H is the Higgs
quartic coupling. The RGE form a set of nonlinear coupled
differential equations and even at the one loop order there
exist only approximate or numerical solutions [4,7].

The one loop RGE for the best measured observables
gl’s, quark and lepton Yukawa couplings and the Cabibbo-
Kobayashi-Maskawa (CKM) matrix are independent of the
Higgs quartic coupling. This allows one to derive the
running of those observables at the lowest order without
the knowledge of the �H: On the other hand, at the two
loops level, the quartic coupling �H appears in the RGE for
many observables like the quark masses or the CKM
matrix and it has an important influence on their behavior
and therefore cannot be neglected.

The one loop equation for �H is also nonlinear and has
been used to obtain the limits on the Higgs mass from the
-1 © 2005 The American Physical Society
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triviality condition of the ��4 theory and the existence of
the Landau pole. This equation has been also considered in
Refs. [8–10] to study the dependence of the Higgs mass
and the UV cutoff on the energy and it was solved for the
simplified case when the gauge couplings and the top quark
Yukawa coupling are constant.

In this paper we study the one and two loop equation for
�H without any simplifying assumptions in the energy
range, starting at the top quark mass mt. We find that the
one loop equation is of the Riccati type and we solve this
equation explicitly. We find that for the values of �H at the
top quark mass, �H�mt� 	 0:618, the function �H�E� has a
Landau singularity. For the values of �H�mt� � 0:397 there
is no Landau pole below the energies EGU and the solution
�H�E� passes through zero and then becomes negative.
This means that for the latter values of �H�mt� the theory
becomes unstable and the UV cutoff should appear below
the energy value corresponding to the zero of �H�E�. As is
well known the coupling �H is related to the Higgs mass,
so our results are also presented in terms of the Higgs mass.

To estimate the precision of the one loop RGEs we
numerically analyze the two loop equations for all the
observables. We find that the inclusion of two loops has
the most significant influence on the top Yukawa coupling
Yt and on the Higgs quartic coupling �H.

We present the range of validity of the standard model as
a function of the Higgs quartic coupling �H and the physi-
cal Higgs mass MH. We find that the standard model is
valid up to the energy of the grand unification for the
physical Higgs mass in the range 148:5 GeV<MH <
193:1 GeV. The discovery of the Higgs mass in this range
would be a strong argument in favor of the idea of grand
unification at the energy �1014 GeV.

Finally we analyze the pattern of evolution of the Higgs
quartic coupling for the different initial values �H�mt�. We
find that there are two patterns of evolution: one for
�H�mt�< 0:5 and the other for �H�mt�> 0:5. These results
demonstrate that there is a sharp transition in the behavior
of the standard model at �H�mt� � 0:5 which corresponds
to the Higgs mass MH � mt. This may be an indication of
the phase transition in the standard model.
II. ONE AND TWO LOOP RENORMALIZATION
GROUP EQUATIONS

The two loop RGE are the following

dgl
dt
�

1

�4��2
blg3

l 

1

�4��4
Glg3

l ; l � 1; 2; 3; (2a)

dyu;d;e;�
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�
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d�H
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��1��H �

1
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�4��2
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1

�4��4
��2�
m2

�
; (2d)
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where t � ln�E=mt�, E is the energy, mt is the top quark
mass and the Higgs potential is m2�y�� ��H=2���y��2.
In Eqs. (2) bl’s are constant and Gl, �

�1�
u;d;e;�, ��2�u;d;e;�, ��1��H ,

��2��H , ��1�
m2 , ��2�

m2 are functions of the standard model cou-

plings and the squares of the Yukawa couplings H�1�u;d;e;� �
yu;d;e;�y

y
u;d;e;�, (for the definition of these functions and

constants see [4] or [7]).
In the previous papers [7], we have discussed a consis-

tent approximation scheme for the solution of the RGE that
was based on the expansion of the solutions in terms of the
powers of �, where � ’ 0:22 is the absolute value of the
jVusj element of the CKM matrix.

In such an approximation the lowest order RGE have the
following form [5,6,11]

dgl
dt
�

1

�4��2
blg

3
l ; (3a)
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dt
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u
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The constants bi and �’s in Eqs. (3) are equal

�b1; b2; b3� �

�
41

10
;


19

6
;
7

�
;

�u1�t� � 

�
17

20
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1 �
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4
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4
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2 � 8g2
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�
;

�d2 �
3

2
c; �d3 � 3a; �a; b; c� � �1; 1;
1�:

Equations (3a)–(3c) can be explicitly solved and the most
important results and properties of these solutions are [7]
(1) g
-2
l’s, yu and yd are all regular functions of energy in
the range �mt; EGU�.
(2) T
he running of the gauge couplings gl�t� is (t0 �
ln�E=mt�jE�mt

� 0)

�gl�t��
2 �

�gl�t0��2

1
 2
�4��2
�gl�t0��

2bl�t
 t0�
: (4)
(3) T
he running of the up quark Higgs couplings yu�t�
has the following property:
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Tr �yuy
y
u � � Y2

t �t� �
Y2
t �t0�r�t�

1

2��u2��

u
3 �

�4��2
Y2
t �t0�

R
t
t0
r���d�

(5)
where Yt is the largest eigenvalue of the up quark Higgs
coupling matrix yu and r�t� � exp��2=�4��2��R
t
t0
�u1���d�� �

Q3
k�1�g

2
k�t0�=g

2
k�t��

ck=bk , ck �
�17=20; 9=4; 8�. Using Eqs. (4) and (5) as input into
Eq. (3d) we obtain the uncoupled differential equation
for the quartic coupling constant �H.

Equation (3d) for �H has been considered earlier by
various authors [8–10] but in all these papers the effects
of the running of the gauge couplings and of Y2

t have not
been considered. The importance of �H for the evolution of
other observables comes from the fact that �H appears at
the two loops order in the RGE for yu and yd and at the one
loop order for mH.

III. ONE LOOP EQUATION FOR �H

The one loop equation for �H given in Eq. (3d) is
rewritten in the form

d�H
dt
� f0�t� � f1�t��H � f2�t��2

H; (6)

where the definition of the functions fi�t� can be deduced
from Eq. (3d). This equation is of the Riccati type [12]. The
behavior of the gauge coupling gl’s is given in Eq. (4) and
the explicit energy dependence of Tr�yuy

y
u � is given in

Eq. (5). As discussed before the gl’s and Tr�yuy
y
u �, as

functions of energy, have no singularities in the range
�mt; EGU�. On the other hand the solutions of the
Riccati’s equations can become singular even if the coef-
ficients of the equation are smooth and regular functions.

The solution of Eq. (6) is obtained by substituting the �H
by the following expression containing the auxiliary func-
tion W�t�:

�H�t� � 

1

f2�t�
W0�t�
W�t�

(7)

which fulfills the linear second order differential equation

W00 

�
f02�t�
f2�t�

� f1�t�
�
W0 � f0�t�f2�t�W � 0: (8)

Any solution of Eq. (8) generates the solutions of Eq. (6).
Equation (8) is of the Frobenius type [13] and the solution
W�t� is a regular function of energy t in the region where
the coefficients of Eq. (8) are regular. One can look for the
solutions of this equation in terms of an infinite series. We
look for the two solutions of this equation with the follow-
ing properties:

W1�t�jt0 � 1; W01�t�jt0 � 0;

W2�t�jt0 � 0; W02�t�jt0 � 1:
(9)
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The solution of (6) for �H in terms of the functions W1�t�
and W2�t� has the following form [note that f2�t� �
12=�4��2]

�H�t� � 

�4��2

12

W01�t� 

12
�4��2

�H�t0�W02�t�

W1�t� 

12
�4��2 �H�t0�W2�t�

: (10)

The most important property of the solution (10) is that the
singularities (simple poles) of the solution �H�t� are deter-
mined from the zeros of the denominator

W1�t� 

12

�4��2
�H�t0�W2�t� � 0 (11)

and the zeros of �H�t� are determined from the zeros of the
numerator

W01�t� 

12

�4��2
�H�t0�W02�t� � 0: (12)

Using Eqs. (11) and (12) one can precisely determine the
position of the singularities and zeros and their dependence
on the initial value of the Higgs quartic coupling �H�t0�.
The detailed discussion of the solutions is given in the next
section.

IV. RUNNING OF �H

A. One loop case

In this section we will discuss the explicit solutions of
Eqs. (3d) and (8). Let us start with Eq. (8). The form of the
functions
�f02�t�=f2�t� � f1�t�� and f0�t�f2�t� is too com-
plicated to be able to solve Eq. (8) explicitly. To find the
solution of this equation we use the fact that they are
smooth functions of energy so we approximate these two
functions in the energy range �mt; EGU� by the ratio of two
polynomials. These functions perfectly approximate both
coefficients in Eq. (8) in the whole energy range and this
allows to find the solution of Eq. (8) in terms of a power
series of the variable t [14]. In Fig. 1 we show the depen-
dence on the energy of the two solutions of Eq. (8) and
their derivatives [15]. As expected they are smooth func-
tions of t.

From Eq. (10) we find now the dependence of �H�t� on
the energy t and important properties of its behavior. It is
the most interesting to investigate how �H�t� depends on
the initial values of �H�t0� and to find out the range of
validity of the SM. As discussed earlier, for the SM to be
valid �H�t� must be positive and cannot be singular. Since
�H�t0�> 0, it means that the SM is valid for energies
between mt and the zero or singularity of �H�t� which
can be determined from Eqs. (11) and (12).

Let us first consider the singularity (a simple pole) of
�H�t�. For this purpose we plot in Fig. 2 the ratio of the two
solutions �12=�4��2�W2�t�=W1�t� from which we can de-
termine the value of t for which the pole occurs depending
on the value of �H�t0�. If we impose the condition that
�H�t� is regular in the whole range of the energies
-3
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FIG. 1. The solutions of Eq. (8) and their derivatives with initial conditions defined in Eq. (9).
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�mt; EGU� then the value of 1=�H�t0� should lie above the
curve in Fig. 2 what gives the following condition:

�H�mt� � 0:618: (13)

For the SM to be valid the quartic coupling �H�t� should
not become negative. We use Eq. (12) to find the first zero
of �H�t�. In Fig. 3 we have plotted ��4��2=12�W01�t�=W

0
2�t�

which determines at which energy in t occurs the first zero
of �H�t� depending on the value of �H�t0�. Now from the
condition that �H�t� should not have zeros in the whole
range of the energies �mt; EGU� we obtain

�H�mt� 	 0:397: (14)
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FIG. 2. The ratio of the solutions �12=�4��2�W2�t�=W1�t� of
Eq. (8). This ratio determines the value of t at which 1=�H�t�
vanishes, i.e. �H�t� has a pole.
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We thus see that the consistency of the SM in the range of
the energies up to the grand unification energyEGU permits
a very narrow band on the admissible values of the �H�mt�:

0:397 � �H�mt� � 0:618: (15)
B. Two loop corrections and improvements

The results obtained so far were based on the one loop
equations. To analyze possible improvements we have
numerically analyzed the two loop RGE equations and
investigated the influence of the two loop corrections on
the behavior of the observables. The situation is the follow-
ing:
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(1) T
FIG. 4.
Yukaw
Fj2�=�F
he difference for the one and the two loop solu-
tions for the gauge couplings gl’s is small (less than
1% in the whole range �mt; EGU�). The two loop
corrections have more significant influence on the
square of the Yukawa coupling Y2

t and the relative
difference between the one and two loop solution is
of the order of 10% at the energy EGU. The com-
parison of the one and two loop running for these
observables is given in Fig. 4.
(2) T
he next important point is the condition imposed
on �H that follows from the consistency of the
standard model. Since the RGEs are known only
perturbatively so the values of the running masses
and the coupling constants have to be such that the
perturbation series is convergent. In the region
where �H increases and has a pole the following
criteria have been used [9] for the determination of
the point �p where the standard model becomes
invalid [the functions ��1��H and ��2��H are defined in
Eq. (2c)]:

�p is the point where���p�has a pole

�Landau pole�: (16a)
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j1 � Fj2�, where Fji is the value of the observable F calculated up
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loop case. An important question is how the con-
ditions in Eqs. (16) are related between them. We
have verified that the value of �p obtained from the
one loop condition Eq. (16a) lies below and is close
to the value of �p obtained from the two loop
condition Eq. (16c). It means that the physical
meaning of conditions given in Eqs. (16a) and
(16c) is very close and any condition of the two
can be equivalently used. We will thus use the
condition in Eq. (16a) in the one loop case and
Eq. (16c) in the two loop case.
From the condition that the energy has to be positive
definite we obtain that the SM is valid where �H is
positive. For the one loop case the value of �0 above
which the standard model is not valid is obtained
from the equation

�H��0� � 0: (17)

For the two loop the condition Eq. (17) is only
approximate and it becomes [16]

~�H��0� � 0 (18)

where ~�H�t� has corrections from the effective po-
tential Veff (see Sec. V)
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16�2

�
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�
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: (19)
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gauge couplings g1, g1, g3 and the square of the t-quark
(F � g1; g2; g3; Y2

t ) is given by the formula 2 
 �Fj1 

to i loops.
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(3) T
FIG. 5.
(�H�m
he one and the two loop solutions for �H differ
significantly. The most striking difference is that in
the two loop solutions for �H there is no singularity
(pole) [17]. Instead of the pole there is a big jump
and then the solution levels out at the value �H � 24
which is above the validity of the perturbative cal-
culations. For low values of �H�mt� the two loop
�H�t� falls off slower than the one loop solution. We
have studied the origin of the different behavior of
the one and the two loop �H and have found that the
two loop term in the equation for �H has very little
influence on �H except that it wipes out the singu-
larity. The position of the pole (or the jump) is
determined by the one loop term of the equation.
We have also found that the solution for �H is very
sensitive to the behavior of the running of the top
quark Yukawa coupling. A small difference in the
running of Y2

t �t� causes important changes in the
running of the one and two loop �H�t�. The function
�H�t� is not sensitive to small variations of the gauge
couplings gl’s. Summarizing, we can conclude that
to obtain the precise results for �H�t� one has to have
a very precise (two loops) knowledge of Y2

t . The
position of the pole (or jump) in �H�t� on the other
hand is not very sensitive to the two loop corrections
in Y2

t . The strong dependence of the quartic cou-
pling �H�t� on the top quark Yukawa coupling Y2

t �t�
is an important reason to use the mass of the top
quark as the renormalization point. The comparison
of the one and two loop renormalization group
evolution for various values of �H�mt� is given in
Fig. 5.
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As remarked earlier the two loop solution �H�t� does not
have a pole and we cannot apply the one loop criterion
[position of the pole, Eq. (16a)] to determine the validity of
the standard model. Instead we use the argument about the
validity of the perturbation expansion [condition 1,
Eq. (16b) and condition 2, Eq. (16c)]. From these condi-
tions and the requirement �H 	 0 we find that the SM is
valid in the whole range of energies �mt; EGU� for the
following values of �H�mt�

0:368 � �H�mt� � 0:603 �condition 1�; (20a)

0:368 � �H�mt� � 0:621 �condition 2�: (20b)

Comparing Eqs. (15) and (20) we see that the two loop
correction to the upper limit for �H�mt� is of the order of
1%. The two loop deviation of the lower limit is larger but
one has to note that the physical meaning of the lower limit
(obtained from the condition �H 	 0) for two loops is
rather obscure. We will discuss the two loop improved
condition and the limits for the Higgs mass in the next
section.

The results on the range of the validity of the SM
depending on the number of loops and the value of
�H�mt� are given in Fig. 6. On this figure it is shown how
the conditions following from the triviality and stability
depend on energy. The two lower curves follow from the
conditions �H�t� � 0 and ~�H�t� � 0. We see that these two
curves are parallel and close one to the other. The influence
of the two loop corrections is thus small and weakly
dependent on energy. The three upper curves follow from
the triviality condition of the standard model. The position
of the Landau pole and the two conditions �H��p� � 6 and
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FIG. 6. The plot of the energy Elim at which the SM breaks
down as the function of �H�mt�. The standard model is valid for
energies to the left of the value indicated by �H�mt�. The limits
are derived from the conditions: (a) �H�t� � 0, (b) ~�H�t� � 0, (c)
one loop pole position of �H�t�, (d) �H�t� � 6 and (e) �H�t� �
12. It is remarkable that the one loop condition (c) and the two
loop condition (e) give very close results.
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�H��p� � 12. It is surprising that the curves for the one
loop Landau pole and the two loop condition �H��p� � 12
almost coincide and the range of the validity of the SM for
both cases is almost identical. We will thus consider the
condition �H��p� � 6 to be too strong and will not include
it in further considerations.
V. RUNNING OF THE HIGGS MASS

The most important physical conclusions that follow
from the limits on the quartic coupling constant �H are
those for the physical Higgs mass. At the tree level, the
relation between the Higgs mass mH and �H is

m2
H � �Hv2 (21)

where v is the vacuum expectation value of the Higgs field,
v�MZ� � �

���
2
p
G��


1=2 � 246:2 GeV. Equation (21) is ob-
tained from the tree level Higgs potential [Ref. [5],
Eq. (13)]

V0 �
1

2
m2�2 �

1

8
�H�4: (22)

The mass mH in Eq. (21) is not the physical mass (pole
mass). The proper mechanism to obtain the physical Higgs
mass is to use the effective potential [18] and to add the
contribution of the self energy of the Higgs field. The
effective potential can be written in the following form:

Veff � V0 � V1 � � � � ; (23)

where V0 is the tree level potential and V1 is the one loop
correction. The method of the effective potential has the
property that the L loop improved effective potential to-
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gether with the �L� 1� RGEs resums all the L to leading
logarithms [19]. We will thus use the tree level potential for
the one loop RGEs and the one loop corrected potential for
the two loop RGEs.

The physical Higgs mass MH has two contributions: the
first one coming from the effective potential and the second
one is the renormalized self energy of the Higgs field
(Ref. [20], Appendix B)

M2
H �

@2Veff

@�2�t�
jmin � Re���p2 � M2

H� 
��p2 � 0��:

(24)

The Higgs mass defined in Eq. (24) does not depend on
the renormalization point t if Veff is taken to all orders. If
we truncate Veff then M2

H defined by Eq. (24) becomes
dependent on t and the issue of the proper choice of the
renormalization point becomes important. In Ref. [9] it has
been shown that for the Higgs massMH � 1:7mt the errors
are the smallest for the renormalization point at the mass of
the top quark mt (i.e. t � 0), while for MH >mt the
optimal is the renormalization point at MH, [t �
ln�MH=mt�]. Guided by this discussion we will use the
following prescription

M2
H � M2

H;perturbative�tp�; tp �
�

0 for MH � mt

lnMH
mt

for MH >mt:

(25)

The effective potential method determines the physical
Higgs mass in terms of the quartic Higgs coupling
�H�mt�, gauge coupling constants gl�mt�, Yukawa cou-
pling of the top quark mass and the physical masses of
the gauge bosons MW and MZ and the top quark mass mt.
Since the values of all these parameters except �H�mt� are
known so we will present the results of this section as the
relation between the physical Higgs mass MH and �H�mt�.
Let us first discuss the effective potential for different
cases.

A. Tree level effective potential

We will use the effective potential defined in Eq. (22)
from which we obtain the running Higgs mass

m2
H�t� � �H�t�Z2�t�v2; (26)

where Z�t� is the renormalization factor of the Higgs field
and the functions Z�t� and �H�t� are determined up to one
loop. Z�t� fulfills the RGE [Ref. [5], Eq. (14)] and
[Ref. [21], Eq. (10)]

d lnZ
dt

� 
	��g
2
l ; Y

2
t � �

3

�4��2

�
3

20
g2

1 �
3

4
g2

2 
 Y
2
t

�

(27)

which has the solution
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Z�t� � h
3
m �t�

�
g1�t�
g1�t0�

�
9=20b1

�
g2�t�
g2�t0�

�
9=4b2

(28)

and hm�t� is equal [7]

hm � exp
�

1

�4��2
Z t

t0
Tr�yuy

y
u �dt

�
: (29)

From Eqs. (10) and (26) we obtain the following result
for the running Higgs mass:

m2
H;1�t� � 


�4��2

12

W01�t� 

12
�4��2

�H�t0�W02�t�

W1�t� 

12
�4��2

�H�t0�W2�t�
h
6
m �t�

�

�
g1�t�
g1�t0�

�
9=10b1

�
g2�t�
g2�t0�

�
9=2b2

v2: (30)

The physical Higgs mass is thus equal (note that in the case
of one loop we omit the self-energy contribution to the
Higgs mass)

M2
H � m2

H;1�tp�: (31)
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FIG. 7. The dependence of the physical Higgs mass MH on the
value of the Higgs quartic coupling constant �H�mt�. The tree
level and one loop Higgs masses differ significantly at large
Higgs masses. On the other hand the two choices of the one loop
effective potential yield equivalent results. It suggests that the
theoretical error that comes out from the uncertainty of the
effective potential is small. Tree level (dot-dashed line); one
loop from Ref. [20] (solid line); one loop from Ref. [28] (dotted
line).
B. Two loop case

1. Effective potential with one loop corrections (Ref. [21])

The effective potential with one loop corrections used in
Ref. [21] has the following form:

Veff �
1

2
m2�2 �

1

8
�H�

4 �
1

64�2

�
6m4

W�t�
�

ln
m2
W�t�

�2�t�



5

6

�

� 3m4
Z�t�

�
ln
m2
Z�t�

�2�t�



5

6

�

 12m4

t �t�
�

ln
m2
t �t�

�2�t�



3

2

��

(32)

where the functions mW�t�, mZ�t�, mt�t�, ��t� and ��t� are
defined as follows:

m2
W�t� �

1
4g

2
2�t��

2�t�; m2
Z�t��

1
4�

3
5g

2
1�t� � g

2
2�t���

2�t�;

m2
t �t� �

1
2Y

2
t �t��2�t�; ��t� � mte

t; ��t� � Z�t�v:

(33)

From Eq. (32) we obtain the formula for the running Higgs
mass

m2
H;2�t� � �H�t�Z2�t�v2 �

3

64�2 Z
2�t�v2

�
g4

2�t�
�
ln
m2
W�t�

�2�t�

�
2

3

�
�

1

2

�
3

5
g2

1�t� � g
2
2�t�

�
2
�
ln
m2
Z�t�

�2�t�
�

2

3

�


 8Y4
t �t� ln

m2
t �t�

�2�t�

�
:

(34)

The physical Higgs mass is obtained from the equation

M2
H � m2

H;2�tp� � Re���p2 � M2
H� 
��p2 � 0��:

(35)
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2. Effective potential from analytic calculations
(Ref. [22])

Recently the analytic calculation of the full two loop
corrections to the pole masses in the standard model have
been performed [22]. It has been shown that the one loop
effective potential is not modified from the tree level form

Veff �
1

2
m2�2 �

1

8
�H�4: (36)

The same form was also postulated in Ref. [5]. The running
Higgs mass is thus equal

m2
H;analytical�t� � �H�t�Z2�t�v2: (37)

The form of Eqs. (26) and (37) for the Higgs running mass
is the same but in case of Eq. (26) the functions Z�t� and
�H�t� run according to one loop equations and in Eq. (37)
they run according to the two loop equation. Also in the
physical Higgs mass we include the self energy of the
Higgs field

M2
H � m2

H;analytical�tp� � Re���p2 � M2
H� 
��p2 � 0��:

(38)
C. Physical Higgs mass as the function of �H�mt�

The main result of this section is to show what is the
physical Higgs mass as a function of the coupling constant
�H�mt� for different choices of the effective potential. This
function permits to express the constraints Eqs. (15) and
(20) for the coupling constant �H�mt� in terms of the
-8
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physical Higgs mass. We have considered here three pos-
sible effective potentials: tree level and the two versions of
the effective potential with the one loop corrections. The
results for these three cases, Eqs. (31), (35), and (38) are
shown in Fig. 7. It is remarkable that the two choices of the
one loop effective potential yield very similar results in the
whole range of the values of �H�mt�, e.g. the difference
between the predictions of the two versions of the one loop
effective potential at the Higgs mass MH � 500 GeV is
3.7 GeV which is less that 1%. We thus conclude that the
theoretical error of the prediction of the Higgs mass is 1%.

VI. CONCLUSIONS

The most important predictions are presented in Figs. 7
and 8. Figure 7 represents the relation between the physical
Higgs mass and the value of the Higgs quartic coupling
�H�mt�. One can see that the one and two loop relations
differ significantly for large Higgs masses. The choice of
the one loop effective potential for the two loop running
has very little influence. For the Higgs masses MH �
250 GeV the two loop corrections are negligible.

Figure 8 contains the upper value for the UV cutoff as a
function of the Higgs mass. To obtain this figure we used
the Higgs boson matching scale tp defined in Eq. (25) and
equal to tp � maxf0; tHg, where tH � ln�MH=mt�. The
lower part of Fig. 8 consists of the two curves that are
obtained from the conditions �H�t� � 0 and ~�H�t� � 0. For
the Higgs masses that allow this condition there is no
Landau pole up to the GU energy EGU and the values of
 100
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FIG. 8. The plot of the energy Elim at which the SM breaks
down as the function of the Higgs mass. This figure is obtained
from Fig. 6 by transforming �H�mt� into the physical Higgs mass
MH. The standard model is valid for energies to the left of the
value indicated by MH. The energy limits are derived from the
conditions: (a) �H�t� � 0, (b) ~�H�t� � 0, (c) one loop pole
position of �H�t�, (d) two loop �H�t� � 12. The two dashed
horizontal lines correspond to the experimental limits of the
Higgs mass given in Eqs. (40) and (41). From the crossing points
of these lines one determines the range of the validity of the SM
for each of the Higgs masses.
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�H are small and the function �H�t� is monotonically
decreasing (see Fig. 9) so the two loop and higher correc-
tions are small and the perturbation series does not diverge.
The upper part of Fig. 8 consists also of two curves that are
almost identical. It is remarkable that the one loop condi-
tion (curve c) and the two loop condition (curve d) are so
close. This similarity strongly supports the idea that the
one loop Landau pole position is a very good approxima-
tion (probably beyond one loop) of a point where the
standard model breaks down.

From Fig. 8 we see that for the Higgs masses MH &

150 GeV the UV cutoff is growing as a function of the
Higgs mass. The energy of grand unification EGU is
reached at MH � 150 GeV and then there is a narrow
window of the Higgs masses

153:5 � MH � 191:1 GeV for one loop;

148:5 � MH � 193:1 GeV for two loops;
(39)
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FIG. 9. Running of �H�t� for different values of �H�mt�: (a)
was obtained from the one loop RGE and (b) from the two loop
equations. On both parts the dashed lines correspond the running
of the of �H�t� with the initial value of �H�mt� � 0:5 which
corresponds to the Higgs mass MH � mt. From both parts one
can see that the behavior of �H�t� is different for MH <mt and
MH >mt. This indicates that for MH � mt there may be a phase
transition in the standard model.
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for which the UV cutoff exceeds the EGU scale. For the
Higgs masses MH * 178 there appears the Landau pole
and the UV cutoff is decreasing as a function of the Higgs
mass.

In Fig. 9 we show the evolution of the coupling �H�t�
given in Eq. (10). One can see that the behavior of �H�t� is
in agreement with the earlier discussion and for values of
�H�t0� & 0:37 the function �H�t� has a zero and for
�H�t0� * 0:61 it has a pole.

From the evolution of the �H�t� one can see the appear-
ance of two patterns of the high energy behavior of the
standard model. One, for �H�mt�< 0:5 and the other for
�H�mt�> 0:5. Such a change of the pattern can be an
indication of a phase transition. The point �H�mt� � 0:5
corresponds to MH � mt.

The limits on the Higgs mass have been previously
discussed theoretically and analyzed experimentally. The
most recent limits on the Higgs mass from LEP’s
Electroweak Working Group [23], following from the
high Q2 precision electroweak measurements, are

MH � 114
�69


45
GeV �at 68% C:L:�

and MH < 186 GeV �at 95% C:L:�: (40)

The direct Higgs boson search [24] gives the lower experi-
mental limit

MH > 114:4 GeV �at 95%C:L:�: (41)

The experimental limits thus indicate that the Higgs mass
might be in a range compatible with the ultraviolet cutoff
of the order 104–1014 GeV.

If the mass of the Higgs boson is below 150 GeV the
lower curve from Fig. 8 should be used for the determi-
nation of the cutoff. A similar curve has been presented in
Ref. [9] and it contains a band including the theoretical
error. Instead, we present two curves, one that follows from
the condition �H � 0 and the other from ~�H � 0. Both of
these curves for small values of the cutoff lie above the
band from Ref. [9] (see also Refs. [16,18,21]). For the
condition �H � 0 our results are compatible with those
of Ref. [9] for the cutoff above the 108 GeV and for the
condition ~�H � 0 they are compatible for the cutoff above
105 GeV. This discrepancy means that we predict a lower
cutoff than Ref. [9]. We have tried to trace this discrepancy
by the variation of the input parameters of our analysis: the
strong coupling constant �s�MZ� and the top quark mass
mt but this could not explain the difference. A possible
source of the discrepancy may be that we use other renor-
malization point (we use the top quark massmt while the Z
boson mass mZ is used in Ref. [9]) and the predictions are
rather sensitive to the details of the evolution of the top
quark Yukawa coupling.
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Theoretically the Higgs mass limits have been obtained
from the analysis of the renormalization group equations
and from the lattice calculations. The RGE’s most recent
analysis [9] gives results that are compatible with ours. It
should be stressed that our analysis of the one loop equa-
tions is based on the analytical results and gives explicit
formulae for the position of the Landau pole and zero of the
quartic coupling �H�t�.

The nonperturbative lattice limits for the Higgs mass are
obtained from the triviality condition [25]. These results
are complementary to the RGE analysis and yield the
following limit [26]

MH < 620 GeV: (42)

This result may slightly depend on the regularization
scheme and also recently there was some discussion [27]
about the correct treatment of the cutoff in the renormal-
ization of the theory. This, however, does not seem to
influence the result.

To conclude let us stress that the key point of the paper is
the treatment of the one loop RGE for �H and the lineari-
zation of the problem by the substitution in Eq. (7). This
linearization permitted a very precise analysis of the posi-
tions of the Landau pole and the point where �H vanishes.
Moreover it also gave an intimate relation between the
positions of these two points: Eq. (12) is the derivative of
Eq. (11). Such a relation between these two important
quantities is a new result. Additionally it should be also
stressed that the analytical results for the running of �H up
to one loop is a very good starting point for a precise
analysis of the two loop effects. We also demonstrate that
the position of the one loop pole of �H�t� coincides with
the two loop condition �H�t� � 12, from Ref. [9], where
the perturbation series should break. In our opinion the
condition based on the position of the pole is more trans-
parent and less arbitrary.
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