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Algebraic approach to solve ¢7 dilepton equations
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The set of nonlinear equations describing the standard model kinematics of the top quark antiquark
production system in the dilepton decay channel has at most a fourfold ambiguity due to two not fully
reconstructed neutrinos. Its most precise solution is of major importance for measurements of top quark
properties like the top quark mass and #f spin correlations. Simple algebraic operations allow one to
transform the nonlinear equations into a system of two polynomial equations with two unknowns. These
two polynomials of multidegree eight can in turn be analytically reduced to one polynomial with one
unknown by means of resultants. The obtained univariate polynomial is of degree 16. The number of its
real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate
each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign
change of the polynomial in a given interval through binary bracketing.
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L. INTRODUCTION

In 1992, Dalitz and Goldstein published a numerical
method based on geometrical considerations to solve the
system of equations describing the kinematics of the ¢7
decay in the dilepton channel [1]. The problem of two not
fully reconstructed neutrinos—only the transverse compo-
nents of the vector sum of their missing energy can be
measured—Ileads to a system of equations which consists
of as many equations as there are unknowns. Thus it is
straightforward to solve the system of equations directly in
contrast to a kinematic fit which would be appropriate in
the case of an overconstrained problem or integration over
the phase space of degrees of freedom in the case of an
underconstrained problem. Each of the two neutrinos con-
tributes a twofold ambiguity to the solution of the system
of equations which end up to an overall ambiguity oﬁ

Ex = pvx + pl_/x’ Ey = pVy + pl’/}.’

E} =p; +p5 i,

PACS numbers: 29.85.+c

degree four. On top of those ambiguities which dilute the
significance of top quark property measurements in the
dilepton channel, reconstructed objects do typically not
coincide with their corresponding particles which reduces
the significance further. Thus it is not only important to
solve the system of equations but also to compare its
solutions to the particle momenta of simulated events.

In the next section the system of equations is introduced,
followed by a description of the algebraic solution and its
implementation as an algorithm. Subsequently, the per-
formance of the numerical implementation is discussed.

IL. ¢# DILEPTON KINEMATICS

The system of equations describing the kinematics of 7
dilepton events can be expressed by the two linear and six
nonlinear equations:

E; = p; +pi, + i

my. = (E¢+ + E,)* = (per + p)* = (per + pu)* — (pez +0,)%
m%/v- = (E¢- + E;)* — (Pe; + Pi»x)z - (Pé; + Pi/y)z - (P(; + P;}Z)Q» (1)

mi = (Ey + E¢+ + E,)* = (py, + per + 0,) = (py, + per + p,)> = (po, + pez + p,,)%

m

The z-axis is here assumed to be parallel orientated to the
beam axis while the x and y coordinates span the transverse
plane. The first two equations relate the projection of the
missing transverse energy onto one of the transverse axes
(x or y) to the sum of the neutrino and antineutrino mo-
mentum components belonging to the same projection.
The next two equations relate the energy of the neutrino
and antineutrino, which are assumed to be massless in good
approximation, with their momenta. Finally, four nonlinear
equations describe the W boson and top quark (antiquark)
mass constraints by relating the invariant masses to the
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:=(E;+E¢ +E)) —(pspe; + 1) — (b5, + e, +15) = (ps. + pec + p3)™

{
energy and momenta of their decay particles via relativistic

4-vector arithmetics.

ITII. ALGEBRAIC SOLUTION

This system of equations can be reduced to four equa-
tions by simply substituting in the last four equations the
neutrino and antineutrino energies by the third and fourth
equations and substituting the antineutrino transverse mo-
menta by the first two equations solved to these momenta.
In this way the four unknowns p, , p, , p,_, and p;_are
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left. One pair of equations, describing the t — bW* —
b{* v, parton branch of the event, depends on p, while
the other pair of equations, describing the 7 — bW~ —
b€~ v, parton branch of the event, depends on Ps.- By
means of ordinary algebraic operations both pairs can be
solved to the longitudinal neutrino and antineutrino mo-
mentum p, and p;_, respectively. The equations can be
written in the form

Py, = a; *4jai + ay, Py, =by E4b7+ by (2)

for the top quark parton branch and

pr. =c1 T4l t o pr. =dy T 4di +dy (3)

for the antitop quark parton branch with the coefficients

ay =ay tapp, tapp,,
ay = ay +anp, *app, + ayps + aspy, Py, (4)

2
+ axpi,

and b equivalent for the first pair of equations (2). For the
second pair of equations (3) holds analogically

¢y =cu Tt cnps, tci3pi,
€y = €1 T Py, t C3p5, T cups + ¢25P3, Py, ()

2
T D5,

and d equivalent. The explicit expressions in terms of the
initial equations (1) are given in the appendix. After equat-
ing both equations of each pair, there remain two equations
with the two unknowns p,, and p, .

Again by means of ordinary algebraic operations the two
nonlinear equations can be transformed into two polyno-
mials of multidegree eight. To solve these two polynomials
to p, , the resultant with respect to the neutrino momentum
Py, is computed as follows. The coefficients and mono-
mials of the two polynomials are rewritten in such a way
that they are ordered in powers of p, like

f=F5ps, + faps, + f3p5, + fabw, + fs

4 3 2 (6)
g = &Py, + &pu, T &Py, T 8Py, T 85

where f and g are polynomials of the remaining unknowns
Pu> Do, and the coefficients f,,, g, are univariate poly-
nomials of p, . The resultant can then be obtained by
computing the determinant of the Sylvester matrix
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S 81
f2 i 82 81
f3 fa fu 83 82 81
_ fa f3 f2 f1 84 83 82 &
Res(p,,y) Det Sfs fa J3 [2 85 84 83 &2
S5 fa [3 85 84 83
fs5 fa 85 84
fs 85

=0, (7)

which is equated to zero. The omitted elements of the
matrix are identical to zero. Since each element in the
matrix is a polynomial itself, the evaluation is very elabo-
rative. There are two ways to compute the determinant in
practice. The more elegant way from a programming tech-
nical point of view is to invoke recursively a function
which computes subdeterminants and consists of a very
limited number of lines. Unfortunately it turns out that this
approach is too time consuming. The other way is to let
MAPLE [2] compute and optimize the determinant as a
function of the unknown p, and implement it. This way
the code grows orders of magnitude in size but on the other
hand the evaluation speeds up by orders of magnitude.
The resultant is a univariate polynomial of the form

0= hp)®+ hypl’ + hip)t + hyp)?} + hspl? + hep)!
+ hipy? + hgp, + hopS + hyopl + hyipS
+ hiapy, + hisps, + hups + hisph + higp,,
+ hys, @

with the remaining unknown p, . It is of degree 16 and
analytical solutions of general univariate polynomials are
only known until degree four. Abel’s impossibility theorem
and Galois demonstrated that a univariate polynomial of
degree five can in general not be solved analytically with a
finite number of additions, subtractions, multiplications,
divisions, and root extractions [3]. Thus, from here on, the
solutions of the univariate polynomial (8) have to be ob-
tained by different means. In principle the problem can be
reduced to an eigenvalue problem. Unfortunately, in prac-
tice it turns out that the implementation of the eigenvalue
package in ROOT [4] gives only reasonable solutions for
univariate polynomials of degree 14 and below. Finally, the
number of solutions is obtained analytically by applying
Sturm’s theorem [5] which consists of building a sequence
of univariate polynomials  h(p, ), h'(p,), h.(p, )
hy(py ), ..., hy(p, ) = const, where h' is the first deriva-
tive of the univariate polynomial & with respect to p, and
the following polynomials are the remainders of a long
division of their immediate left neighbor polynomial di-
vided by the next left neighbor polynomial. The sequence
ends when the last polynomial is a constant. In the case
where the constant vanishes, the initial polynomial has at
least one multiple real root which can be split by long
division through the last nonconstant polynomial in the
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Sturm sequence. In this case one solution is already known.
The sequence is evaluated at two neutrino momenta p,,
1,2

(initially at the kinematic limits) and the difference be-
tween the number of sign changes of the evaluated se-
quence at the two interval limits is determined. The
obtained quantity corresponds to the number of real solu-
tions in the given interval.

This means that the theorem of Jacques Charles Francois
Sturm—which he was proven in 1829 [6]—is extremely
powerful since in the case of no real solutions no time
needs to be spent for the unsuccessful attempt to find one.

To reduce numerical inaccuracies, all polynomial evalu-
ations are applied using Horner’s rule which factors out
powers of the polynomial variable p, [7]. Further, the
solutions are separated by applying Sturm’s theorem with
varying interval boundaries. Once the solutions are sepa-
rated in unique pairwise disjoint intervals they are polished
by binary bracketing exploiting the knowledge about the
sign change at the root in the given interval. This is
possible since it is guaranteed that there is only one single
solution in a given interval per construction. (Now one
could turn to solving a given eigenvalue problem the other
way around and use the Sturm sequence to solve the
characteristic polynomial to obtain the eigenvalues.)
Once the solutions are found—most frequently there are
two but never more than four (see Fig. 1)—they can be
inserted in equations (6), such that these equations reduce
to two univariate polynomials of degree four which in turn
can be solved analytically to p, with a fourfold ambiguity.
The ambiguities can be eliminated in requiring the roots of
these two polynomials to coincide since both equations
have to be satisfied simultaneously. p; and Pj, can be

simply determined with the help of the first two equations
in (1). To determine the longitudinal neutrino and antineu-
trino momenta p,_and p;_the equations (2) and (3) can be
evaluated, respectively. Again the twofold ambiguity, here
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FIG. 1. Number of solutions per event.
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due to the square root sign, can be resolved in requiring the
solutions to coincide simultaneously for both equations of
one parton branch.

IV. PERFORMANCE OF THE METHOD

The univariate polynomial of p, is in general very
shallow around zero over a broad range of neutrino mo-
menta in comparison to its maximal values in the allowed
kinematic range as can be concluded from the first two
graphs in Fig. 2. Here the kinematic range has been re-
stricted to a center of mass energy of 1.96 TeV, assuming
the Tevatron proton antiproton collider which has been set
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FIG. 2. A typical univariate polynomial of degree 16 whose
real roots in p,_ are solutions of the initial system of equations
describing the ¢ dilepton kinematics. From top to bottom, the
plots are zoomed around the interesting p,_ range of the abscissa
where two solutions are located.
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up in the Monte Carlo event generator PYTHIA 6.220 [8]
used here. Cross-checks at a center of mass energy of
14 TeV assuming the LHC proton collider environment
confirms that the performance is independent of particular
collider settings. Only when in the graphs the area of the
abscissa is zoomed very close to the solutions can they be
recognized by the eye. At this level the ordinate has already
been magnified by 20 orders of magnitude. This explains
why it is in general so difficult to find any solutions with
numerical methods.

In 99.9% of the events, a solution can be found which is
shown in the number of solutions per event distribution of
Fig. 1. The neutrino momenta p{®' of the solutions are
compared to the generated ones p3™" by defining a metric
X through

x> = (5" = P+ (P — P+ (P — Py
+ (5" = P+ (5" = )+ (P8 — p)A
©))

The solutions coincide in 99.7% of the cases within real
precision to the generated neutrino momenta. Figure 3
shows impressively how accurate and reliably the method
is working. The plots in Fig. 4 show the y? distribution on a
linear scale. Since in practice the off-shell masses of the
top quark and W boson resonances are not known, the
method has been applied in the following ways: The dis-
tribution in the first plot assumes W boson off-shell but top
quark pole masses. It peaks at zero and its tail vanishes
rapidly. The solution efficiency for this scenario amounts
to 89%. The second plot assumes the pole mass for the top
quarks and the W bosons. The number and mean of un-
matched solutions increases dramatically and the effi-
ciency drops to 84%. Further an infrared-safe cone
algorithm [9] with cone size R = 0.5 in the space spanned
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FIG. 3. Solution x? defined as the difference between solved
and generated neutrino momenta, added in quadrature, for the
closest solution of each event.
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FIG. 4. Minimal solution x> per event. The first two plots
differ in parton information entered into the solving procedure:
(a) top quark pole and W boson off-shell masses, (b) top quark
and W boson pole masses. The two lower plots show y?
distributions of reconstructed events, considering both b jet
permutations with reconstructed jets in (c) and additionally
smearing applied to jets and leptons in (d).
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by pseudorapidity and azimuthal angle has been applied to
the hadronic final state particles to investigate the effect of
reconstructed objects on the solutions. Requiring exactly
two jets and two leptons and accepting the jets as b-tagged
if they coincide within AR < 0.5 with the b quarks and
antiquarks yields an significant degradation of the y?
distribution [Fig. 4(c)]. The efficiency drops to 43% as-
suming the right jet quark combination. Admitting both
permutations yields an efficiency of 82%. The last plot has
been obtained from the previous one in additionally smear-
ing the leptons and jets with the energy resolution of the DO
detector [10]. The y? of the minimal solution suffers in
average another 10% degradation and the solution effi-
ciency drops by the same amount. In practice, a given
event passes the solving procedure repeatedly to improve
the solution efficiency. At each iteration the energy of the
reconstructed objects is randomly drawn from a probability
distribution describing the detector resolution and centered
around the measured values. In the case of a hundred such
iterations, the efficiency can be kept above 99.4% while in
average the y? of the best solution decreases considerably

TABLE I. Solutions fulfilling x> <1073 are defined as
matched or else unmatched. The purity is determined according
to this definition. The mean y? is obtained taking into account
matched and unmatched events.

Solution

Condition Efficiency  Purity = Mean y?
W mass known exactly

0.893 521 X107 4173
t pole mass assumed
t, W pole mass assumed 0.839 0 911.0
t, W pole mass assumed

. 0.890 0 1166

Both bb permutations
Reconstructed b-jets

0.711 0 3916
(parton matched)
Wrong b-jet permutation

0.426 0 5366
(parton matched)
Both b-jet permutations

0.822 0 4049
(parton matched)
Both b-jet permutations
(parton matched, 0.761 0 4491
jets + leptons smeared)
Both b-jet permutations
(parton matched,
jets + leptons smeared), 0.994 0 2556

Reconstructed objects
100 times resolution smeared
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as expected in comparison to solving the momenta of the
reconstructed objects just once.

In Table I the efficiencies and minimal solution y?’s are
summarized. In addition the purity is given. It is practically
zero, which means that no solutions do match with real
precision or even merely with a y? better than 10™3 once
the off-shell masses of the top quarks and W bosons are not
assumed to be known exactly.

General numerical methods can compare and gauge
their performance in terms of solution efficiency and purity
with the algebraic approach described here.

The time consumption of the method amounts to about
20% of the time needed for the generation of the events
which means if 5 X 10° events can be generated in five
hours an additional hour is needed to solve them. The
strength of the method is the application of Sturm’s theo-
rem, such that in the case of no solutions the time consum-
ing seeking and polishing of solutions can be saved. The
bottleneck of the method is the time consuming evaluation
of the resultant.

V. CONCLUSIONS

An algebraic approach to solve the ¢7 dilepton kinemat-
ics has been presented. The system of equations can be
reduced to a univariate polynomial by means of resultants.
The number of real roots can be determined by means of
Sturm’s theorem. Once the single roots have been isolated
they can be polished by binary bracketing while seeking
for the sign change. In this way a solution is found in 99.9%
of the cases. The solutions coincide with real precision to
the generated neutrino energies and momenta in 99.7% of
the cases assuming that the reconstructible parton mo-
menta inserted in the solving procedure are known exactly.
Little deviations drop the solution efficiency considerably,
at the order of tens of percent. In this case the solved
neutrino momenta differ already on average by the order
of tens of GeV from the generated parton momenta. The
solution efficiency can be reestablished above the 99%
level in solving a given event several times, varying the
energy of the reconstructed objects each iteration randomly
according to the energy resolution of a detector. General
numerical methods can compare their performance in
terms of efficiency and purity to the algebraic approach
whose implementation has been described here.
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APPENDIX: COEFFICIENTS

Before defining the coefficients of Egs. (4) and (5) it is
useful to introduce the following invariant masses:

— 2 02 2 2
me+ = \/Eg+ pg; p(; p{/;ﬂ

me- = \/EZ* - p%; - p%\* - p%z—,

my = \JE} = P}, = P}, — PP

ms =B} = v}~ Py — P}
myer =A{(Ep + E¢+)* = (pp, + pe:)* — (pp, + Pe;)2
—(py. + pe: )2
mye- ={(E; + E¢-)* — (p;. + pe)* — (ps, + pe:)?
— (ps. + pe )2

The coefficients are then given by

2 2
P 1 (my,. — mg.)per P PefPer
=3 , I
2 EL-pL Ej. = Pl
P Per
a3 =5 5
o
) — l m‘v‘v+ + m‘} - 2m€v+ m%+
4 E}. = pp
2 _ o2
o (m%,. —m?.)per o (miy,« — mg)per
2= , 3= ,
E{ = pj E{ = pjs
2 _ 2
E¢e = Py 2pespey
Ay = "0 — 50 ays = 55
E{. = pis E{. = pis
2 2
E¢e = Pes
a26 = — —'-
E{ — pg:

To obtain the coefficients c,,, for the other parton branch,
one has to substitute W* and €* by W~ and €, respec-
tively. Similar holds
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1 (mf —mj,)(py, + per)

by =~ ,
N2 (E, +Ep ) - (Po, + P )?

_ (ps, T Pe) Py, + Per)
C(By + Ep ) - (P, + Pe:)*’
_ (Py, + Pe; )Py, + Per)
B (B, T Ep)? - (P, + Pes)*

b12

b _1 mi +m},. —2mim?,. ,
4 (Ep + E¢+)* — (pp, + per)?
byy — (mf —m3,.)(py, + per) ,
(Ep + E¢+)* — (py. + per)?
by — (m7 — m3,)(py, + pey) ’
(Ey + E¢+)* — (pp. + per)?
byy = — (Ep + E¢+)* = (py, + Pe;){
(Ep + E¢+)* = (pp. + pe:)?
_ 2ps, T Pe) Py, T Pey)
R T i (py, + Pe)*’
by — (Ep + E¢+)* = (py, + pe:)?

(Ep + E¢+)* — (pp. + pe)*

Again the coefficients d,,, of the other parton branch can
be obtained in substituting ¢, b, and €% by 7, b, and €~
respectively. The denominators are always of the type
E? — p2=m?+ pi = m’.

Thus it is ensured that they never vanish. Running over 1 X
10° Monte Carlo events does not lead to a division by zero.
In addition, detected objects in collider experiments have
always a considerable amount of transverse momentum
which pushes the kinematics of the equations further
away from such singularities. Therefore the theoretically
possible multiplication of all equations with the least com-
mon multiple of all denominators does not need to be
applied.
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