
PHYSICAL REVIEW D 72, 095015 (2005)
Large evolution of the bilinear Higgs coupling parameter in supersymmetric models and
reduction of phase sensitivity
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The phases in a generic low-energy supersymmetric model are severely constrained by the experimental
upper bounds on the electric dipole moments of the electron and the neutron. Coupled with the
requirement of radiative electroweak symmetry breaking, this results in a large degree of fine-tuning of
the phase parameters at the unification scale. In supergravity type models, this corresponds to very highly
tuned values for the phases of the bilinear Higgs coupling parameter B and the universal trilinear coupling
A0. We identify a cancellation/enhancement mechanism associated with the renormalization group
evolution of B, which, in turn, reduces such fine-tuning quite appreciably without taking recourse to
very large masses for the supersymmetric partners. We find a significant amount of reduction of this fine-
tuning in nonuniversal gaugino mass models that do not introduce any new phases.
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I. INTRODUCTION

Low energy supersymmetry (SUSY)[1] has been play-
ing a central role in the quest for physics beyond the
standard model (SM). Since phenomenological consis-
tency requires SUSY to be broken, and broken softly (so
as not to reintroduce any quadratic divergence), the
Lagrangian of the minimal supersymmetric standard
model (MSSM) [2,3] includes soft and gauge invariant
SUSY breaking terms. While the generic MSSM
Lagrangian may contain many arbitrary soft terms, specific
models for SUSY breaking have been proposed that pro-
vide relationships between the MSSM parameters.
Incorporating well-motivated new interactions and parti-
cles at high mass scales, such scenarios drastically reduce
the large number of unknown parameters in the MSSM to
only a few, thereby making the model more predictive. We
will focus here only on supergravity (SUGRA) [4,5] type
of models where SUSY is considered as a local symmetry.
These models incorporate a hidden sector wherein SUSY is
broken, and a visible sector where the MSSM fields reside
and to which the breaking is communicated by gravita-
tional interactions. In N � 1 SUGRA, which incorporates
grand unification, one has a choice of three functions in
building a model [4–6], namely, the gauge kinetic energy
function f���zi�, the Kähler potential K�zi; z

y
i �, and the

superpotential W�zi�, where zi refer to matter fields. In
mSUGRA, the minimal version of the model, one has a
flat Kähler potential and a flat gauge kinetic energy func-
tion. The corresponding soft SUSY breaking sector is
characterized by only a few parameters, normally specified
at the scale of the grand unified theory (GUT) viz. MG �
2� 1016 GeV [7,8]. These are the universal gaugino mass
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m1=2, the universal scalar mass m0, the universal trilinear
coupling A0, and the universal bilinear coupling B0. In
addition to these, there is a superpotential parameter,
namely, the Higgs mixing term �0. Unlike in the SM,
where the breaking of the electroweak symmetry necessi-
tates the explicit introduction of a negative valued scalar
mass-squared, in a generic SUGRA model, the said break-
ing can be realized even for a positive mass-squared term
in the bare Lagrangian, thanks to radiative corrections [4].
In other words, the renormalization of the soft SUSY
breaking terms as one moves from the unification scale
down to the electroweak scale automatically engenders a
negative mass-squared thereby breaking the symmetry [9–
12]. In a similar vein, the low-energy parameters of the
MSSM (which are quite large in number) are obtained
from only a few unification scale parameters via the renor-
malization group equations (RGE) [12] integrated from
MG to the electroweak scale (�MZ). The two minimiza-
tion conditions for the Higgs potential then eliminate �0

(except for its sign) on the one hand, and, on the other,
relate B0 to tan� ( � hHUi=hHDi), the ratio of Higgs
vacuum expectation values. Thus mSUGRA may be char-
acterized by tan�, m1=2, m0, A0 and sign(�).1 With all the
low-energy parameters of the MSSM being generated in
terms of these few parameters, one has a considerable
amount of predictivity for the MSSM spectrum.

A different problem remains though, namely, that of the
SUSY CP violating phases. Many phases of SUGRA
models can be rotated away. In an universal scenario like
mSUGRA, the gaugino masses can be considered real with
the result that only two combinations of phases (beyond the
Cabibbo-Kobayashi-Maskawa quark-mixing matrix
(CKM) phase already present in the SM) are physical. A
1Our choice of sign for � and A0 follows the standard con-
vention of Ref. [13].
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convenient choice for the two is given by �A0
for A0 (at

MG) and �B for the B-parameter at the electroweak scale. It
should be noted though that many analyses prefer to work
with ��, the phase of�, instead of �B. An advantage of this
latter choice is that ��0

� �� since �� does not run up to
the one-loop level. These different descriptions can be
understood in terms of U�1�R and U�1�PQ (Peccei-Quinn)
symmetries and the choice of reparametrization invariant
combinations of phases, a discussion of which may be
found in Refs. [3,14]. A selection of past analyses using
�B as an input parameter may be seen in Refs. [15–20].
Here we note that a choice of �B instead of �� as a phase
parameter makes the entire set of input parameters to be of
soft-breaking origin.

A few important points need to be noted in the context of
the SUSY CP problem. The latter arises from the fact that
the phases are highly constrained by the experimental
limits on the electric dipole moments (EDM) of the elec-
tron and the neutron [14–19,21,22]. Consequently, we are
forced to admit one of the three eventualities:
(1) T
2�B m
he phase �B is very small—O�10�2� or
O�10�3�—if the superpartners are not considered
to be very heavy.2 In addition, the phases of the
A-parameters at the electroweak scale are also con-
strained. In mSUGRA with phases, the requirement
of having a very small �B typically translates into a
relatively large but highly fine-tuned value for
arg�B0� (i.e., B at MG). This, in turn, constrains
the phase �A0

of A0, although to a somewhat lesser
degree. The fact that the issue of fine-tuning in
phases at the GUT scale arises out of the combined
requirement of satisfying the EDM constraints and
the radiative electroweak symmetry breaking was
discussed in great detail in Refs. [15–17] as well as
in Refs. [18,19]. In this paper we try to focus our
attention on this problem by looking at suitable
models beyond mSUGRA that can have unique
features in the evolution of B.
(2) T
he phases are large and less fine-tuned but the
sparticles are massive. Of course, fully ameliorating
the SUSY CP problem in this fashion requires that
the sfermions be supermassive, thereby aggravating
the problem of the little mass hierarchy in the Higgs
sector. We will investigate whether the amount of
fine-tuning can be reduced even while one considers
a lighter sparticle spectra.
(3) F
inally, there is the possibility that the SUSY break-
ing parameters may have special pockets where
there can be a large amount of internal cancellations
between the diagrams contributing to the electric
dipole moments of electron and neutron [21]. This
means that phases could be large while sparticle
masses are significantly light. This scenario is
ay reach up to �0:1 in the focus point zone [23].
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highly parameter dependent and clearly depends on
very delicate cancellations. Hence we will not in-
clude this in our work while trying to focus on
generic behaviors.
As mentioned above, we would like to address the first
and the second issues in this analysis. We are particularly
interested in exploring the possible role of nonuniversal
gaugino masses (NUGM) in reducing the fine-tuning in the
phase �B0

. To quantify the latter, we consider a naturalness
like measure of the form

� � ���B0
=��B	�B!0: (1)

A large value for � would mean a lesser degree of fine-
tuning of �B0

with respect to a variation in �B satisfying the
EDM constraints. The phase-derivative is evaluated at
�B � 0 with the choice being dictated by the fact that the
EDM constraints force j�Bj to be close to zero. Thus, this is
a restrictive definition compared to the type of fine-tuning
defined in Ref. [16].

We will see that the issue of such fine-tuning of phase
can be addressed by focusing on scenarios where there is a
large evolution of the bilinear Higgs coupling parameter B
between the electroweak scale and the GUT scale. The
evolution of B depends on the U�1� and the SU�2� gaugino
masses, the trilinear couplings and tan�. Within
mSUGRA, in addition to the evolution of jBj being typi-
cally small, the phase �B0

also turns out to be quite fine-
tuned (i.e. � tends to be small). In other words, for a given
�B0

satisfying the EDM constraints, the variation ��B0
that

still is consistent with the constraints is generally much
smaller than the variation ��B allowed at the electroweak
scale [15]. As we will see, the evolution in jBj may be
enhanced by appropriate mass relationships between the
gauginos that are away from universality at MG. At the
same time, these would help in reducing the above-
mentioned fine-tuning so that � can be significantly in-
creased in specific NUGM scenarios.

We, however, desist from choosing an arbitrary nonun-
iversal gaugino mass scenario since that will introduce new
phases [17]. As we will see in Sec. II, nonuniversalities in
gaugino masses may originate from a nontrivial gauge
kinetic energy function. The latter is a function of chiral
superfields and transforms as a symmetric product of the
adjoint representations of the underlying gauge group. This
leaves f�� with the possibility of being in one or more of
several representations, one of which is the singlet. While
the choice of the singlet corresponds to mSUGRA, the
nonsinglet representations give rise to nonuniversalities
in the gaugino masses. It is possible to identify a suitable
nonsinglet representation in isolation (i.e., we will not
combine a nonsinglet representation with the singlet or
other nonsinglet representations) whose gaugino mass pat-
tern is effective in generating a large evolution in B. At the
same time, there will be no additional phases to worry
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about since the overall phase of the gaugino masses can be
rotated away in a fashion similar to that in mSUGRA.

In this paper, we will analyze the consequences of a
large evolution of the B-parameter (mostly in the presence
of such nonuniversalities) on the CP violating phases.
Here, the basic input parameters are tan�, m0, m1=2 (pro-
viding with definite NUGM patterns), jA0j along with its
phase �A0

and the phase �B of B given at the electroweak
scale (�MZ). Note that jBj at the electroweak scale is
obtained via radiative electroweak symmetry breaking
(REWSB) condition. Subsequently, jB0j, the GUT-scale
magnitude of the B-parameter along with its phase �B0

is
obtained via RGEs. We will identify broad but correlated
regions of parameter space where there can be a significant
degree of reduction of the phase sensitivity while going
from mSUGRA to a type of NUGM models.

The paper is organized as follows. In Sec. II, we discuss
the nonuniversal gaugino mass models. The study of the
relevant contributions from different sectors in the associ-
ated RGEs of B and A parameters allows us to identify the
nonsinglet representations which provide with a large evo-
lution in B. We will probe the parameter space that is
suitable for reducing the amount of fine-tuning in the CP
violating phases. In Sec. III, we present the numerical
results for the evolution of B. An analysis in the absence
of phases points us to the favored regions of parameter
spaces. On inclusion of phases, this facilitates the identi-
fication of the regions with significantly reduced level of
fine-tuning. Finally, we conclude in Sec. IV.
TABLE I. The coefficients nri as pertaining to the SU�3�,
SU�2� and U�1� gaugino masses at the GUT-scale for different
representations of SU�5�.

r Label MG
3 MG

2 MG
1

1 mSUGRA 1 1 1
24 NUGM:24 2 �3 �1
75 NUGM:75 1 3 �5
200 NUGM:200 1 2 10
II. NONUNIVERSAL GAUGINO MASSES AND
ENHANCED EVOLUTION OF B

Nonuniversality in gaugino masses may originate from a
nontrivial gauge kinetic energy function f�� which, in
turn, is a function of the chiral superfields in the theory.
The indices�;� run over the generators of the gauge group
[for example, � � 1; 2; . . . 24 for SU�5�]. The gaugino
mass matrix is given by

M�� �
1
4 �eG=2Ga�G�1�ba�@f



��=@z


b�f�1
�� (2)

where G � � ln��6WW
	 � �2K. Here, W is the
superpotential, K�z; z
� is the Kähler potential, za are the
complex scalar fields, and � � �8�GN�

�1=2 � 0:41�
10�18 GeV�1 withGN being Newton’s constant. The func-
tions f�� may have nontrivial field contents, or in other
words, may contain combinations of field transforming as
either singlet or nonsinglet irreducible representations
[24]. With the gauginos being Majorana particles, f��, of
necessity, must be contained in the symmetric product of
the adjoint representations of the gauge group. For ex-
ample, in the case of SU�5�,

f�� � �24 � 24�sym � 1 
 24 
 75 
 200: (3)

For the singlet case, one has f�� � 	�� which indeed
095015
leads to universality of gaugino masses. Similarly, the
nonsinglet representations will give rise to nonuniversal
gaugino masses.

In general Mi�MG� � m1=2
P
rCrn

r
i , where Cr’s give the

relative weights of each contributing representation and nri ,
for the subgroup i, are essentially the Clebsch-Gordan
coefficients corresponding to the breaking by the adjoint
Higgs field [24–26]. For the case of SU�5�, the coefficients
nri are displayed in Table I. Clearly, the nonsinglet repre-
sentations have characteristic mass relationships for the
gaugino masses at the GUT scale. Past analyses exploring
various phenomenological implications of such nonuniver-
sality may be found in Refs. [24,25,27–29].

As we shall argue later, the adjoint representation r �
24 for f�� (NUGM:24 in the notation of Table I) is the
most interesting one in the context of the present inves-
tigation. Consequently, we will analyze this case in iso-
lation, or, in other words, assume that the sole contribution
to f�� is from a 24-plet structure. Apart from reducing
the number of free parameters, this has the additional
advantage that no new phase degree of freedom for the
gaugino masses is introduced. With the gaugino mass
ratios at the GUT scale now being given by
M3�MG�:M2�MG�:M1�MG� � 1:� 3=2:� 1=2, for a posi-
tive gluino mass, the other two gaugino mass parameters
are negative, a signature different from mSUGRA. This
indeed would turn out to be useful in our quest. As men-
tioned earlier, we only consider either C1 � 1 (mSUGRA)
or C24 � 1 (NUGM:24) with all other Cr’s assumed to be
zero.

An analogous analysis with SO(10) as the underlying
gauge group is also possible [29,30], though we will not
investigate it in this paper. Similar to Eq. (3) here, one has
�45� 45�sym � 1� 54� 210� 770. If the symmetry
breaking pattern is SO�10� ! SU�4� � SU�2� � SU�2� !
SU�3� � SU�2� �U�1�, one finds from the 54-plet that
M3�MG�:M2�MG�:M1�MG� � 1:� 3=2:� 1. This pattern
is quite similar to NUGM:24 as can be ascertained from
Table I. We would like to comment at this point that, in
general, such nonuniversal gaugino mass scenarios change
the gauge coupling unification conditions [24,26].
However, it is still possible to find specific conditions
[24,31] under which the usual gauge coupling unification
condition remains unaltered and we consider this in our
-3
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work. Note though that our results are quite robust and
have very little dependence on the exact details of the
spectrum.

A. Nature of evolution of B with real parameters

We now identify the differences between mSUGRA and
NUGM:24 in regard to the evolution of the B-parameter in
the absence of CP violating SUSY phases. This, in turn,
will help us in understanding the evolution of �B upon the
inclusion of the phases (see Refs. [17–20] for past analyses
discussing phase evolutions). Note that �2 and B are
determined via the REWSB condition, viz.

j�j2 � �
1

2
M2
Z �

m2
HD
�m2

HU
tan2�

tan2�� 1
�

�1 � �2tan2�

tan2�� 1
;

sin�2�� � 2jB�j=�m2
HD
�m2

HU
� 2�2 ��1 ��2�; (4)

where �i represent the one-loop corrections [32,33]. The
Higgs scalar mass parameters mHD

and mHU
, and thereby

�2 and B depend quite strongly on m0 as well as on m1
2
. To

one-loop order, the running of the B parameter has two
additive components, the first proportional to the gaugino
masses and the second depending on a combination of the
trilinear couplings and the Yukawa couplings [12,17],
namely,

dB
dt
� �3 ~�2 ~m2 �

3

5
~�1 ~m1� � �3YtAt � 3YbAb � Y
A
�;

(5)

where t � ln�M2
G=Q

2� with Q being the renormalization
scale. ~�i � �i=�4�� are the scaled gauge coupling con-
stants (with �1 �

5
3�Y) and ~mi for i � 1; 2; 3 are the run-

ning gaugino masses. Furthermore, Yi represent the
squared Yukawa couplings, e.g., Yt � y2

t =�4��2 where yt
is the top Yukawa coupling. In a similar vein, the evolution
of the trilinear terms is given by

dAt
dt
� �

�
16

3
~�3 ~m3 � 3 ~�2 ~m2 �

13

15
~�1 ~m1

�
� 6YtAt

� YbAb;

dAb
dt
� �

�
16

3
~�3 ~m3 � 3 ~�2 ~m2 �

7

15
~�1 ~m1

�
� YtAt

� 6YbAb � Y
A
;

dA

dt
� �

�
3 ~�2 ~m2 �

9

5
~�1 ~m1

�
� 3YbAb � 4Y
A
:

(6)

For small tan�, the contributions from the bottom quark
and tau Yukawa couplings yb and y
 may be neglected, and
the RGEs approximately integrated to obtain [15]

B� B0 ’
D0�t� � 1

2
A0 � C�t�m1

2
; (7)

where D0�t� � 1� 6Y�t�F�t�=E�t�with t corresponding to
the electroweak scale. The functions E�t� and F�t� encap-
095015
sulate the running of the gauge coupling constants, viz,

E�t�� �1��3t�
16=�3b3��1��2t�

3=b2�1��1t�
13=�15b1�;

F�t��
Z t

0
E�t0�dt0

where �i � bi ~�i�0� and �b1; b2; b3� � �33=5; 1;�3� are
the coefficients in the respective one-loop beta-functions.
Of course, unification imposes the boundary condition that
�i�0� � �G � 1=24. At the top mass scale (Q � mt),D0 ’
1� �mt=200 sin��2 & 0:2 is indeed a very good approxi-
mation. The function C�t�, in Eq. (7), on the other hand, is
given by

C�t� � �
1

2
�1�D0�

H3

F
�

�
3h2 �

3

5
h1

�
�G
4�

; (8)

where

hi�t� �
t

�1� �it�
; H3�t� �

Z t

0
E�t0�H2�t

0�dt0;

H2�t� � ~��0�
�
16

3
h3 � 3h2 �

13

15
h1

�
:

For the generic (NUGM) case, the above results remain the
same except that [25]

hi�t� ���! ~hi�t� � hi�t�
~mi�0�

m1=2
: (9)

Note that, in dB=dt, the gaugino contribution is positive
for mSUGRA, but negative for NUGM:24. Thus, it is
useful to understand the nature of evolution of trilinear
couplings in either scenario so as to evaluate their role in
the evolution of B. For the mSUGRA case, the gaugino
contributions to dAi=dt are always negative [vide Eq. (6)].
Hence, it is obvious that if A0 not be too large, then Ai
would typically turn negative by the electroweak scale. In
fact, the large gluino contributions render both At and Ab
negative well above the electroweak scale. This implies,
that in this case (mSUGRA), the two pieces in dB=dt
would tend to cancel each other, an effect also manifested
by the smallness of C in Eq. (7). In turn, this leads to a
small value for �B � jB0 � Bj in mSUGRA.

Comparing the evolution of the trilinear terms in
NUGM:24 with that in mSUGRA, it turns out that a
qualitative difference arises only in the case of A
, while
for At and Ab the difference between the scenarios is only a
quantitative one. This is easy to understand given the over-
whelming dominance, in the last two cases, of the gluino
contribution over those from the electroweak gauginos.
Specifically, for A0 � 0, A
 at the weak scale comes to
be negative for mSUGRA while it is positive (with usually
a larger magnitude) for NUGM:24. Given the relative
weights of the Ai terms in Eq. (5), it is thus quite apparent
that the total contribution from the trilinear couplings to
the evolution of B is quite similar in the two models. On the
other hand, since the signs of ~m1;2 are reversed in
-4
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NUGM:24, the aforementioned cancellations in dB=dt
would no longer be operative; rather, the different contri-
butions would enhance each other leading to a large �B.
This is the very reason why we choose to concentrate on
models like NUGM:24. We note in passing that although
the RGE for B does not explicitly include the SU�3�
gaugino mass, it implicitly depends on the latter via the
contributions from trilinear couplings.

We now discuss the dependence of B and B0 on m0 and
the other parameters. Being obtained from the REWSB
condition of Eq. (4), B (and hence B0) evidently depends
onm0 quite strongly. The structure of Eq. (5) suggests that,
to one-loop order, �B should not depend on m0. However,
a subsidiary dependence arises through the determination
of the scale at which the minimizations of Higgs potential
(i.e. REWSB) is to be performed. Canonically, this scale is
determined by demanding that the contribution, to �2, of
the 1-loop correction terms of the effective potential be
small. In our analysis this scale is approximately halfway
between the lowest and highest mass of the spectra and,
generally, is not very far from the average stop mass scale��������������m~t1m~t2
p (see Ref.[34]). Since this scale does depend on
m0, it leads to a small dependence in �B as well by virtue
of being a limit of integration for the RGEs.

B. Incorporating CP violating phases: jB0j=jBj and
phase naturalness measure �

Even on inclusion of phases for the A and B parameters,
the RGEs formally remain the same as in Eqs. (5) and (6).
The evolution of the phases can then be extracted by
comparing the real and imaginary parts of the said equa-
tions. Clearly, unlike in the case of the real parts, the
imaginary parts of the beta functions for A’s and B do
not depend on the gaugino masses and hence there is no
cancellation between the different contributions.
Furthermore, even a vanishing �B0

can lead to a nonzero
�B provided A0 has a nontrivial phase. For example, in the
small tan� limit, the explicit analytical solution gives

jBj sin�B � jB0j sin�B0
�

1

2
�1�D0�jA0j sin�A0

;

jBj cos�B � jB0j cos�B0
�

1

2
�1�D0�jA0j cos�A0

� Cm1=2:

(10)

We examine now the interdependence between the
phases, their evolution (also see Ref. [15]) and the phase
sensitivity � for different values of tan� and other pa-
rameters both within mSUGRA as well as NUGM:24. As
we have already mentioned, the EDM constraints limit �B
to be tiny ( & 0:1, and typically much smaller). Now, if
either of jA0j or �A0

is small (actually, if jA0j sin�A0
�

jBj sin�B), then �B0
would be determined essentially by

jBj, jB0j and �B. In this case, �A0
would be quite uncon-

strained. The dependence on tan� is crucial and is best
095015
understood by considering the two opposite limits, namely,
small and large values:
(i) F
-5
or a small tan� ( & 5 or so), sin2� is large, and
therefore jBj is appreciably large [see Eq. (4)].
Within mSUGRA, for not too large a value of
jA0j, the GUT-scale value jB0j is then quite compa-
rable to jBj. This can be understood by recognizing
the cancellations between the various terms in
Eq. (8) that keeps C small and thereby keep B�
B0 relatively small [courtesy of Eq. (7)].
Consequently, in such a scenario, �B0

is not too
different from �B. This remains true even for�A0

�
�=2 which maximizes the EDM values [22].
On the contrary, the situation in NUGM:24 is quite
different. Here, a larger difference between jBj and
jB0j is generated by the enhancement in C.
Consequently, �B0

becomes appreciably different
from (and numerically larger than) �B.
(ii) F
or a large value of tan�, on the other hand, sin2� is
quite small. Thus, unless j�j is extremely tiny (as
happens, for example, in hyperbolic branch/focus
point [34,35] scenarios), jBj is constrained to be
small and has only subdominant influence on the
evolution of �B. This, in turn, implies that the value
of �B0

becomes strongly correlated with that of�A0
.

In other words, a high degree of fine-tuning in one
will necessitate a similar degree of fine-tuning in the
other.
We now focus on the issue of phase sensitivity. As
Eq. (10) suggests, the range allowed to �B (i.e. ��B)
imposes rather strong limits in the �B0

–�A0
plane.

Adopting the measure of phase naturalness � [as espoused
in Eq. (1)], one may estimate, from Eq. (10), the amount of
fine-tuning associated with the phase �B0

. Now, as the
RGEs suggest, the implicit dependence of � on A0 occurs
primarily through the dependence of B0 itself on A0. Thus,
to the leading order, one has an approximate relation of the
form [15]

�� jB=B0j: (11)

We would like to point out that although the above sim-
plification (as also those of neglecting yb and y
) is quite
illustrative, we do not take recourse to it. Rather we solve
the complete set of RGEs numerically and also compute �
numerically directly from its definition [Eq. (1)].

Note that, as obtained from Eq. (1) and the first of
Eqs. (10), the measure � actually involves a factor of
cos�B0

in the denominator. This causes � to be very large
when �B0

is close to �=2, as also a change of sign for �
when �B0

crosses �=2. We will see that this is indeed the
case for NUGM:24 where �B0

can easily cross �=2 owing
to a large degree of phase evolution. In the mSUGRA
scenario, on the other hand, such a feature rarely appears.

As we have already discussed, mSUGRA is associated
with a relatively small degree of evolution in B, and hence
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jBj � jB0j. This leads to a low value of �� 1 or, equiv-
alently, to a high degree of fine-tuning in �B0

. On the other
hand, a nonuniversal gaugino mass scenario like
NUGM:24 can provide us with a large evolution of jBj.
This, of course, can generate either jB=B0j � 1 or
jB=B0j � 1. The parameter space corresponding to the
latter case (which is typically satisfied better for smaller
tan� zones) reduces fine-tuning in �B0

. We will see that the
said reduction can be as large as a factor of 10 to 20
compared to mSUGRA. And finally, the very same large
evolution of jBj also implies that jB0j � 0 could be a
possibility within such scenarios. In NUGM:24 where the
evolution of B is large, the above reduction of jB0j toward
zero is possible when jBj is large i.e. when tan� is small. In
mSUGRA too this is possible, but only to a limited degree,
as the aforesaid evolution is smaller in extent. So jBj needs
to be closer to zero in order to have a tiny jB0j. In this
sense, a requirement of a smaller jBj would then favor
large values of tan� for mSUGRA. This we explore nu-
merically in the next section.

III. RESULTS: DEGREE OF B-EVOLUTION AND
PHASE SENSITIVITY FOR MSUGRA AND

NUGM:24

We show our numerical results in two stages. To begin
with, we examine the difference between the evolution of
B in mSUGRA and the NUGM:24 scenarios in the absence
of any phases. Building on the lessons drawn from this
0 500 1000 1500 2000
m1/2 (GeV)

0

500

1000

1500

B
0 o

r B
 (G

eV
)

0 500 1000 1500 2000
0

500

1000

1500

B0

B
tanβ = 10

tanβ = 3

B0

B

(mSUGRA)

m0 = 300 GeV

A0 = 0

µ > 0

(a)

0 400 800 1200 1600 2000
m0 (GeV)

−0.5

−0.3

−0.1

0.1

0.3

0.5

0.7

0.9

1.1

B
0/B

tanβ = 5

tanβ = 2

tanβ = 10

tanβ = 20
(mSUGRA)

m1/2 = 300 GeV

A0 = 0

µ > 0

(c)

FIG. 1 (color online). (a) The dependence of B and B0 on m1=2 in
dependence of the ratio B0=B on m1=2 , m0 and A0, respectively, ke
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exercise, we investigate next the core issue at hand,
namely, the behavior of the phase naturalness measure �
in each of the scenarios and the differences therein.

A. Results in the absence of CP violating phases

Focusing first on mSUGRA, we begin with the value of
B as determined, by the REWSB conditions, in terms of the
other parameters of the model, viz, m0,m1=2, A0, and tan�.
This study, coupled with that for the derived value at the
GUT scale, B0, would serve to indicate the regions of the
parameter space for which the phase sensitivity can be
significantly reduced.

Figure 1(a) shows the variation of B and correspond-
ingly B0 with respect tom1=2. With an illustrative choice of
parameters, viz. m0 � 300 GeV, A0 � 0, and �> 0, we
exhibit our results for tan� � 3 and 10. One finds that B,
determined through the REWSB condition, is almost linear
with m1=2. The dependence on tan�, on the other hand, is
quite nonlinear; but as already touched upon in the pre-
vious section, the REWSB condition implies that, for a
given m1=2, B decreases with an increase in tan�. As for
the evolution of B, we find that B0 � B unlessm1=2 is quite
large. This is reflective of the aforementioned cancellations
between the gaugino and trilinear terms of Eq. (5) in
mSUGRA. For our choice of A0 � 0, this is same as the
cancellations between the terms of C of Eq. (8). Once m1=2

becomes large, the contributions from the gaugino part of
Eq. (5) dominates and the cancellations are no longer as
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effective. This causes B0 to supersede B as is shown in
Fig. 1(a).

The information regarding the evolution of B can also be
parametrized in terms of the ratio B0=B and this is dis-
played in Fig. 1(b) as a function of m1=2. This ratio is of
particular interest on account of its relatively straightfor-
ward relation with the phase naturalness measure � (note
that �� jB=B0j). As could have been guessed from
Fig. 1(a) itself, the variation withm1=2 is nearly monotonic.
The shallow dip at small m1=2 values is a consequence of
the variation in the degree of cancellation between contri-
butions to dB=dt and is difficult to see analytically from
the leading terms alone. For large m1=2, the ratio B0=B is
seen to increase with tan�, while for small m1=2 the be-
havior is opposite. This, within mSUGRA, indicates that a
small value of m1=2, coupled with a large tan� seems to be
best suited for achieving a low degree of fine-tuning in the
phases.

In Fig. 1(c), we display the dependence of the same ratio
on m0. While the behavior may seem intriguing at first,
note that B depends on m0 only via the requirement of
REWSB. As Fig. 1(a) has already shown us, for the refer-
ence value of m1=2 � 300 GeV, B0 is typically somewhat
smaller than B. Now, B grows smaller as m0 decreases.
Thus, for small m0 and large tan�, B can be very small and
the aforesaid evolution implies that B0 would have been
negative. On the other hand, for large m0 values, B is large
and thus the relatively small evolution leaves the ratio
B0=B very close to unity.
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FIG. 2 (color online). As in Fig.
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The dependence of B0=B on the trilinear coupling pa-
rameter A0 is quite linear (Fig. 1(d)). This, again, can be
deduced from Eq. (7) where fixing tan�, m1=2, and m0 will
give rise to a linear relation between B0=B and A0. Note
that progressively larger values for tan� increases the
importance of the trilinear term contributions to dB=dt,
thereby increasing the slope of the curve.

We now repeat the analysis for the case of NUGM:24
choosing A0 � 0 as before. However, since the sign of the
electroweak gaugino mass parameters are now reversed,
the gaugino contribution to Eq. (5) would now enhance the
trilinear contribution instead of cancelling it. And since the
sign inversion affects only the subdominant contributions
to the evolution of At;b, the latter remain close to their
mSUGRA values with the result that the total trilinear
contribution to dB=dt suffers only a small relative change.
The result is then a monotonic decrease of B0 with an
increase inm1=2, and hence, in an appreciably large amount
of evolution [Fig. 2(a)].

A further consequence is that the ratio B0=B too is
monotonic in m1=2 (Fig. 2(b)). The slope though decreases
with m1=2, leading to a flat behavior for moderately large
m1=2 values. This can be understood by realizing that, apart
from B being approximately linear in m1=2 �B too is
approximately linear especially for large m1=2. While the
steep slope for small m1=2 might seem intriguing given the
almost linear behavior of both B and B0 in Fig. 2(a), it
should be noted that B is very small for such m1=2 and
consequently any departure from linearity would be mag-
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nified in the ratio. That the slopes at small m1=2 values
grow with tan� is understandable too, as for larger tan�,
the trilinear term contributions to �B assume greater
significance.

The abrupt ending of the curves, especially for larger
tan� values might seem curious. However, note that A
 is
appreciably larger in NUGM:24 than in mSUGRA (see
Sec. II A). This leads to a rapid suppression of m~
1

, the
mass of the lighter stau. While the latter also sees an
enhancement on account of the SU�2� gaugino mass being
significantly larger in NUGM:24 in comparison that within
mSUGRA for an identical value of m1=2, this effect is
subdominant. Consequently, for such parameter values,
the lighter stau would have a mass smaller than the lightest
of the neutralinos thereby becoming the lightest super-
symmetric particle. Since this is phenomenologically un-
acceptable, such regions of the parameter space have to be
discarded. Note though that the extent of the allowed
parameter range in the m1=2 –tan� plane does depend on
the value of m0.

Figure 2(c) displays B0=B for different values of tan� as
m0 is varied. As discussed before, B increases with in-
crease of m0 and diminishes with increasing tan�. For
most of the region (except when m0 is large and tan� is
quite small) the ratio can be large and negative because of a
large degree of evolution of B in NUGM:24. For larger
tan�, B itself is much smaller. Hence a large evolution
results into a large negative B0. On the other hand, a larger
value for m0 pushes B higher and B0 would then be
dragged down to a value near zero. Additionally, we like
to clarify that the larger tan� curves really end near 2 TeV
or so in Fig. 2(c) because of the REWSB requirement. This
is unlike the smaller tan� contours that span the entire m0

range displayed.
As for the dependence on A0 (see Fig. 2(d)), the rela-

tionship is once again linear, as predicted by Eq. (7), for
either of the two models under discussion.

B. Evolution of CP violating phases

Having analyzed the simple case of �B � �A0
� 0, we

may now consider the effect of phases. To start with, we
continue to maintain �B � 0, but now consider �A0

�

�=2, or, in other words, a maximal phase in the trilinear
coupling. This choice maximizes the EDM values [22]. To
study the generic features and compare with the results of
Sec. III A, we first choose a relatively small value of jA0j
( � 100 GeV). Thus, <�Ai� and <�B) would not be very
different from the analysis of Sec. III A because of the
absence of any phase in the gaugino parts of Eqs. (5) and
(6) and the smallness of jA0j. With this choice of inputs, the
only contributions to d=�B�=dt or d=�Ai�=dt arise from
=�Ai� themselves, and hence there is no occasion for
cancellations/enhancements unlike in the case for the real
parts. In addition, the effect of �A0

on jB0j would be
limited even for maximal �A0

unless jA0j is quite large.
095015
This is reflected by Figs. 3, wherein we display the varia-
tion of both jBj and jB0j with m1=2 for either model. The
results are seen to be consistent with the no-phase cases of
Fig. 1(a) and 2(a).

We now invoke a nonzero �B and analyze the resulting
evolution of the same from the electroweak scale to the
GUT-scale. In Figs. 4, we display this for both mSUGRA
and NUGM:24, and in each case for two values of tan�,
namely, 3 and 10. Again, for illustrative purposes, we
choose, for the other relevant parameters, m0 �
100 GeV, m1=2 � 300 GeV, and jA0j � 300 GeV with
�A0
� �=2. Although the constraints from the EDM mea-

surements restrict j�Bj to very small values [ & O�10�2�],
we display the functional dependence for a wider range of
�B. The apparent discontinuities for the NUGM:24 curves
are not physical and have only been occasioned by the
choice for the domain of �B0

, namely ���;�	. Clearly, the
amount of phase evolution in NUGM:24 is seen to be
higher than that in mSUGRA.

Having established that the degree of fine-tuning could,
in principle, be smaller in the NUGM:24 case, we now
perform a scan of the parameter space for both mSUGRA
and NUGM:24 so as to quantify the extent of this reduc-
tion. In each case, we consider two different values of tan�
( � 2; 10) while maintaining �A0

� �=2 so as to max-
imize the EDM values. Allowing m0, m1=2 and jA0j to
vary up to 1 TeV (with the lower end set in accordance
with the current limits on superparticle masses), we show,
in Figs. 5, the scatter plots in the �–m1=2 plane. It is
interesting to note that, for low to moderate values of
tan�, the measure � rarely becomes negative in the
mSUGRA case, whereas in the nonuniversal scenario it
is more evenly distributed.

While j�j does tend to concentrate around zero
(Fig. 5(c)), note that, for small tan�, the NUGM:24 case
does have a significantly dense distribution up to j�j � 20
and values as large as j�j � 100 are also obtained, albeit
with a reduced frequency. In contrast, the mSUGRA case
barely registers a presence even for �� 1:5 (Fig. 5(a)).
Thus, in going from mSUGRA to NUGM:24, the fine-
tuning can be reduced by a factor as large as �70. For
the tan� � 10 case though, the improvement is much more
moderate. As Fig. 5(b) shows, the mSUGRA scatter
reaches up to �� 3:5, whereas the nonuniversal scenario
admits j�j � 10 (Fig. 5(d)), or, in other words, a reduction
of the maximal fine-tuning by a factor of �3. More im-
portant, though, is that the density of points at higher � is
much larger in the NUGM:24 case than for mSUGRA. In
other words, it is far more likely to have a less fine-tuned
point in the parameter space for NUGM:24.

Concentrating on NUGM:24, we present, in Fig. 6, con-
tour plots for � in the m0 �m1=2 plane for two different
values of tan�. Note that the limits on m0 and m1=2 are
2 TeV, higher than what was chosen for Fig. 5. Once again,
jA0j is fixed at 100 GeV with�A0

� �=2. A comparison of
-8
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the two plots clearly reinforces our earlier result that the
fine-tuning is less severe for low tan�. Furthermore, the
values of m0 and m1=2 leading to a particular � are highly
correlated. Note that both signs for � are possible. The
region where � changes sign is associated with a parame-
ter point where �B0

is ��=2. To summarize, the results
displayed in Fig. 5 and 6 show that it is indeed possible to
obtain a surprisingly large amount of reduction of phase
sensitivity even for relatively small sparticle masses.

We now explore, in detail, the range of tan� that is
associated with very low level of phase sensitivity or, in
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other words, a very large j�j. As has been argued earlier,
jBj itself strongly depends on tan�. Moreover, �B, and
thereby B0 too, has a nontrivial dependence on tan�. Thus
it is understandable that a very large j�j would indeed
prominently highlight such a dependence. Rather than
attempting a full, but very computing-intensive, scan
over the entire parameter space, we choose to restrict
ourselves to the subset of the parameter space that would
naturally produce very large values for j�j, namely, the
region with small jB0j and small jA0j. Hence we adopt a
framework with given values for jB0j instead of tan�. The
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rge values of j�j for mSUGRA and NUGM:24 cases. A smaller
A and NUGM:24. However, NUGM:24 is associated with much

of the associated values of tan� vs �. tan� is small (2 to 5) for
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requirement of REWSB determines tan� once B0, m0,
m1=2, and A0 are fixed. Note however, that the point A0 �

B0 � 0 would imply the absence of any SUSYCP phase at
all scales. Thus, it is not surprising to obtain very large
values of j�j in this scenario. However, in this part of our
work the focus is simply to study, the effect of tan� on � in
detail, more importantly for large j�j values. To quantify
our study of this issue, we choose small representative
values viz. jB0j � 0:5 GeV and jA0j � 1GeV, along with
�A0
� �=2 so as to maximize the EDM contributions as

before. In Figs. 7, we present various scatter plots for � as
m0 and m1=2 are varied over a wide range (0 to 2 TeV).
Note that the results of this analysis have a significant
dependence on jA0j. For example, increasing jA0j to
100 GeV may reduce � by a factor of 10 to 20. As
Fig. 7(a) shows, within mSUGRA, j�j could be as large
as 100 while most of the points lie between 10 to 25. The
situation is qualitatively different in NUGM:24 (Fig. 7(b))
where j�j may go up to 1500 while typically ranging
between 200 to 600. Thus, NUGM:24 is much better able
to accommodate low phase-sensitivity solutions than do
the universal gaugino mass scenarios.

It is curious to note that, unlike what Fig. 5 suggested, �
could assume negative values within mSUGRA (see
Fig. 7(a)). This prompts us present a scatter plot of �
against the derived quantity tan�. As Fig. 7(c) shows,
mSUGRA admits negative � only for large tan�. In fact,
even for the positive branch, large values of j�j are typi-
cally concentrated in the large tan� (20 to 45) region. In
contrast, for NUGM:24, � assumes larger values typically
for low tan� values (2 to 5). It should be remembered in
this context that, within NUGM:24, the large tan� domain
is significantly restricted from considerations of the LSP
(see Sec. III A). That the favored range for tan� is different
in the two scenarios is attributable to the interplay between
the cancellations/enhancements in the RGE evolution of B
on the one hand and the requirement of REWSB on the
other.

Finally, we comment on the case of �< 0. It turns out
that for this branch of � and �A0

� �=2, one has jB0j>
jBj for almost all the parameter space of NUGM:24. As a
result one finds no advantage toward reducing the phase
sensitivity.
IV. CONCLUSION

As is well known, the experimental upper bounds on the
electric dipole moments of the neutron and the electron
impose strong constraints on any source of CP violation in
supersymmetric models, in particular, on the weak scale
phase parameters. For example, in the minimal supergrav-
ity model, �B, the phase of the bilinear Higgs coupling
parameter is constrained to be typically smaller than 0.01,
with only some very limited regions (such as the focus
point scenario) in the parameter space admitting slightly
095015
larger ( & 0:1) values. This, however, implies a severe fine-
tuning condition for �B0

, the value of the same phase
parameter at the unification scale. In turn, �A0

, the phase
of the trilinear coupling parameter is also severely fine-
tuned. This has been a longstanding problem with
mSUGRA-like scenarios.

To quantify this problem, we define a phase naturalness
measure � as the ratio of the spread of the phase �B0

at the
unification scale that is consonant with the spread �B
allowed, at the electroweak scale, by the electric dipole
moment constraints A larger � would imply a lower
degree of phase sensitivity. One finds that, unless tan� is
very large, � may be approximated to B=B0 for much of
the parameter space.

In this analysis, we have demonstrated that models
admitting a large RG evolution of the bilinear Higgs cou-
pling could be interesting in the context of a reduction in
the fine-tuning of phases. In particular, we choose a
supergravity-inspired scenario wherein nonuniversal gau-
gino masses arise from a gauge kinetic energy function f��
transforming as a particular nonsinglet representation of
SU�5� (NUGM:24 of Table I). As in the mSUGRA (singlet
f��) case, this representation, considered in isolation, in-
troduces no additional phase for the gaugino masses.

Studying the nature of the evolution of B to understand
the correspondence with phase-sensitivity, we identify the
large cancellations in the RGE for B as being primarily
responsible for the high degree of fine-tuning within
mSUGRA. In the NUGM:24, on the other hand, the said
cancellations are replaced by enhancements (on account of
the reversal in the sign of the gaugino mass terms) and this
translates into a reduction of the above-mentioned fine-
tuning. In fact, � can be significantly increased in
NUGM:24 (by a factor of 10 to 20) with respect to com-
parable mSUGRA type of models. The said improvement
is typically more pronounced for small tan� values.

A particularly interesting result is the identification of
extended regions in the NUGM:24 parameter space which
admit a low degree of phase-sensitivity even for relatively
small superparticle masses. This feature is absent in
mSUGRA as well as in most other models with high scale
inputs for SUSY breaking.

We further explored the dependence of our results, on
tan�, by specifically concentrating on the parameter space
corresponding to very large � (or very small phase sensi-
tivity) so as to compare the two models. Naturally, this
occurs close to vanishing A0 and B0 values. We adopt a
scheme where B0 itself is given as an input parameter
instead of tan�, given the more direct relationship of B0

with �. Our analysis shows that, even here, the values of �
in NUGM:24 are typically larger by a factor of 10 to 20 in
comparison to those in mSUGRA. And whereas mSUGRA
generically requires large tan� (20 to 40) for j�j to be
large, the NUGM:24 scenario prefers a smaller tan� (2 to
5) instead.
-11
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Finally, while our analysis has focussed on SU�5� as the
GUT gauge group, similar considerations hold for SO�10�
as well. A suitable nonsinglet representation resulting in a
similar gaugino mass pattern as in NUGM:24 would also
produce such a reduction of phase sensitivity.
095015
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