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3-3-1 models with unique lepton generations
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We study previously unconsidered 3-3-1 models which are characterized by each lepton generation
having a different representation under the gauge group. Flavor-changing neutral currents in the lepton
sector occur in these models. To satisfy constraints on �! 3e decays, the Z0 must be heavier than 2 to
40 TeV, depending on the model and assignments of the leptons. These models can result in very unusual
Higgs decay modes. In most cases the�� decay state is large (in one case, it is the dominant mode), and in
one case, the �! ss rate dominates.
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I. INTRODUCTION

An interesting extension of the standard model is based
on the gauge group SU�3�c � SU�3�L �U�1� (3-3-1). In
the original, minimal version of the model [1,2], the lep-
tons are put into antitriplets of SU�3�L, two generations of
quarks are put into triplets and the third generation of
quarks is put into an antitriplet. With this structure, the
anomalies will all cancel if and only if the number of
generations is a multiple of three. The model has an
automatic Peccei-Quinn symmetry [3,4], and the fact that
one quark family has different quantum numbers than the
other two may explain the heavy top quark mass [5]. An
unusual feature of this model is that sin2�W must be less
than 1=4. Since it is an increasing function of q2, the scale
of SU�3�L breaking must be relatively low, and cannot
arbitrarily be moved up to a high scale.

This minimal model contains doubly charged gauge
fields (bileptons) as well as isosinglet quarks with exotic
charges. The phenomenology of these models is very rich
and has been the subject of extensive study [6]. A com-
pletely different class of models was proposed in
Refs. [7,8], in which the embedding of the charge operator
into SU�3�L is different. In these models, there are no
exotic charges for the quarks, and the gauge bosons are
all either neutral or singly charged. In all of these models,
one still treats the lepton generations identically, and treats
one quark generation differently than the other two. A
comprehensive review of the gauge, fermion and scalar
sectors of all of these models can be found in Refs. [9,10].

In Ref. [9], a detailed analysis of the anomalies in 3-3-1
models showed that there are two anomaly-free sets of
fermion representations in which the lepton generations
are all treated differently. The phenomenology of these
models has never been studied in the literature. With
leptons in different representations, one might expect
lepton-flavor-changing-neutral processes.

In this paper, we discuss the phenomenology of these
two models. In Sec. II, the various 3-3-1 models are
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presented, as well as the possible representations for fer-
mions in these models. A set of anomaly-free models will
be found, and it will be noted that two of them have very
different representations for the lepton families. In Sec. III,
we will consider the scalar sector of these ‘‘unique lepton
generation’’ models, and in Sec. IV will present the mass
matrices for the leptons, look at the possible variations that
can occur, and find the Yukawa couplings to the scalars.
The phenomenology of lepton-number violating � and �
decays will be discussed in Sec. V, and for Higgs decays in
Sec. VI. Our most interesting result will be that many of
these models have fairly large branching ratios for the
Higgs boson decaying into a muon and a tau, and in one
model it may be the dominant decay. In Sec. VII, we will
examine lepton-number violation due to gauge boson ex-
change, and the resulting bounds on the gauge boson
masses. Finally, in Sec. VIII we present our conclusions.
II. MODELS

As discussed in Ref. [9], if one assumes that the isospin
SU�2�L of the standard model is entirely embedded in
SU�3�L, then all models can be characterized by the charge
operator

Q � T3L �
2���
3
p bT8L � XI3 (1)

where I3 is the unit matrix and TiL � �iL=2, where the �iL
are the Gell-Mann matrices. X is fixed by anomaly can-
cellation and the coefficient can be absorbed in the hyper-
charge definition. Different models are characterized by
different values of b.

In the original Frampton, Pisano, and Pleitez [1,2]
model, b � 3=2, leading to doubly charged gauge bosons
and fermions with exotic charges. The fermion representa-
tions, with the SU�3� �U�1� quantum numbers, are

Li �
ei
�i
eci

0
@

1
A:�3�; 0� (2)

for the leptons (i � 1; 2; 3) and
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TABLE I. Anomalies for the fermion families.

Anomalies L1 L2 L3 L4 Q1 Q2

�SU�3�c	
2U�1�X 0 0 0 0 0 0

�SU�3�L	
2U�1�X �2=3 �1=3 0 �1 1 0

�grav	2U�1�X 0 0 0 0 0 0
�U�1�X	

3 10=9 8=9 6=9 12=9 �12=9 �6=9
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Q1;2 �

u
d
D

0
@

1
A; c

s
S

0
@

1
A:�3;�1=3�; (3)

Q3 �

b
t
T

0
@

1
A:�3�; 2=3� (4)

with all of the quark conjugate fields being isosinglets. D,
S, T are quarks with charges given by �4=3, �4=3, 5=3.

A simple variant of this model [11] changes the lepton
structure by replacing the ec with a heavy lepton E� and
adding ec and E� as singlets.

If one wishes to avoid exotic electric charges, one must
choose b � 1=2. In that case, the fermion structure is very
different. Following [9], we can find six sets of fermions,
which contain the antiparticles of all charged particles. The
first four are leptons and the last two are quarks. Noting ei,
di, ui as standard model fermions, and Ei, Di, Ui as exotic
fermions, the four sets of leptons are

L1 �

�i
e�i
E�i

0
@

1
A; e�i ;E�i (5)

with SU�3� �U�1� quantum numbers
�3;�2=3�; �1; 1�; �1; 1�,

L2 �

e�i
�i
N0
i

0
@

1
A; e�i (6)

with SU�3� �U�1� quantum numbers �3�;�1=3�; �1; 1�,
and N0

i is a heavy neutrino,

L3 �

e�i
�i
N0

1

0
@

1
A;

E�i
N0

2

N0
3

0
@

1
A;

N0
4

E�i
e�i

0
B@

1
CA (7)

with SU�3� �U�1� quantum numbers
�3�;�1=3�; �3�;�1=3�; �3�; 2=3�, and there are four heavy
neutrino states (some may be conjugates of another), and

L4 �

�i
e�i
E�1i

0
@

1
A;

E�2i
N0

1

N0
2

0
B@

1
CA;

N0
3

E�2i
E�3i

0
B@

1
CA; e�i ;E�1i;E

�
3i (8)

with SU�3� �U�1� quantum numbers
�3;�2=3�; �3; 1=3�; �3;�2=3�; �1; 1�; �1; 1�; �1; 1�.

The two sets of quarks are

Q1 �

di
ui
Ui

0
@

1
A; dci ; u

c
i ;U

c
i (9)

with SU�3� �U�1� quantum numbers �3�; 1=3�, �1; 1=3�,
�1;�2=3�, �1;�2=3�, and
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Q2 �

ui
di
Di

0
@

1
A; uci ; d

c
i ;D

c
i (10)

with SU�3� �U�1� quantum numbers �3; 0�, �1;�2=3�,
�1; 1=3�, �1; 1=3�.

The anomalies for these six sets are [9] found in Table I.
With this table, anomaly-free models (without exotic
charges) can be constructed. As noted in Ref. [9], there
are two one-family and eight three-family models that are
anomaly free. Of the eight three-family models, four treat
the lepton generations identically, two treat two of the
lepton generations identically and in two, the lepton gen-
erations are all different. It is the latter two that will be the
subject of this study.

Note that one can easily see from Table I that there are
only two one-family models. The first consists ofQ2 � L3.
This structure is perhaps most familiar to grand unified
model builders, since the 27 fields are contained in the 27-
dimensional fundamental representation of E6. In addition
to analyses of E6 models, an analysis of this model, in the
context of 3-3-1 models, can be found in Refs. [9,12].

The second one-family structure isQ1 � L4. This model
is related to SU�6� �U�1� unified models, and is analyzed
in Ref. [13]. Note that both of these one-family models are
simply triplicated to become three-family models.

There are two other three-family models in which all of
the leptons are treated the same way (but now the quark
generations are treated differently). These were the first
models analyzed once it was recognized that 3-3-1 models
without exotic charges (i.e. with b � 1=2) could be con-
structed. The first is 3L2 �Q1 � 2Q2. As in the original 3-
3-1 models, one generation of quarks is treated differently
than the other two, and thus three families are needed to
cancel anomalies. These were analyzed in Ref. [8]. The
second such model is 3L1 � 2Q1 �Q2, which also re-
quires three families for anomaly cancellation. This model
has been analyzed in Ref. [14].

Two models involve simple replication of the two one-
family models, but take two copies of the first one-family
model and one copy of the second, or vice versa, i.e.
2�Q2 � L3� � �Q1 � L4� and 2�Q1 � L4� � �Q2 � L3�.
Since the lepton generations are not all different, we will
not consider these models further, although they have not,
to our knowledge, been studied.

The two models of interest treat all of the lepton gen-
erations differently. They are model A: L1 � L2 � L3 �
Q1 � 2Q2 and model B: L1 � L2 � L4 � 2Q1 �Q2. Note
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that each model has two ‘‘simple’’ lepton families (L1 and
L2 above), and one more complicated family. We now
analyze the phenomenology of these two models. Note
that one cannot determine which (e;�; �) lepton belongs
to which representation, and so we will consider all six
possible permutations for each model.

III. THE SCALAR SECTOR

The scalar sector of 3-3-1 models has been extensively
studied [11,15]. Here, one can see a substantial advantage
to b � 1=2 models. In the original b � 3=2 models, the
minimal Higgs sector consists of three SU�3�L triplets plus
an SU�3�L sextet. In the b � 1=2 models, three triplets are
sufficient. One triplet breaks the SU�3�L �U�1� gauge
symmetry down to the standard model, and the other two
are necessary to break the SU�2�L symmetry and to give
the fermions mass. A very comprehensive analysis of the
scalar sector in all previously considered models can be
found in Ref. [15].

Although the models we are considering are b � 1=2
models, it is not a priori obvious that three triplets will
suffice to give the leptons mass, since the different families
have very different structure. Our model A has five charged
leptons (the e;�; � and two exotic leptons), and model B
has seven charged leptons (with four exotic leptons).
Fortunately, as will be seen in Sec. IV, three triplets will
suffice to give the charged leptons mass. We will not
consider neutrino masses in this study since the number
of fields and the various options (which exotic neutrinos
correspond to which right-handed neutrinos, for example)
will rule out any substantial predictive power.

The first stage of breaking from SU�3�L �U�1� to
SU�2� �U�1� is carried out by a triplet Higgs, �A, which
is a �3; 1=3� under the SU�3�L �U�1� group, and its vac-
uum expectation value (vev) is given by

h�Ai �

0
0
V

0
@

1
A: (11)

Note that the second component of the triplet is neutral,
and could also get a vev, but that can be removed by a
gauge transformation. Five of the gauge bosons acquire
masses of O�V�, while the remaining four are massless at
this stage. One can easily see that this vev will give masses
of O�V� to the U and D exotic quarks, and in previously
considered models, to the E exotic leptons as well. These
masses are phenomenologically constrained to be substan-
tially larger than the electroweak scale.

The second stage of symmetry breaking requires two
Higgs triplets, �1 and �2 with quantum numbers
�3;�2=3� and �3; 1=3� respectively. If one only wished to
break the gauge symmetry, then one triplet would suffice.
However, giving mass to the fermions requires a second
doublet. This is not too surprising, since the quark masses
in the standard model necessitate a Higgs doublet H and
095014
i�2H
� to give masses to the down and up quarks, respec-

tively. In SU�2� 2 � 2, but this does not apply in SU�3�.
Thus the low-energy theory is a two-doublet model. The
vevs of these doublets are

h�1i �
v1=

���
2
p

0
0

0
B@

1
CA; h�2i �

0
v2=

���
2
p

0

0
@

1
A (12)

where v2
1 � v

2
2 � �246 GeV�2. Note that the third compo-

nent of �2 could acquire a nonzero vev, but this will not
involve SU�2� breaking and will be irrelevant.
IV. YUKAWA COUPLINGS

With the fermion representations discussed in Sec. II and
the scalar representations discussed in Sec. III, we can now
write down the Yukawa couplings and mass matrices for
the charged leptons. Let us first write down the fermion
representations more explicitly.

For model A, the fields, followed by their SU�3�L �
U�1� quantum numbers, are (with the subscript L under-
stood)

 i �
�i
ei
Ei

0
@

1
A; �3;�2=3�; eci ; �1; 1�; Eci ; �1; 1�; (13)

 j �
ej
�j
N0
j

0
B@

1
CA; �3;�1=3�; ecj ; �1; 1�; (14)

 k �

ek
�k
N0

1k

0
BB@

1
CCA;�3;�1=3�;  0k �

Ek
N0

2k

N0
3k

0
BB@

1
CCA; �3;�1=3�;

 00k �

N0
4k

Eck
eck

0
BB@

1
CCA; �3; 2=3�

(15)

where the N0 could be a conjugate of either the � or
another N0, and the generation labels i, j and k are all
distinct. Note that the model contains five charged leptons:
the standard three plus two exotic leptons.

For model B, the fields are

 i �
�i
ei
Ei

0
@

1
A; �3;�2=3�; eci ; �1; 1�; Eci ; �1; 1�; (16)

 j �
ej
�j
N0
j

0
B@

1
CA; �3;�1=3�; ecj ; �1; 1�; (17)
-3



1There are trivial exceptions. For example, in MA, if h1 is very
small, and all off-diagonal terms vanish, then there is no fine-
tuning (and no flavor-changing neutral currents).
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 k �

�k
ek
E1k

0
BB@

1
CCA; �3;�2=3�;  0k �

Ec2k
N0

1k

N0
2k

0
BB@

1
CCA; �3; 1=3�;

 00k �

N0
3k

E2k

E3k

0
BB@

1
CCA; �3;�2=3�; e�i ; Ec1k; Ec3k

(18)

where the last three fields are singlets. Note that this model
has seven charged leptons: the standard three plus four
exotics.

From these representations, and the scalar fields (with
their vevs) in Sec. III, we can write down the mass matrices
for the charged leptons. The mass matrix for model A is
5� 5 and for model B is 7� 7. From these matrices, the
Yukawa couplings to each scalar field can be trivially
obtained by replacing the vev with the field. The Yukawa
couplings and full mass matrices are given in the
Appendix. If one takes the limit in which v1 � v2 � 0,
then each of these matrices has three zero eigenvalues,
indicating that the exotic leptons all get masses of O�V�.
Since V must be large, we can take the limit as V ! 1, and
find the effective mass matrices for the three standard
model leptons. Note that we do not know, a priori, which
of the leptons is in the first, second, or third rows, so each
model will have six permutations.

For model A, we find that the mass matrix is of the form

MA �
1���
2
p

h1v2 h2v2 0
h3v1 h4v1 h5v2

h6v1 h7v1 h8v2

0
@

1
A (19)

where the hi are constants. The Yukawa coupling matrices
are then

0 0 0
h3 h4 0
h6 h7 0

0
@

1
A�1 �

h1 h2 0
0 0 h5

0 0 h8

0
@

1
A�2: (20)

For model B, the mass matrix is of the form

MB �
1���
2
p

h01v2 h02v2 h03v2

h04v1 h05v1 h06v1

h07v2 h08v2 h09v2

0
@

1
A (21)

and the Yukawa coupling matrices are

0 0 0
h04 h05 h06
0 0 0

0
@

1
A�1 �

h01 h02 h03
0 0 0
h07 h08 h09

0
@

1
A�2: (22)

These Yukawa coupling matrices are certainly unusual.
Note that diagonalizing the mass matrices will not diago-
nalize the Yukawa coupling matrices, and thus one will
have lepton-flavor-changing neutral currents (FCNC) in
the Higgs sector. This is just the Glashow-Weinberg theo-
rem [16]. To determine the size of the lepton-flavor viola-
tion, one simply must diagonalize the mass matrix and read
095014
off the Yukawa coupling matrices in the diagonalized
basis.

Unfortunately, such a procedure will not be useful. The
matrices have far too many free parameters. Worse, in
general fine-tuning will be needed. We define ‘‘fine-
tuning’’ as a situation in which several terms add together
to give a term that is much smaller than any individual
term. In general, fine-tuning will be needed to give the
electron a small mass,1 and it is unclear how this fine-
tuning will affect the Yukawa coupling matrices.

In order to avoid fine-tuning, and to give the matrices a
nontrivial structure, we will assume that the matrices will
have a Fritzsch structure [17]. The original Fritzsch matrix
was of the form

0 A 0
A 0 B
0 B C

0
@

1
A (23)

whereC
m�, B

�������������m�m�
p and A
 �������������mem�

p . This matrix
has the correct eigenvalues, is parameter free and does not
have fine-tuning. It was shown in Ref. [18] that a wide
variety of matrices, such as those with nonzero values in
the 1,1 and 2,2 elements, will (if one requires that there be
no fine-tuning) yield the same flavor-changing-neutral
structure as the Fritzsch structure. We expect that the
general case will give the same qualitative results.

Since the matrices we are considering are not symmet-
ric, we will write the desired mass matrix as

0 a �������������mem�
p

0
b �������������mem�
p

0 c �������������m�m�
p

0 d �������������m�m�
p em�

0
B@

1
CA (24)

where a, b, c, d and e are all of order 1. In general, with
multiple scalars, the individual Yukawa couplings would
be of this form, with

P
a �

P
b �

P
c �

P
d �

P
e �

1.
So, for a given model, and a given choice of permuta-

tions of i, j and k, one compares this matrix with the mass
matrices MA and MB, and reads off the values of a, b, c, d
and e. Then the mass matrices are diagonalized, and the
Yukawa coupling matrices in the diagonal basis are deter-
mined. It turns out that the procedure is only consistent for
model A if j is the second generation, and thus we have a
total of 4 Yukawa coupling matrices for model A (two
choices of �1 or �2, and the choice between i � 1, k � 3
or i � 3, k � 1), and 12 Yukawa coupling matrices for
model B (two choices of � and six permutations of i; j; k).
However, the results are simplified in model B by the fact
that if we permute the first and third indices, the Yukawa
coupling matrices are identical, so there are only six differ-
ent matrices.
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TABLE II. Yukawa coupling matrices to �1 and �2 for model A. All entries are to be divided

by
�����������������
v2

1 � v
2
2

q
=
���
2
p
� 175 GeV. The specific models are discussed in the text.

Scalar A1 A2

�1

0 �
�������������mem�
p

�m�

�����
me
m�

q
0 �m� �m�

�����
m�

m�

q
������������
mem�
p �������������m�m�

p m�

0
BBB@

1
CCCA

0 0
������������
mem�
p

�
�������������mem�
p

�m�
�������������m�m�
p

�m�

�����
me
m�

q
�m�

�����
m�

m�

q
m�

0
BB@

1
CCA

�2

me
�������������mem�
p m�

�����
me
m�

q
0 0 0

�
������������
mem�
p

�
�������������m�m�
p m� �m�

0
BB@

1
CCA

me 0 �
������������
mem�
p�������������mem�

p
0 �

�������������m�m�
p

m�

�����
me
m�

q
0 m� �m�

0
BB@

1
CCA

TABLE III. Yukawa coupling matrices to �1 and �2 for model B. All entries are to be divided by
�����������������
v2

1 � v
2
2

q
=
���
2
p
� 175 GeV. The

specific models are discussed in the text.

Scalar B1 B2 B3

�1

0 �
�������������mem�
p ������������

mem�
p

0 �m�
�������������m�m�
p

0 �m�

�����
m�

m�

q
m�

0
BB@

1
CCA

0 0 �
������������
mem�
p

0 0 �
�������������m�m�
p

0 0 m� �m�

0
B@

1
CA me

�������������mem�
p m�

�����
me
m�

q
0 0 0
0 0 0

0
B@

1
CA

�2

me
�������������mem�
p

�
������������
mem�
p

0 0 �
�������������m�m�
p

0 0 m� �m�

0
B@

1
CA

me 0
������������
mem�
p

0 �m�
�������������m�m�
p

0 �m�

�����
m�

m�

q
m�

0
BB@

1
CCA

0
�������������mem�
p

�m�

�����
me
m�

q
0 �m� �m�

�����
m�

m�

q
0 �m�

�����
m�

m�

q
m� � 2m�

0
BBBB@

1
CCCCA
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The Yukawa couplings are given in Table II for model A
and in Table III for model B. We label models A1 and A2
as corresponding to �i; j; k� � �e;�; �� or ��;�; e�, respec-
tively, and we label models B1, B2 and B3 as correspond-
ing to �e;�; ��, �e; �; �� or ��; e; ��, respectively.

Note that we have tacitly assumed that the two Higgs
triplets in the low-energy sector do not mix. This is for
simplicity. One can easily find the couplings of one of the
physical Higgs bosons by including an appropriate (and
unknown) mixing angle. In our discussion of the phenome-
nology, this angle will play an important role, and it must
be kept in mind.

Note how unusual some of these Yukawa coupling ma-
trices are. For example, in model B3’s coupling to �1, the
Yukawa couplings to �� �, �� � and ��� all vanish,
leading to an effectively leptophobic Higgs boson. We now
turn to the lepton-flavor-changing phenomenology of these
models.

V. LEPTONIC FLAVOR-CHANGING DECAYS

In all of these models, there are Higgs-mediated lepton
FCNC arising from the off-diagonal terms in the Yukawa
coupling matrices. This will lead to � and � decays which
violate the lepton number. The leptonic decays of the ��

are into e�e�e�, ������, e�e���, ����e�,
e�����, e����� and the � decay is into e�e�e�.

The decay rate calculations are straightforward [19,20].
Given the experimental upper bound on the decay rate for
each of these processes, one can find a lower bound on the
095014
mass of the exchanged Higgs boson. The rate is inversely
proportional to the Higgs mass to the fourth power.
Examining all of the Yukawa coupling matrices in the
previous section, we find that this lower bound is always
less than 4.9 GeV. Since the experimental lower bound is
more than an order of magnitude higher, these bounds are
not competitive.

One can still have one-loop radiative decays. Again, the
bounds from � decays (�! e�; �! ��) do not give
strong bounds. The strongest is from �! �� in
models A1, A2, B1, B2 in which the first three involve
coupling to �2 and the last to �1. However, even this lower
bound is only 50 GeV, and is marginally competitive with
current experimental bounds.

A much stronger bound comes from �! e�. Here a �
can be in the loop. The formula for the decay rate [21] is

��!e� � h2
��h2

e�
�m2

�m
3
�

128�4

�
ln�mh=m��

m2
h

�
2

(25)

where the hij are the Yukawa couplings, and mh is the
scalar mass. This result does not change if the relevant
scalar is a pseudoscalar.

Plugging in, one finds a lower bound of 230 GeV on the
exchanged scalar mass for models A1, A2, B1 and B2,
regardless of which scalar is used. However, for several
reasons this bound is quite uncertain. First, we have a
Fritzsch ansatz, and without that assumption the Yukawa
couplings are only order of magnitude. Second, we have
ignored mixing angles, which could also lower the Yukawa
-5



TABLE IV. The fermionic branching fraction into various final
states for the Higgs that does not couple to the b quarks in the
various models. We have explicitly assumed no mixing between
the Higgs scalars, and that top quark decays are not kinemati-
cally accessible. The decay into gauge bosons will dominate if
they are kinematically accessible.

Model �� �� �� ss

A1 0 0.05 0.94 0.01
A2 0 0.06 0.93 0.01
B1 0.04 0.72 0.04 0.20
B2 0 0.06 0.93 0.01
B3 0 0 0 1.00
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couplings substantially. Third, these models can have
heavy leptons in the loop, and cancellations are possible.
Thus, the numerical bound should be taken with a grain of
salt, but it is clear that �! e� may be quite close to
detection in these models.

Note that model B3 was not included in the above
paragraph. In the coupling to �1, there is no bound coming
from muon decay; in the coupling to �2, there is a bound of
7.3 GeV on the Higgs mass. So the model is unconstrained
by muon decay, and the Higgs bosons in this model could
be very light.

We now turn to lepton-number violation in Higgs
decays.
VI. LEPTON-NUMBER VIOLATING HIGGS
DECAYS

We have a two-Higgs model in the low-energy sector.
Here, mixing between the Higgs scalars (which will ge-
nerically occur and depend on parameters of the scalar
potential) can have a major effect on the branching ratios
of Higgs bosons. For the moment, we will ignore these
effects, but they are important and will be discussed
shortly.

In the conventional two-Higgs model, one Higgs doublet
couples to the Q � 2=3 quarks, and the other to the Q �
�1=3 quarks and the charged leptons. The latter’s primary
decay into fermions is thus to bb, with the ���� decay
being a factor of 3m2

b=m
2
� 
 25 smaller. Of course, the

primary decay mode could be WW, WW�, ZZ or ZZ�,
depending on the mass of the Higgs. Here we will only look
at the primary fermionic decays, which are relevant if the
Higgs mass is not too much larger than its current lower
bound (if it is larger, the fermionic decay branching ratios
might be small, but certainly detectable at the CERN
LHC). The primary fermionic decay mode of the Higgs
that couples to Q � 2=3 fields would be into tt if kine-
matically accessible, and cc if not. It will not couple to the
charged leptons. If the mixing angle is not too small, then
the latter field’s primary fermionic decay is also into bb.

In both models under consideration, one of the quark
generations has a different structure than the other two. The
unique generation is generally assumed to be the third
generation, an assumption we concur with. If it is not,
there will be flavor-changing effects in the kaon sector
which will be phenomenologically problematic.

Then, again ignoring mixing, the scalar that couples to
bb will not couple to the charged leptons. The field cou-
pling to the charged leptons will couple to the strange
quark and to the top quark. If its mass is below 360 GeV,
then its primary fermionic decay is into the charged leptons
and the strange quark.2 In this case, we can calculate the
2Actually, if it is between 270 and 360 GeV, then the three
body decay through a virtual top into tbW will dominate.
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fermionic branching ratios for the five models under con-
sideration, and show these in Table IV.

The results in Table IVare interesting. In models A1, A2
and B2, we see that the inversion of the bottom-top quark
doublet takes the field that would ‘‘normally’’ decay into
bb, and (since the top quark is too heavy) makes its
primary decay mode ����. This would be a very dramatic
signature. In model B3, in which the Higgs is leptophobic
(and in which, as shown in the last section, radiative muon
decay does not bound the Higgs mass), there are no lep-
tonic decays, and the primary decay mode would be into
ss. The most unusual model is B1, in which the primary
decay mode is into ��. This monochromatic muon would
give a very dramatic signature.

All of these signatures are quite dramatic. How realistic
is this scenario? Abandoning the use of the Fritzsch ansatz
will have effects of O�1� on these results, but will not
change the general results. However, the assumption of
no mixing between the doublets will have a substantial
effect on the scalars (the pseudoscalar will not, in general,
have this mixing, and thus the results of the above para-
graph will apply). For the scalars, mixing means that the
branching ratio into bb is not negligible. For models A1,
A2 and B2, the fermionic branching ratio into bb relative
to ���� is approximately 25 sin2�, and thus the individual
branching ratios must be reduced accordingly. For
model B3, the fermionic branching ratio into bb is ap-
proximately 1000 sin2�, and thus the primary decay mode
will almost certainly be into bb, unless the angle is ex-
tremely small. For B1, the fermionic branching ratio into
bb is approximately 400 sin2�, and thus it is likely that bb
decays will dominate, although the remarkable �� decay
mode will still be substantial. Note that the signature for
�� decays is very clean, and branching ratios of 10�4 can
be detected. As a result, in all of these models except B3,
the Higgs decay into �� is detectable.
VII. BOUNDS ON THE GAUGE BOSON SECTOR

The electroweak Lagrangian (with the kinetic terms
dropped) may be written in the form
-6



TABLE V. The CV and CA for the various lepton families. A
common factor of e=6 cos�W has been factored out of each. Note
that CA is the same for L1;3;4.

Family CV CA

L1,L4
10SW������������
3�4S2

W

p �

������������
3�4S2

W

p

SW

������������
3�4S2

W

p

SW
� 2SW������������

3�4S2
W

p

L2
8SW������������
3�4S2

W

p �

������������
3�4S2

W

p

SW
�

������������
3�4S2

W

p

SW
� 4SW������������

3�4S2
W

p

L3
6SW������������
3�4S2

W

p � 3
������������
3�4S2

W

p

SW

������������
3�4S2

W

p

SW
� 2SW������������

3�4S2
W

p
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L �
X
i

 i

�
g
2
��A

�
� � g0XB�

�
 i

�
X
i

 i

D�
1

g��
2
p W�� g��

2
p K��

g��
2
p W�� D�

2
g��
2
p K0�

g��
2
p K�� g��

2
p K0� D�

3

0
BBB@

1
CCCA i

where

D�
1 � g

�
A�3
2
�
A�8
2
���
3
p

�
� g0XB�;

D�
2 � g

�
�
A�3
2
�
A�8
2
���
3
p

�
� g0XB�;

D�
3 � �g

A�8���
3
p � g0XB�

(26)

and the sum is over all  in the model. With the relation-
ship sin2�W � 3g02=�3g2 � 4g02� defining the electroweak
mixing angle, we find that the diagonal terms reduce to
combinations of the expected neutral gauge bosons A� and
Z�, plus a new boson, the Z0�. The photon and Z have the
same couplings and Feynman rules as the standard model,
and therefore display no unusual characteristics. However,
the Z0 has vector and axial couplings which depend on the
particular lepton generation, Eqs. (5)–(8), leading to
FCNC.

In terms of the SU�3�L �U�1�X gauge bosons, we find
that the low-energy fields are given by [15,22,23]

A� � SWA
3
� � CW

�
TW���

3
p A8

� �

����������������
1�

T2
W

3

s
B�

�
;

Z� � CWA
3
� � SW

�
TW���

3
p A8

� �

����������������
1�

T2
W

3

s
B�

�
;

Z0� � �

����������������
1�

T2
W

3

s
A8
� �

TW���
3
p B�;

where SW � sin�W , CW � cos�W , and TW � tan�W .
These fields have the eigenvalues

M2
A�
� 0; M2

Z�
’
g2

2

�
3g2 � 4g02

3g2 � g02

�
�v2

1 � v
2
2�;

M2
Z0�
’

2�3g2 � g02	
9

V2:

(27)

The Z0 has a vertex factor of the form �i 1
2���CV �

CA�5� where the CV;A are family dependent, and given in
Table V.

A recent analysis of precision electroweak (EW) bounds
in 3-3-1 models without exotic electric charges [22] gave a
lower bound of 1400 GeV on the mass of the Z0. Since the
SU�3�L �U�1�X representations are different for each lep-
ton family, one expects Z0-mediated FCNC. As discussed
095014
in the last section, the mixing matrix between the SU�3�L
eigenstates and the mass eigenstates will have too many
free parameters. To estimate the size of the Z0 FCNC, we
therefore again use the Fritsch ansatz. Failure to use this
ansatz results in too many parameters. This results in a
mixing matrix with no free parameters but the lepton
masses. To determine the FCNC couplings of the Z0, one
picks the model and diagonalizes. Using the CV and CA in
Table V, one reads off the couplings for each particle.
These couplings will be a linear combination of the family
couplings. Since the CV differ for each family, there will be
FCNC.

The most stringent bound on MZ0 is found from �! 3e
decays. The formula for this decay rate is

� �
�m5

�

108

�
e

24�CWMZ0

�
4
�3�C2

Ve� � C
2
Ae���C

2
Vee � C

2
Aee�

� 4CVe�CAe�CVeeCAee	: (28)

Given that we do not know which family corresponds to
which lepton, we try all possibilities. This provides bounds
that range from 2 TeV in model B2, to between 20 and
40 TeV in the other models. A similar calculation using
�! 3� or �! e� provides much weaker lower bounds.
Thus precision EW bounds will not be relevant in these
models.

A bound of 20 to 40 TeV is discouraging since the Z0 will
be beyond the reach of the LHC, and because fine-tuning
will be needed to explain a new hierarchy problem.
Nonetheless, model B2 does not need substantial fine-
tuning, and the Higgs decays in any of the models will
provide distinct signatures.

VIII. CONCLUSIONS

We have studied a pair of 3-3-1 models that have not
previously been examined. The defining characteristic of
these models is that each lepton generation has a unique
structure. This leads to FCNC decays mediated by the light
Higgs and Z0 boson. Z0 mediated �! 3e provides a lower
bound of 2 TeV for M0Z in model B2, and between 20 and
40 TeV in the others. These models will all have interesting
Higgs decay signatures. In particular, �! �� could show
up clearly at the LHC.
-7
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APPENDIX

Here are the full mass matrices for the charged leptons in
the 3-3-1 models studied in this paper. For model A we
have

h1v2 h2v2 0 h3v2 0
h7v1 h8v1 �g1v2 h9v1 g2V
h10v1 h11v1 �g3v2 h12v1 g4V
h4V h5V 0 h6V 0
h13v1 h14v1 �g5v2 h15v1 g6V

0
BBBBB@

1
CCCCCA (A1)

where the ordering is ei, ej, ek, Ei, Ek.
The relevant terms in the Lagrangian are

L Y;AA � �h4 iLeiR � h5 iLejR � h6 iLEiR��A

� 	�
��g2 
�
jL� 

00c
kL�


 � g4 
�
kL� 

00c
kL�




� g6 
0�
kL� 

00c
kL�


���
A; (A2)
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LY;A1 � �h7 jLeiR � h8 jLejR � h9 jLEiR � h10 kLeiR

� h11 kLejR � h12 kLEiR � h13 
0
kLeiR

� h14 
0
kLejR � h15 

0
kLEiR��

�
1; (A3)

L Y;A2 � �h1 iLeiR � h2 iLejR � h3 iLEiR��2

� 	�
��g1 
�
jL� 

00c
kL�


 � g3 
�
kL� 

00c
kL�




� g5 
0�
kL� 

00c
kL�


���
2 : (A4)

Similarly, the mass matrix for model B is

h1v2 h2v2 h3v2 h4v2 h5v2 g4V h6v2

h13v1 h14v1 h15v1 h16v1 h17v1 0 h18v1

h19v2 h20v2 h21v2 h22v2 h23v2 g5V h24v2

h7V h8V h9V h10V h11V �g1v2 h12V
h25V h26V h27V h28V h29V �g2v2 h30V
h31v2 h32v2 h33v2 h34v2 h35v2 g6V h36v2

h37V h38V h39V h40V h41V �g3v2 h42V

0
BBBBBBBBBB@

1
CCCCCCCCCCA
(A5)

with the ordering ei, ej, ek, Ei, E1k, E2k, E3k.
The relevant terms in the Lagrangian are
LY;BA � �h7 iLeiR � h8 iLejR � h9 iLekR � h10 iLEiR � h11 iLE1kR � h12 iLE3kR � h25 kLeiR � h26 kLejR

� h27 kLekR � h28 kLEiR � h29 kLE1kR � h30 kLE3kR � h37 
00
kLeiR � h38 

00
kLejR � h39 

00
kLekR � h40 

00
kLEiR

� h41 
00
kLE1kR � h42 

00
kLE3kR��A � 	�
��g4 

0�
kL� 

c
iL�


 � g5 
0�
kL� 

c
kL�


 � g6 
0�
kL� 

00c
kL�


����A�
�; (A6)

L Y;B1 � �h13 jLeiR � h14 jLejR � h15 jLekR � h16 jLEiR � h17 jLE1kR � h18 jLE3kR��
�
1; (A7)

LY;B2 � �h1 iLeiR � h2 iLejR � h3 iLekR � h4 iLEiR � h5 iLE1kR � h6 iLE3kR � h19 kLeiR � h20 kLejR

� h21 kLekR � h22 kLEiR � h23 kLE1kR � h24 kLE3kR � h31 
00
kLeiR � h32 

00
kLejR � h33 

00
kLekR � h34 

00
kLEiR

� h35 
00
kLE1kR � h36 

00
kLE3kR��2 � 	�
��g1 

0�
kL� 

c
iL�


 � g2 
0�
kL� 

c
kL�


 � g3 
0�
kL� 

00c
kL�


����2�
�: (A8)
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