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There exist a number of models in the literature in which the weak interactions are derived from a chiral
gauge theory based on a larger group than SU�2�L �U�1�Y . Such theories can be constructed so as to be
anomaly free and consistent with precision electroweak measurements, and may be interpreted as a
deconstruction of an extra dimension. They also provide interesting insights into the issues of flavor and
dynamical electroweak symmetry breaking, and can help to raise the mass of the Higgs boson in
supersymmetric theories. In this work we show that these theories can also give rise to baryon and
lepton number violating processes, such as nucleon decay and spectacular multijet events at colliders, via
the instanton transitions associated with the extended gauge group. For a particular model based on
SU�2�1 � SU�2�2, we find that the B� L violating scattering cross sections are too small to be observed at
the LHC, but that the lower limit on the lifetime of the proton implies an upper bound on the gauge
couplings.
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I. INTRODUCTION

Baryon (B) and lepton (L) number seem to be excellent
symmetries of nature, and to date no direct evidence for
their violation has been found. Even so, it is very likely that
neither of these charges is exactly conserved. For one, the
Universe contains many more baryons than antibaryons,
and a necessary ingredient to create such an asymmetry is
the violation of baryon number [1]. In addition, the exis-
tence of very small neutrino masses may also point toward
the violation of lepton number. Such masses can be natu-
rally generated by the seesaw mechanism which typically
involves a heavy Majorana neutrino, whose mass violates
lepton number by two units [2]. But perhaps the most
compelling reason to expect the violation of baryon and
lepton number is the fact that these charges are not even
conserved by the standard model (SM) [3].

In the SM, both B and L are symmetries of the classical
Lagrangian, but are violated by quantum corrections.
Equivalently, the currents corresponding to these would-
be symmetries are anomalous, having nonvanishing diver-
gences. However, the only processes that change the value
of these charges in the SM are instanton transitions be-
tween degenerate SU�2�L gauge vacua. Each transition
violates both B and L by ng units, where ng is the number
of generations. The rate for these transitions is proportional
to a very small instanton tunneling factor,

�inst / e
�16�2=g2

L � e�400; (1)

where gL is the SU�2�L gauge coupling. Because of this
enormous suppression, B and L violation are effectively
nonexistent in the SM (at zero temperature) explaining
why neither one has been observed. Equation (1) also
indicates that the rate would be much larger if the gauge
coupling gL were larger.
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Even though the standard model provides an excellent
description of nearly all particle physics interactions seen
so far, there is reason to believe that this model only gives
an effective description of nature below some ultraviolet
cutoff scale. Above the cutoff, the SM must be extended to
include new physics. In many cases the new physics has
additional sources of baryon and lepton number violation.
This can occur through new perturbative interactions, such
as in grand unified theories and supersymmetric models
with R-parity violation. The new physics may also violate
B and L through nonperturbative phenomena, as in models
where the electroweak gauge structure is extended beyond
the SU�2�L �U�1�Y group of the SM. Depending on the
fermion charges under this extended gauge group, the
instanton transitions in such models can violate B and L.
Unlike the SU�2�L rate, however, the instanton rates in
gauge-extended models can be sizable if the corresponding
gauge couplings are reasonably large. This opens the pos-
sibility of observable baryon and lepton number violating
processes within these models [4].

In the present work, we examine this possibility for a
particular gauge extension of the SM. The enlarged elec-
troweak gauge group we consider is SU�2�1�SU�2�2�
U�1�Y . Under this group, the left-handed fermions of the
third-generation transform as doublets of SU�2�1 and sin-
glets of SU�2�2, while the left-handed fermions of the first
and second generations are doublets of SU�2�2 but singlets
of SU�2�1. The SM electroweak structure is regained by
spontaneously breaking SU�2�1�SU�2�2 down to its di-
agonal SU�2� subgroup, which is identified with the
SU�2�L group of the SM. This particular gauge structure
arises in several extensions of the SM, such as topflavor
[5], which seeks to motivate the hierarchy in the Yukawa
couplings, as well as noncommuting extended technicolor
[6], in which the SU�2�1 is associated with the ETC gauge
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group. Another application arises in supersymmetric theo-
ries which increase the tree-level Higgs mass through the
D terms of the extra SU�2� [7], as well as supersymmetric
models in which baryogenesis is induced by the presence
of strongly interacting Higgsinos and gauginos [8]. Finally,
this model is expected to capture, through dimensional
deconstruction [9], the low-energy physics of an extra
dimension with SU�2� in the bulk1 and localized fermions
[11].

When SU�2�1 � SU�2�2 breaks down to its diagonal
subgroup, there are instantonic effects which are not cap-
tured by the instantons of the low-energy diagonal SU�2�L
[12]. Thus, we expect nonperturbative effects in such
theories with extended weak interactions to lead to quali-
tatively new effects. Furthermore, the gauge couplings of
the two original SU�2�’s must necessarily be stronger than
the diagonal coupling gL, enhancing the instanton transi-
tions relative to those of SU�2�L. In several of the examples
above, it is further true that one of the SU�2� gauge
couplings is considerably larger than the other. The instan-
ton transitions of this more strongly coupled subgroup will
then be much more frequent than those of the other SU�2�.
The observable effects of such instantons are twofold. In
the context of particle collider experiments such as the
LHC, they can mediate spectacular B and L violating
scattering events. On the other hand, the violation of
baryon and lepton number also opens the possibility of
nucleon decay, and this puts interesting constraints on
these models. Even though we are focused on a particular
gauge extension of the SM, we also emphasize that we
have only made this choice for concreteness. For more
general gauge extensions of the SM electroweak sector,
we expect that many of our results, as well as the formalism
used to obtain them, to carry over in much the same way.

Previous work along these lines has focused on high
energy scattering in the SM due to SU�2�L instantons. The
results of Refs. [13–15] suggest that at very high energies,
the sum over high-multiplicity exclusive cross sections
exponentiates yielding a factor that partially cancels the
instanton suppression, and producing a potentially observ-
able inclusive cross section at future colliders such as the
VLHC. (See also Refs. [16–21].) However, the approxi-
mations made in these calculations generally break down
at energies below which the instanton suppression is sig-
nificantly reduced. Instead, in the present work we consider
only exclusive processes due to the instantons of an ex-
tended gauge group. Our results for collider cross sections
will therefore represent a conservative lower bound on
(B� L) violating scattering events in these gauge-
extended models at the LHC.

This article is organized as follows. In Sec. II we discuss
the structure of the SU�2�1 � SU�2�2 �U�1�Y gauge ex-
1For an earlier examination of instanton effects in decon-
structed extra dimensional models, see [10].
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tension, and describe the bounds on this extension due to
precision electroweak measurements. Our main results are
contained in Sec. III where we outline the formalism used
to describe the instanton transitions within the model, and
compute the effective B� L violating operator generated
by SU�2�1 instantons. In Sec. IV we apply this result to
calculate the cross section for B and L violating scattering
events at the LHC induced by SU�2�1 instantons. Section V
contains an analysis of nucleon decay due to SU�2�1 in-
stantons, as well as a discussion of the constraints implied
by this possibility. The opposite limit of this scenario, in
which the SU�2�2 gauge coupling is taken to be large, is
considered in Sec. VI. As in the previous sections, we
examine the possibility of nucleon decay and B� L vio-
lating scattering. Finally, Sec. VII is reserved for our con-
clusions. Some of the technical details of our calculations
are given in the Appendixes A, B, and C.

II. A GAUGE EXTENSION OF THE STANDARD
MODEL

The gauge extension of the standard model that we
consider in the present work is based on the gauge group
SU�3�c � SU�2�1 � SU�2�2 �U�1�Y . The SU�3�c and
U�1�Y subgroups coincide identically with those of the
SM. On the other hand, the SU�2�L group of the SM is
expanded to a larger SU�2�1 � SU�2�2 structure. While the
gauge structure of the SM is extended in this scenario, the
fermion content of the model is identical to the SM. Under
the new SU�2�1 and SU�2�2 groups, the doublets of the
third-generation transform as doublets under SU�2�1 and
singlets under SU�2�2, while the first and second genera-
tion doublets are singlets of SU�2�1 and doublets of
SU�2�2. In other words, their SU�2�1 � SU�2�2 �U�1�Y
quantum numbers are

Q3 � �2; 1�1=6; L3 � �2; 1��1=2;

Q1;2 � �1; 2�1=6; L1;2 � �1; 2��1=2:
(2)

The SM gauge structure is regained by giving a vacuum
expectation value (VEV) to a bidoublet scalar, �,

�i �k ! h�i �ki � u�i �k: (3)

Under this breaking, the standard model SU�2�L group
emerges as the unbroken diagonal subgroup of SU�2�1 �
SU�2�2. The corresponding SU�2�L gauge coupling is

gL �
g1g2�����������������
g2

1 � g
2
2

q : (4)

This relation implies that when one of the gauge couplings
becomes large, the other one approaches gL from above,
and thus both g1 and g2 are necessarily larger than gL. The
fermion doublets of either SU�2�1 or SU�2�2 transform as
doublets under SU�2�L.

At a lower scale, v ’ 174 GeV, the remaining SU�2�L �
U�1�Y electroweak symmetry is broken to U�1�em as in the
-2



g1

u
(TeV)

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 1.0  1.5  2.0  2.5  3.0  3.5  4.0

u
(TeV)

g2

 0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

 1.0  1.5  2.0  2.5  3.0  3.5  4.0

FIG. 1. 95% C.L. exclusion contour as a function of g1 and g2.
The allowed region lies above the solid curve (light case) or the
dashed curve (heavy case).

2�inv and �e;� were not included in the analysis since the first
is not directly observable, and the second is not an independent
quantity once �Z;�had, and Re;�;� have been used.
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SM. This is accomplished by giving a VEV to one or more
Higgs boson doublets. We will focus on the case of a single
Y � �1=2 Higgs boson doublet, but our results would be
largely unchanged if we included instead a Y � �1=2 pair
of doublets as in the MSSM. We consider two possible
representations for the Higgs boson under SU�2�1 �
SU�2�2. They are

� � �2; 1�1=2 ) heavy case;

� � �1; 2�1=2 ) light case:
(5)

In the first case, which we call the heavy case, the Higgs
doublet is charged under SU�2�1 but not under SU�2�2. The
opposite is true for the light case. These two possibilities
are very similar with regards to instantons, but differ sig-
nificantly when it comes to the experimental constraints on
the model. We will consider them both. In Appendix B we
tabulate some important results concerning the gauge bo-
sons, their masses, and their couplings to fermions.

A. Precision electroweak constraints

The most important experimental constraints on this
gauge-extended model come from precision electroweak
measurements made at LEP, the Tevatron, and the SLC.
Because of the enlarged gauge structure, the model has
additional heavy gauge bosons, a Z00 and a W�0, and
modified relations between the Lagrangian parameters
and the electroweak observables. The gauge boson mass
matrices and the shifts in the electroweak observables are
listed in Appendixes B and C. Because of these changes,
the precision electroweak data imposes strong constraints
on the model, and on the SU�2�1 � SU�2�2 symmetry
breaking scale u in particular. The precise constraints are
different for the heavy and light cases described above.

The Lagrangian-level parameters of the electroweak
sector of the model can be taken to be fg1; g2; gy; v; ug.
We find it more convenient to use the equivalent set
fgL; v; sin�; sin’;�g, where

gL �
g1g2�����������������
g2

1 � g
2
2

q ; sin� �
gy�����������������

g2
y � g

2
L

q ;

sin’ �
g2�����������������

g2
1 � g

2
2

q ; � �
v2

2u2 :
(6)

All (tree-level) electroweak observables can be expressed
in terms of these. In our analysis, we specify the values of �
and sin’, and use the measured values ofMZ�MZ�, ��MZ�,
andGF (extracted from the muon decay rate) to fix the rest.
We use the values [22],

��1�Mz� � 127:918; GF � 1:16637� 10�5GeV�2;

MZ�MZ� � 91:1876 GeV:

Having fixed and specified the electroweak parameters,
we may calculate the shifts in the electroweak observables
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due to the extended gauge structure. For example, the shift
in the W mass compared to the SM in the light case is

MW � �MW�SM�1� 0:219sin4’��: (7)

Here, �MW�SM should properly be the tree-level expression
of the SM. However, if we work to first order in both the
loop corrections and the small parameter �, it is consistent
to use the one-loop value of �MW�SM in this expression.
The shifts in other important electroweak observables are
tabulated in Appendix C.2 A Higgs boson mass of mh �
115 GeV and a top quark mass of mt � 177 GeV were
used to obtain the SM inputs [23]. For each parameter set
we compute the effective reduced �2:

�2 �
XN
i�1

�Oi �Oexp
i �

2

�2
i

; (8)

where Oi is the value of the ith observable in the model,
Oexp
i is the measured value of this observable, and �i is its

experimental uncertainty. We demand that �2=N < 1:6,
which corresponds (roughly) to the 95%c:l: exclusion con-
tour for N � 20 degrees of freedom. (By comparison, the
best fit to the SM, for the observables considered, has a
�2=N � 1:03.) The exclusion contours are shown in Fig. 1.
Observe that in the light case, the bounds on u become very
weak for large values of g1 because only the third-
-3



3Equivalently, the fermion bilinear operator has one or more
zero eigenvalues in the instanton background.
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generation sector is affected by the strong interactions
(resulting in no large corrections to GF extracted from
muon decay), and the mixing between the light and heavy
gauge bosons induced by the standard Higgs VEV be-
comes smaller for larger values of g1.

As discussed above, the above bounds on u were ob-
tained for a Higgs mass close to the present experimental
bound. These bounds may not be lowered in any significant
way by raising the Higgs mass. In the light case, raising the
Higgs mass up to values close to 200 GeV produces very
small variations in the bound on u. In the heavy case, the
bound on u increases with the Higgs mass. For instance, for
a Higgs boson mass of about 150 GeV, the lower bound on
u increases by about 500 GeV for all values of g1 > 1:5.

III. INSTANTON-INDUCED OPERATORS

In this section, we derive effective operators which
describe the instanton-induced interactions at low energies.
We begin with some general features of instantons in
broken gauge theories, and then specialize to the case of
SU�2�1 � SU�2�2. It is well known that non-Abelian gauge
theories have many physically distinct vacua separated by
energy barriers of finite height. As a result, it is possible for
a system prepared in one vacuum state to pass to another by
tunneling. The gauge field configurations that describe this
tunneling are called instantons. As we shall see, if there are
fermions charged under the gauge group, each instanton
transition is accompanied by the production of fermions.
For SU�2�L instantons in the SM, this is the source of B and
L violation.

In a pure non-Abelian gauge theory, instanton configu-
rations are solutions of the Euclidean space equations of
motion with finite Euclidean action. A given instanton
solution is characterized by its spacetime location, x�0 , its
Euclidean space radius, 	, and its orientation in the global
gauge group space, U. The instanton transition amplitude
is computed by making a semiclassical expansion of the
corresponding functional integral about the instanton so-
lution, working to quadratic order in the fluctuations about
this solution. This procedure generates a factor of e�Sinst �

e�8�2=g2
from the classical solution, as well as a functional

determinant from the fluctuations [3].
The situation becomes more complicated if the gauge

theory is spontaneously broken by the expectation value of
one or more scalar fields. In this case, exact solutions to the
combined gauge/Higgs Euclidean space equations of mo-
tion are not known. Nevertheless, it is possible to obtain
approximate solutions for a fixed instanton size, 	, as
expansions in 	h
i, where h
i is the symmetry breaking
VEV [24]. For a given 	, the contribution of the Higgs field
to the Euclidean action is [15,24]

SHiggs � 2�2	2h
i2 �O��	4h
i4�; (9)

where � denotes a quartic coupling for the scalars. The full
transition amplitude is given by the fixed–	 amplitude
095003
integrated over instanton size. Since the integrand is pro-
portional to e�SHiggs , this integral is cut off at 	h
i �
1=

���������
2�2
p

justifying the expansion in this parameter. The
leading contribution from the Higgs field to the action,
Eq. (9), comes from the kinetic term since interactions are
higher order in 	h
i. Thus, if there are several scalar
multiplets which develop VEV’s, the leading contribution
to the action will be the sum of the individual contribu-
tions, each with the form of Eq. (9). Note, however, that it
is only possible to neglect the interaction term in SHiggs if
the scalar quartic coupling is not too large, �	 2�2,
which we will assume in the present work. On the other
hand, for �! 1 the transition amplitude, being propor-
tional to e�SHiggs , vanishes [25]. In this limit, the symmetry
breaking sector may be represented by a nonlinear sigma
model, and the vanishing of the transition amplitude can be
explained by the existence of a conserved topological
current [26]. The transition between the small and large
� regimes is an interesting question, but requires a precise
specification of the symmetry breaking sector, and is out-
side the scope of the present work.

If the theory also has fermions that are charged under the
gauge group, this picture of vacuum tunneling is changed
in an important way. While the fermions do not modify the
classical instanton solution (at lowest order), the functional
integral over the quantum fluctuations now includes an
integration over the Grassmann-valued fermion fields.
The integral vanishes unless it is saturated by fermions
from the integrand. For a trivial (zero instanton) back-
ground, this leads to a nonzero fermion determinant.
However, in an instanton background there exist fermionic
fluctuations which do not contribute to the action at qua-
dratic order.3 These fermion zero modes are nonetheless
part of the functional integration, and the amplitude van-
ishes. In general, for each fermion representation r, there
are 2T�r� fermion and no antifermion zero modes in a one-
instanton background [27].

While the vacuum transition amplitude vanishes if there
are fermions coupled to the gauge group, a nonzero result
is obtained if an appropriate number of fermion fields, one
for each zero mode, are inserted into the functional inte-
gral. The instanton transitions are therefore accompanied
by the production of fermions. For the case of SU�2�L
instantons, there are 4ng fermion doublets, three quark
doublets and one lepton doublet for each generation, and
therefore 4ng zero modes. The corresponding transition
violates both B and L by ng units. For SU�2�1 and
SU�2�2 instantons in the gauge-extended model described
in the previous section, the result is the same except now
ng � 1 or 2. Thus, the instantons in all three cases violate
B� L.
-4



4Note that � 0�x�� � M2. Also, the expression for C differs
from the corresponding expression given by Espinosa [15] by a
factor of �8�2�nf=2. For comparison, in Ref. [3], this factor arises
from the normalization of an effective operator describing the
instanton coupling to fermions. Here, no such operator has been
inserted so this factor is redundant. There is also an additional
factor of 1=8�2 in the measure of the U integral since we are
explicitly keeping the integral over global gauge rotations.
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A. Instanton Green’s functions

In this section we describe the calculation of instanton-
induced fermion Green’s functions for a general SU�2�
gauge theory with nf Weyl fermion doublets, an arbitrary
number of fermion singlets, and ns complex scalar dou-
blets. There are nf fermion zero modes in this case, and the
resulting Green’s function will involve one of each of the
fermion doublets. The presentation here follows the dis-
cussions of Ringwald [14] and Espinosa [15]. Both of
these, in turn, rely heavily on the results of ’t Hooft [3].

We wish to calculate the Green’s function

G�x1; . . . ;zm�� h
Ynf
i�1

 i�xi�
Yn
j�1

A
aj
�j�yj�

Ym
k�1

H�zk�i1�inst; (10)

where the  are fermions, the A are gauge fields, and the H
are (shifted) scalar fields (� � h
i �H).

Following [3,15], the combined gauge boson and Higgs
boson instanton solution is

A� � x����A�x
2�; ��x� � 
�x2� �h; (11)

with �h � �0; 1�t, and ��� � U ����Uy, where ���� is the
matrix ���� acting in the SU�2� space and U is an SU�2�
matrix describing the instanton orientation. Their explicit
forms are listed below and in Appendix A. The functions
A and 
 have asymptotic expressions valid at large and
small distances, respectively:

A �x2� �

8<:
1
g

2	2

x2�x2�	2�
; x	 	;

1
g 	

2M2
W
K2�MWx�

x2 ; x
 	;


�x2� �

8><>:
�

x2

x2�	2

�
1=2
h
i; x	 	;

h
i � 1
2	

2mhh
i
K1�mhx�

x ; x
 	:

(12)

The long-distance forms are leading term expansions in
	h
i. These functions correspond to the singular gauge,
which has the useful property that the gauge fields go to
zero at Euclidean infinity.

Using these solutions, the semiclassical approximation
to the functional integral gives [15]

G�x1; . . . ; zn� �
Z
d4x0

Z
d	

Z
�dU=8�2� ~F�	; h
i;��

� e�SE�Acl;�cl�
Ynf
i�1

 0i�xi � x0�

�
Yn
j�1

Acl�yj � x0�
Ym
k�1

Hcl�zk � x0�; (13)

where Acl and �cl are the classical instanton solutions
given above (Hcl � �cl � h
i), and  0i is the ith fermion
zero-mode in the instanton background. The integrals over
the instanton size 	, location x0, and group orientation U
correspond to collective coordinates for the functional
integrations over the zero modes of the gauge field fluctu-
095003
ations. Finally, ~F�	; h
i;�� is a product of functional
determinants for the nonzero vector, scalar, and fermion
modes, along with the Jacobian factors from converting to
collective coordinates.

For the approximate instanton solution in the combined
gauge/Higgs system, the Euclidean action at leading order
in 	h
i is given by

SE�Acl;�cl� �
8�2

g���2
� 2�2	2V 2; (14)

where
V 2 �

Xns
k�1

h
ki
2: (15)

The factors comprising ~F�	; h
i;��were calculated in [3],

~F�	; h
i;�� � Cg�8�	��b0	nf=2�5 (16)

where

b0 �
22

3
�

1

3
nf �

1

6
ns (17)

is the one-loop beta-function coefficient, and the constant
C is given by

C � 210�6 exp��8� 1
2nf�a � �

2
3�

1
6nf �

1
6ns�b

� ��1� � �nf � ns���
1
2��: (18)

Here, �a; b� � �0;�5=12� for g��� defined in the MS
scheme, and ��1� and ��1=2� are numerical constants with
the approximate values

��1� ’ 0:443; ��1=2� ’ 0:146: (19)

The additional factors of 	 are inserted to get the dimen-
sions right.4 Note also that the combination �b0e�8�2=g���2

is RG invariant at one-loop order.
Upon Fourier transforming, the d4x0 integral generates a

total momentum conserving delta function. The
momentum-space Green’s function, canceling off a
�2��4��4��

P
pi� factor, is therefore

~G�fpg; fqg; fkg� �
Z
�dU=8�2�

Z
d	 ~F�	; h
i;��

� e�SE�Acl;�cl�
Ynf
i�1

~ 0i�pi�

�
Yn
j�1

~Acl�qj�
Ym
k�1

~Hcl�kk�; (20)

where ~ 0, ~Hcl, and ~Acl denote the Fourier transforms.
-5
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B. Fermion zero modes

To proceed, we need explicit expressions for the fermion
zero modes, and for this, we must specify the couplings
between the fermions and the scalars. We will focus on the
gauge-extended model described in Sec. II, and look at the
instantons of the SU�2�1 group that couples to the third
generation and the Higgs doublet (heavy case). These
solutions are identical to those for SU�2�L instantons ob-
tained in Ref. [15], and also carry over directly for SU�2�2
instantons in the light case. Unlike Ref. [15], however, we
use a slightly different set of Euclidean space spinor con-
ventions, and because of this, our results are somewhat
different in appearance. These conventions are listed in
Appendix A.

In Euclidean space, unlike Minkowski space, the two
spinor representations of SO�4� are not related by complex
conjugation. Instead, the two SO�4� representations, which
we label by A and B, are related to those of SO�1; 3� via the
correspondence

 R$ A;  L$ B;  yR$ yB;  yL$ yA: (21)

Using this relation, the equations satisfied by the quark
zero modes are

0 � ���D�QB;�i�u��cluA � i�d�cldA;

0 � ��@�uA � i�u�t
cl�QB;

0 � ��@�dA � i�d�yclQB;

(22)

where D� � @� � igAcl�, � � i�2, and the �i are
Yukawa interactions. QB corresponds to the left-handed
quark doublet, uA and dA are the Euclidean forms of the
right-handed singlets, and �cl and Acl denote the classical
instanton solutions given above. The equations for the
lepton zero modes have the same form.

To solve Eqs. (22), we insert the background solutions
from Eqs. (11) and (12), and use the ansatz

 B � x���’�x2�;  A �  A�x2�; (23)

where ’�x2�, like  , denotes a two-component fermion.
The long-distance equations can be simplified by making
use of A�x2� ! 0 and 
�x2� ! h
i for jx2j 
 	2. The
solutions in this case are

 B �
1

2�
	m2 K2�mx�

x2 x���Uy�;

 A �
1

2�
	m2 K1�mx�

x
Uy�;

(24)

where m is the fermion mass, and � represents a two-
component spinor equal to � � ��1

0 � for  � d and � �
�01� for  � u. At short distances, jx2j 	 	2, the solutions
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at leading order in 	h
i are given by

 B �
1

�
	

�x2�1=2�x2 � 	2�3=2
x���Uy�;

 A �
i

2�
	m

1

x2 � 	2 U
y�:

(25)

To obtain the low-energy effective operators generated
by the instanton, we will need the Fourier transforms of the
long-distance zero-mode solutions given by Eq. (24). The
following (Euclidean space) identities are useful for this:

Z
d4xe�ip�xf�x2� �

4�2

p

Z 1
0
drJ1�pr�r

2f�r2�;

Z
d4xe�ip�xx�f�x2� � �4�2i

p�
p2

Z 1
0
drJ2�pr�r3f�r2�;

(26)

and Z 1
0
drJ2�pr�rKn�mr� �

pn

mn�p2 �m2�
; (27)

where p � �jp�p�j�1=2. Applying these identities to the
previous result, we find

~ B�p� � �2�i	
� p���
p2 �m2

�
Uy�;

~ A�p� � �2�i	
�

m

p2 �m2

�
Uy�:

(28)

In the above, the tildes denote Fourier transformed func-
tions. Since the fermions are massive, it helps to assemble
them into a Dirac fermion and revert to Minkowski space.
The result is

~��p� � 2�i
	

p2 �m2 �p��
�PR �mPR�

�
Uy�
Uy�

�

�
i�p��

� �m�

p2 �m2

�
2�
�

0

Uy�

��
: (29)

As before, � � ��1
0 � for ��d;e, and ���01� for � � u; �.

The same Bessel function and Fourier transform identi-
ties can be applied to obtain the long-distance forms of the
classical gauge and Higgs boson solutions given in
Eqs. (11) and (12). Reverting to Minkowski space, they
are [15]

~A cl��p� �
i
g

4�2	2

p2 �m2
A

U ����Uyp�;

~Hcl�p� � �
2�2	2h
i

p2 �m2
H

:

(30)
C. Instanton amplitudes

With the explicit zero-mode expressions in hand, we
may now construct amplitudes for instanton-induced pro-
cesses. Applying the LSZ procedure [28] to Eq. (20), and
using Eqs. (29) and (30), the one-instanton amplitude for a
-6
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process involving ng SM generations (nf � 4ng), n gauge
bosons, and m scalars is given by [15]

A �
C

g8�n �
b0e�8�2=g2����4�2�n�2�2�m

� �2��4ngVm
�Z 1

0
d		6ng�5�2m�2n�b0e�2�2V 2	2

�

�
Z
�dU=8�2�h�U�; (31)

where

h�U� �
Y4ng
i�1

��i�p�
�

0

Uy�

�Yn
j�1

��j�� �qj�qj�tr�U ����U
yP j�;

(32)

where �i�p� � ui�p� or vi�p� is the external-state polar-
ization spinor, and P projects onto the appropriate gauge
boson mass eigenstate.

The 	 integral is straightforward, and gives the factor

1

2

�
1

2�2V 2

�
3ng�2�m�n�b0=2

��3ng � 2�m� n� b0=2�:

(33)

The resulting amplitude (up to an overall phase) is there-
fore

A �
C

g8�n e
�8�2=g2���

�
1

4�2

�
ng�2�b0=2

23ng�3�n�b0=2

� ��3ng � 2�m� n� b0=2�
�
�

V

�
b0

�

�
1

V 2

�
3ng�2�m=2�n Z

�dU=8�2�h�U�: (34)

In these expressions V 2 is the orthogonal sum of the scalar
VEV’s, Eq. (15). For the case of SU�2�1 or SU�2�2 instan-
tons, the bidoublet field � transforms as a pair of doublets
under of these groups, each of which develops a VEVequal
to u� TeV. Thus

V 2 � v2 � 2u2 ’ 2u2

SU�2�1 or SU�2�2 instantons:
(35)

The VEV of the � field is along a singlet component of
SU�2�L, and therefore

V 2 � v2 SU�2�L instantons: (36)
5In this section we will denote u� t, d� b, �� ��, e� �.
D. Instanton effective operators for SU�2�1
For the remainder of this section, we will focus on the

situation in which g1 
 g2, where the instantons of the
SU�2�1 gauge theory become unsuppressed. We would like
to represent the amplitude for these instantons, Eq. (34), by
an effective operator valid below the SU�2�1-breaking
scale. The amplitude found above corresponds to the
095003
Green’s function hq1�p1�q
2�p2�q

3�p3�l�p4�i, and consists
of one zero-mode wave function for each fermion, a nu-
merical prefactor, integrations over the instanton size 	
and orientation U, and an overall factor of �2��4��4��p1 �
p2 � p3 � p4� from the integration over instanton loca-
tion. Since only the total momentum is conserved, we will
be able to represent the large-distance instanton effects by
a local operator. Note that since we will use the long-
distance expressions of the fermion zero modes, which
lose validity at energy scales of order Eu ’

���
2
p
�u, the

derived effective theory will also lose validity at energies
larger than Eu.

For the task at hand, it is more convenient to look at the
operator generated by an anti-instanton. In this case, the
nonvanishing Green’s function is h �q1 �q2 �q3 �li. After applying
the LSZ procedure, each of the four-fermion zero modes
generates a factor of the form

2�	��yU; 0���p�; (37)

where ��p� � u�p� or v�p� is the external-state polariza-
tion spinor. The resulting amplitude is therefore propor-
tional to

�2�	�4
Z
dU��y1U; 0��1�p1���

y
2U; 0��2�p2�

� ��y3U; 0��3�p3���
y
4U; 0��4�p4�; (38)

with �i � �
0
1� for u or �, and �i � �

�1
0 � for d or e.5

To perform the integration over instanton orientation U,
we make use of the fact that, as a manifold, SU�2� is
equivalent to S3. This equivalence allows us to parametrize
an arbitrary SU�2� element as

U � ei�n̂� ~� � cos��� � i�n̂ � �� sin���;

�

�
cos�� i sin� cos� ie�i
 sin� sin�
iei
 sin� sin� cos�� i sin� cos�

�
; (39)

where n̂ � �sin� cos
; sin� sin
; cos�� is a unit 3-vector.
The coordinate ranges are

� 2 �0; ��; � 2 �0; ��; 
 2 �0; 2��; (40)

and the integration measure isZ
dU �

Z �

0
d�sin2�

Z 1

�1
d�cos��

Z 2�

0
d
: (41)

The Green’s functions h �q1 �q2 �q3 �li all contain the product
of four U matrix elements: each up-type fermion (quark or
lepton) gives a factor of �yuUuL � �U21; U22�uL; each
down-type fermion produces a factor �ydUdL �
��U11;�U12�dL. The resulting integrals are straightfor-
ward, and most of them vanish. The only nonzero combi-
nations are
-7
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U2
11U

2
22 ! 2�2=3; �U12U21�

2 ! 2�2=3;

U11U22U12U21 ! ��2=3:
(42)

Because of this, the only nonzero Green’s functions are

�u �u �d �e and �u �d �d ��; (43)

and therefore conserve U�1�em. Adding SU�3�c indices,
there are six independent Green functions:

�u1 �u2 �d3 �e; �u1 �d2 �d3 ��; �u1 �d2 �u3 �e;

�d1 �u2 �d3 ��; �d1 �u2 �u3 �e; �d1 �d2 �u3 ��:
(44)

These all come in with the same sign because of the
ordering of the zero-mode integrations in the functional
integral. They all have the same numerical prefactor, as
well.

Consider now the Green’s function for �u1 �u2 �d3 �e. The
corresponding amplitude is proportional to

Z
dU�U21; U22�u1

L�U21; U22�u2
L�U11; U12�d

3
L�U11; U12�eL

�
2�2

3

�
u1
L1
u2
L1
d3
L2
eL2
� u1

L2
u2
L2
d3
L1
eL1

�
1

2
�u1
L1
u2
L2
� u1

L2
u2
L1
��d3

L1
eL2
� d3

L2
eL1
�

�
; (45)

where uL; dL; eL denote the external polarization vectors,
and the lower indices are spinorial. This amplitude can be
reproduced at lowest order by adding to the low-energy
effective Lagrangian the operator

�u1
L1
u2
L1
d3
L2
eL2
� u1

L2
u2
L2
d3
L1
eL1
� 1

2�u
1
L1
u2
L2
� u1

L2
u2
L1
�

� �d3
L1
eL2
� d3

L2
eL1
��

� 1
2�u

1
L � eL��u

2
L � d

3
L� �

1
2�u

1
L � d

3
L��u

2
L � eL�; (46)

where now the uL; dL and eL represent the field operators,
and in the last line we have reexpressed the operator in a
manifestly Lorentz-invariant form.

It should also be possible to connect up the color indices
with an �abc tensor since the effective operator is expected
to be invariant under SU�3�c. Notice that

�abcuaubdc � 2�u1u2d3 � u1d2u3 � d1u2u3�: (47)

Therefore, we can combine all the uude operators into

1
2 �

abc1
2��u

a
L � eL��u

b
L � d

c
L� � �u

a
L � d

c
L��u

b
L � eL��

� 1
2�
abc�uaL � eL��u

b
L � d

c
L�: (48)

Exactly the same thing can be done for the udd� operators.
Putting everything together, the effective four-fermion

operator corresponding to a single SU�2�1 anti-instanton is
095003
Oeff �
C

g8
1

e�8�2=g2
1���

�
1

4�2

�
b0=2�1

2b0=2

�
�

V

�
b0

��1� b0=2�

�

�
�2

3Vg

��
1

V 2

�
�abc��uaL � eL��u

b
L � d

c
L�

� �daL � �L��d
b
L � u

c
L��; (49)

where Vg � 8�2 is 4 times the group volume, b0 is the one-
loop beta-function coefficient, V ’

���
2
p
u, and the constant

C is given in Eq. (18). This operator is also invariant under
SU�2�L, and violates both B and L by one unit each.

IV. B� L-VIOLATING SCATTERING BY SU�2�1
INSTANTONS

As a first application of the results of Sec. III, we
compute the scattering cross section for bb! �t �� due to
SU�2�1 instantons. We will focus on this particular process
because of all the B� L violating reactions induced by the
operator in Eq. (49), this one is expected to have the largest
cross section at the LHC. To see why, note that this
operator involves only third-generation fermions. As a
result, when the parton-level cross section is convolved
with parton distribution functions (PDF’s) to obtain the
total hadronic cross section, it will be suppressed by the
small PDF’s of the third-generation fermions within the
proton. This suppression is fairly strong for the bottom
quark, but extremely strong for the top quark. Therefore,
events with only bottom quarks in the initial state are
expected to produce the largest cross sections.

The parton-level cross section is computed straightfor-
wardly using the operator from Eq. (49). Inserting the
�abc�baL � �L��b

b
L � t

c
L� operator in the corresponding matrix

element, and squaring, summing, and averaging over spins
and colors, we find

�abc�baL � �L��b
b
L � t

c
L� !

2
3�2�p1 � p3��p2 � p4�

� 2�p1 � p4��p2 � p3�

� �p1 � p2��p3 � p4��; (50)

where p1 and p2 are the incoming momenta, and p3 and p4

are the outgoing momenta. The parton-level cross section
then follows in the usual way. To get the total cross section
in a pp hadron collider such as the LHC, we must convolve
this cross section with the bottom quark PDF’s of the
proton. Thus

�tot �
Z 1

0
dx1

Z 1

0
dx2fb�x1�fb�x2���s � x1x2s0�; (51)

where
�����
s0
p

is the pp center-of-mass (CM) energy. Since the
bottom quark PDF’s peak at small x, a large CM energy is
needed to avoid a strong additional suppression of the total
cross section.

Figure 2 shows the cross section for bb! �t ��� scattering
at the LHC, with

�����
s0
p
� 14 TeV. The three lines in this

figure correspond to three different values of the SU�2�1 �
SU�2�2 symmetry breaking VEV: u � 2, 3, and 5 TeV. The
-8
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FIG. 2 (color online). The SU�2�1 instanton-mediated bb!
t�� cross section at

�����
s0
p
� 14 TeV for u � 2 TeV (solid red),

u � 3 TeV (dotted green), and u � 5 TeV (dashed blue).
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CTEQ6M parton distributions from Ref. [29] were used to
evaluate Eq. (2). Unfortunately, this B� L violating cross
section is unobservably small at the LHC, even for larger
values of the gauge coupling. The reason why may be
understood by examining the various factors that contrib-
ute to the instanton amplitude of Eq. (34). For g1 ’ 3, the
usual instanton term, e�8�2=g2

1 , is still fairly small, and there
is an additional suppression by the 1=g8

1 term in the am-
plitude. Together, they contribute a factor of order 10�8.
This is offset somewhat by the large prefactor C, given in
Eq. (18), which is of order 105 in the present case, but not
enough for the cross section to be observable. We would
also like to emphasize that for very large values of the
gauge coupling g1, the semiclassical approximation used
to derive the effective instanton operator is expected to
break down.
p
1 k +

k −p
2

p
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p
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t
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u s
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ν

W

W
−

+

p
1

p
2

p
4

p
3

W
+

k +

k −

d

u s

ν
τ

tb

t

W
−

FIG. 3. Feynman diagrams for anti-instanton–mediated proton
decay.
V. PROTON DECAY FROM SU�2�1 INSTANTONS

The observed stability of the proton often leads to very
strong constraints on theories beyond the standard model
which contain baryon number violating interactions. This
is true for the SU�2�1 � SU�2�2 extension considered here
since the operator of Eq. (49) violates B and L by one unit,
and can induce the decay of the proton into a meson and a
light lepton. As we shall see below, the experimental limit
on the proton lifetime implies a lower bound on the
SU�2�1-breaking scale u, and an upper bound on the gauge
coupling g1.

For SU�2�1 instanton-induced decays to occur, however,
the third-generation quarks must be connected with the
first generation quarks that make up the proton. Such a
link is provided by the flavor-changing couplings of the
quarks with the W gauge bosons. The Feynman diagrams
for the process p! K� ��� generated in this way are shown
in Fig. 3. Both of these are suppressed by two loop factors.
A second possibility, that avoids this loop suppression, is
that the light quark mass eigenstates in the proton contain a
small admixture of the third-generation gauge eigenstates
095003
that couple directly to SU�2�1. This generates a contribu-
tion to the proton decay amplitude that is not suppressed by
any loop factors, but does involve elements of the up and
down quark mixing matrices. Since these elements are
unknown (only their product is measured through the
CKM matrix), we will ignore this possibility and focus
solely on the contributions involving W boson loops.
Barring unusual cancellations, this will set a lower bound
on the instanton-induced proton decay rate.

The operator responsible for p! K� ��� decay is the
�abc�taL � b

b
L��b

c
L � �L� term in Eq. (49). By connecting the

legs of this operator to first and second generation quarks
through W bosons, as shown in Fig. 3, we obtain a pair of
operators that directly mediate proton decay. Both of these
diagrams involve a pair of loop integrations, and in each
case the two loops are independent as a result of the
locality of the effective operator.

The loop integrals all have the form

I�� �
Z d4k

�2��4
�pa � k��

��pa � k�2 �m2
a�

�pb � k��
��pb � k�2 �m2

b�

�
1

k2 �M2
W

; (52)

where pa and pb are the external momenta, andma and mb
are the fermion masses in the loop. This integral is loga-
rithmically divergent in the ultraviolet. The reason for this
apparent divergence is that we have used the long-distance
form of the fermion zero modes, which go as p�=p2, as
shown in Eq. (29). For scales above 	�1, however, this
form is no longer valid, and should be replaced by the
Fourier transform of the short-distance form for the zero
modes. From Eq. (25), we find that these go as
-9
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x�f�r� �
x�

r�r2 � 	2�3=2
; (53)

where r � �jx2j�1=2. The Fourier transform can be com-
puted using the identityZ

d4xeip�xx�f�r� � 4�2i
p�
p2

Z 1
0
drJ2�pr�r3f�r�: (54)

For large p, J2�pr� ’
���������������
2=�pr

p
cos�pr� 5�=4�. The re-

sulting r integral is finite, and the momentum-space wave
function falls off at least as fast as p�3=2 for large p. Using
this form in the loop integration at large momenta, the full
integral is found to be convergent. Taking this fact into
account, we will approximate the result of the loop inte-
grals, Eq. (52), by cutting them off at a scale �� 	�1 ����

2
p
�u, where our effective operator description is expected

to break down.
Setting the external momenta pa and pb to zero in

Eq. (52) and performing the integration, we find

I�� � ���
i

8�2��2
Z 1

0
dxdydz��1� x� y� z�

�

�
ln
�
1�

�2

�

�
�

3

2

�
�O

�
�

�2

�
; (55)

with � given by

� � xm2
a � ym2

b � zM
2
W �O�p2

1; p
2
2�: (56)

The integrals over x, y, and z can be done analytically, and
the result is

I�� � ���A�m
2
a; m

2
b;M

2
W�

� ���
i

16�2��2

�
�

1

2
� f��m2

a; m2
b;M

2
W�

� f��M
2
W;m

2
a;m

2
b� � f��m

2
b;M

2
W;m

2
a�

�
; (57)

where

f��a; b; c� �
a2

�a� b��a� c�

�
ln
�

�2

a

�
�

1

2

�
: (58)

The operators generated by the diagrams of Fig. 3 are
found to be

Oeff � �

�
24�2

3Vg

�
VfIfLf�

abc��uaL � s
b
L��d

c
L � �

�
L�

� �uaL � d
b
L��s

c
L � �

�
L��; (59)

where Vf is the product of W vertex factors, Lf is the
product of the loop factors, and If comes from the instan-
ton prefactor. The vertex factor is

Vf �
�
g���
2
p

�
4
VtsVubVtd (60)

The loop factor was computed above, and is given by

Lf � A�m2
t ; m

2
b;M

2
W�A�m

2
t ; m

2
�;M

2
W�; (61)
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where the function A is defined in Eq. (58). Finally, the
instanton factor is the prefactor of Eq. (49), and has the
value

If �
C

g8
1

e�8�2=g2
1�
�
�

V

�
b0

�4�2�1�b0=22b0=2��1� b0=2�
1

V 2

(62)

with the constant C given by Eq. (18).
The matrix elements of the operators in Eq. (59) be-

tween p and K� states are given in [30]. They are

�abchK�j�uaLs
b
L�d

c
Ljpi �

�
f�

2mp

3mB
DPLup;

�abchK�j�uaLd
b
L�s

c
Ljpi �

�
f�

�
1�

�
F�

1

3
D
�mp

mB

�
PLup:

(63)

Here, up is a Dirac spinor for the external proton, f� �
0:131 GeV is the pion decay constant, mp � 0:94 GeV is
the proton mass, andmB � 1:15 GeV is an average baryon
mass. The parameters F ’ 0:44 and D ’ 0:81 come from
converting the quark operator to baryons and mesons via
chiral perturbation theory. The parameter � �
0:014�1� GeV3 is computed on the lattice in [30].6

The Dirac spinor for the proton gets contracted (using
���) with the Dirac spinor for the neutrino. After summing
and averaging over spins, we find the decay rate

��p! K� ���� �
�m2

p �m2
K�

2

32�m3
pf

2
�
jAj2; (64)

where A is given by

A � �
��

1�
�
F�

1

3
D
�mp

mB

�
�

2

3
D
mp

mB

�

� VfLfIf

�
24�2

3Vg

�
; (65)

where Vf, Lf, and If are given above.
In computing the numerical value of the proton decay

rate, we set the renormalizaton scale in Eq. (62) equal to
the symmetry breaking scale, � � V . This corresponds to
a matching at this scale. In principle, one should also
include the running of the effective operator induced by
QCD. However, we ignore this effect, as it is expected to be
of order unity.

The instanton-mediated proton lifetime as a function of
the SU�2�1 coupling is shown in Fig. 4. Also shown in this
figure is the current experimental 90% C.L. limit on proton
decay via p! K� �� [31]:

�p > 2:3� 1033 yr: (66)

From Fig. 4, we see that g1 & 1:5 is required to satisfy the
-10
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FIG. 4 (color online). Proton lifetime due to SU�2�1 instantons
for u � 2 TeV (solid red), u � 3 TeV (dotted green), and u �
5 TeV (dashed blue). Also shown in this figure (flat dotted line)
is the 90% C.L. experimental lower bound on the proton lifetime
[31].

PROTON LIFETIME AND BARYON NUMBER VIOLATING . . . PHYSICAL REVIEW D 72, 095003 (2005)
proton decay constraint. This upper limit on the gauge
coupling g1 puts an interesting bound on models that
make use of the SU�2�1 � SU�2�2 gauge structure, such
as topflavor and noncommuting extended technicolor. It
also limits the amount by which the Higgs mass may be
raised through D-terms in supersymmetric theories.

The results above were obtained for values of u of the
order of a few TeV. The bounds on g1 may be relaxed by
increasing the value of u. However, since the proton decay
rate is proportional to u�4, while it depends exponentially
on the value of g�2

1 , a large increase on u would be
necessary to significantly modify the bounds on g1.
Alternatively, one can find a lower bound on u for a
particular value of g1. For instance, for a value of g1 ’
2:5, the bound on u is found to be u * 108 GeV. The large
value of the lower bound on u reflects the relatively mild
dependence on this parameter. We have also assumed that
the effective quartic coupling for the symmetry breaking
bidoublet field is small, �	 2�2. For larger values of �,
as sometimes arise in technicolor-type models [32], there
will be an additional suppression of the instanton ampli-
tude leading to a longer proton lifetime for given values of
g1 and u.

As we will see below, the bounds from nucleon decay
are significantly weakened if there are additional fermions,
beyond the third generation of the SM, that are charged
under SU�2�1. These could arise, for instance, as the super-
partners of the Higgs scalars in a supersymmetric theory or
from additional exotic quarks or leptons.

VI. STRONGLY COUPLED LIGHT FERMIONS

In the previous sections we have discussed the effects of
instantons of the SU�2�1 gauge group when its coupling
becomes large. Since this group couples only to the third
generation, one of these effects is the generation of four-
fermion operators. One such operator, that of Eq. (59),
leads to the rapid decay of the proton if the gauge coupling
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g1 is too large. This implies an upper bound on g1 (for a
given u) that provides a relevant constraint on several
models making use of the SU�2�1 � SU�2�2 gauge struc-
ture. This operator also generates B� L violating scatter-
ing events in particle colliders, but unfortunately the cross
section for these is too small to be observed at the LHC,
especially given the upper bound on g1. A second possi-
bility, the one we consider in this section, is that the gauge
coupling of the SU�2�2 group becomes large. In this case, it
is the SU�2�2 instantons that become unsuppressed, possi-
bly leading to observable effects.

Since the first and second generations of fermions
couple to SU�2�2, the effective operators generated by
the SU�2�2 instantons will involve eight fermions, violate
B and L by two units each, and will be accompanied by a
factor of u�8. These operators can therefore mediate dinu-
cleon decay, the limits on which are nearly as stringent as
those for proton decay. However, because of the u�8 factor,
the decay rates will be suppressed by a factor of �mp=u�16,
which is of order 10�50 for u� TeV. On the other hand,
the scattering cross sections mediated by the instanton will
go as �

���
s
p
=u�16. As up or a down quarks with energies of

order 1 TeV can be found with nonvanishing probability at
the LHC, this prefactor is not exceedingly small. Indeed,
the PDF’s for valence quarks at high energies are much
larger than for the bottom, which provides an additional
enhancement compared to the previous case.

A. Dinucleon decay

Using the results of Eq. (34) and Sec. III, the eight-
fermion operators generated by SU�2�2 instantons will
have the form

Oeff �
C

g8
2

e�8�2=g2
2

�
1

4�2

�
b0=2

23�b0=2

� ��4� b0=2�
�
�

V

�
b0 1

V 8
~O

:�
~C

V 8
~O; (67)

where C is given in Eq. (18), and ~O is a linear combination
of �uude��ccs��, �uude��ssc���, �ddu�e��ccs��, and
�ddu�e��ssc���. These operators all have B � L � 2,
and can therefore induce the decay of a pair of nucleons.

We will consider the diproton decay rate induced by the
operator �uude��ssc���. The relevant Feynman diagram
with the least possible number of loops is shown in Fig. 5.
Calculating the amplitude for this diagram is complicated
because of the nuclear physics uncertainties associated
with the overlap of the proton wave functions. To make
an estimate of the amplitude, we shall simply replace all
unknown dimensionful terms by the proton mass mp. This
is likely a gross overestimate of the decay rate, especially
since the relevant nuclear physics scale is closer to
1 fm�1 � 0:2 GeV, so our results should be considered
-11
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FIG. 5. A Feynman diagram for diproton decay due to an
SU�2�2 instanton.
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as a robust upper bound on the actual rate. With this
approximation, the diproton lifetime is given by

� ’ j ~Cj2
�
g���
2
p

�
4
jA�m2

c; m2
s ;M2

W�j
2jVusVcdj

2

�mp

V

�
16 1

mp
;

(68)

where the function A�a; b; c� was defined in Eq. (58). As
for the proton decay rate, we match the effective operator
at scale � � V , and neglect the running below this scale.

The current best experimental limit on dinucleon decay
processes was obtained by the Fréjus Collaboration, which
looked for dinucleon decay in iron, and is of the order of
1030 yr. The corresponding diproton lifetime, obtained
from our estimate of Eq. (68), is shown in Fig. 6. The
estimated lifetime is many orders of magnitude above the
experimental bound, even for very large values of the
SU�2�2 coupling. As noted above, the additional suppres-
sion relative to the SU�2�1 case comes from the factor of
�mp=V �

16 in Eq. (68). Thus, the experimental limit on the
pp lifetime does not impose any strong constraint on the
coupling constant g2.

Another possible effect of the B � L � 2 operators
considered in this section are hydrogen-antihydrogen os-
g
2

τ p

(yr)

 1e+10

 1e+20

 1e+30

 1e+40

 1e+50

 1e+60

 1e+70

 1.0  1.5  2.0  2.5  3.0  3.5

FIG. 6 (color online). The diproton lifetime induced by SU�2�2
instantons. In this figure, the solid blue line corresponds to u �
2 TeV, the dashed green line is for u � 3 TeV, and the dotted
blue line is for u � 5 TeV. The flat dotted line is the current
experimental lower bound.
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cillations, as first suggested by Feinberg, Goldhaber and
Steigman [33]. Observe that, neglecting CP violation, the
existence of �B � �L � 2 interactions determines that
the real mass eigenstates of hydrogen are

H1 �
1���
2
p �H � �H� (69)

and will have a small mass difference. Oscillations be-
tween a pure hydrogen and antihydrogen states will occur
with a period T � 2�=�m, that, due to astrophysical
bounds must be larger than 7� 1010 yr. However, the
dominant, instanton-mediated process violate baryon and
lepton number but also flavor. Therefore, these transitions
are suppressed not only by the small instanton amplitude
and �mp=V �16, but also by loop and mixing angle factors.
A simple examination of the relevant factors involved in
the baryon number violating transition suggests that the
mass difference induced by the baryon number violating is
much larger than the experimental bound (T > 1040 yr),
and is therefore unmeasurably small. Finally, we also note
that neutron oscillations are not induced by the instanton
operators because they also violate lepton number by two
units.

B. Scattering by SU�2�2 Instantons

Contrary to the case in which only one generation cou-
ples to the strongly interacting sector, the baryon number
violating processes occurring in proton-proton collisions at
the LHC involve six quarks and two leptons. In the follow-
ing, we shall consider the scattering of two first generation
quarks leading to a final state with four energetic jets and
two first and second generation same-sign leptons. This is a
spectacular event with very little background in the stan-
dard model, and can be easily detected when the two
outgoing leptons are charged.

As in the previous subsection, the large number of
fermion legs makes a precise calculation very difficult, so
we will only estimate the relevant scattering cross section.
In particular, we will focus on the operator �uude��ccs��,
which can induce uu! �de� �c �c �s�� at the parton level.
This particular channel is the most promising one for two
reasons. First, the uu initial state is the most probable with
respect to the PDF’s of the proton, and second, the two
charged like-sign leptons in the final state produce a dis-
tinctive signature for these events. We also note that this
cross section is enhanced by the fact that the LHC is a pp
collider, and not a p �p collider such as the Tevatron, since
the instanton-mediated scattering events involve two par-
ticles instead of a particle and an antiparticle.

The scattering amplitude induced by the �uude��ccs��
operator has the form

A �
~C

V 8
�h; (70)

where ~C is the factor defined in Eq. (67) and �h is the matrix
element of the �uude��ccs�� term between the external
-12



PROTON LIFETIME AND BARYON NUMBER VIOLATING . . . PHYSICAL REVIEW D 72, 095003 (2005)
states. The cross section derived from this amplitude is

� �
1

s
j ~Cj2

�Y8

i�3

Z d3ki
�2��32Ei

�
� �2�4���4��p1 � p2 � p3 � . . .� p8�j �hj

2; (71)

in which j �hj2 includes summation and averaging over spin
and color states. To proceed, we must approximate the
phase space integral. For this, we shall assume that

j �hj2 �
� ���
s
p

2

�
2 Y8

i�3

Ei; (72)

since in the leading term, each fermion is expected to
contribute a factor of its momentum. Using the methods
of [34], we find that�Yn
i�1

Z d3ki
�2��32Ei

�
�2�4���4��p1 � p2 � p3 � . . .� p8�

�
Yn
i�1

Ei �
1

2
�4��3�2n 1

�32 n� 1�!�32n� 2�!
s3n=2�2; (73)

valid for large n. Our estimate for the (parton-level) cross
section is therefore

� �
1

s
j ~Cj2

1

8
�4���9 1

7!8!

� ���
s
p

V

�
16
: (74)

As in Sec. IV, this cross section must be convolved with
the u quark PDF’s in order to get the full cross section.
Doing so, we find the total cross sections shown in Fig. 7
for a center-of-mass energy of

�����
s0
p
� 14 TeV. Like the

cross sections due to SU�2�1 instantons, these cross sec-
tions are too small to be observed at the LHC. Different
from the SU�2�1 case, however, the SU�2�2 cross section is
not suppressed by a small instanton prefactor ( ~C defined in
Eq. (67) is of order unity for g2 � 3) or the product of
bottom quark PDF’s. Instead, the very small phase space
factor of Eq. (74) is responsible for inhibiting the instanton
g
2

σ
(fb)
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 1e−18

 1e−16

 1e−14

 1e−12

 1e−10

 2.0  2.5  3.0  3.5  4.0

FIG. 7 (color online). The instanton-mediated cross section at�����
s0
p
� 14 TeV for the case in which the first two generations are

charged under the strong SU�2�1 interactions, for three values of
the scale u � 2 TeV (solid red), 3 TeV (dotted green), and 5 TeV
(dashed blue). These results are also very sensitive to the value of
u ’V =

���
2
p

and the center-of-mass energy
���
s
p

due to the high
power of V and

���
s
p

appearing in the cross section expression.
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events. These results are also very sensitive to the value of
u ’ V =

���
2
p

and the center-of-mass energy
���
s
p

due to the
high power of V and

���
s
p

appearing in the cross section
expression.
VII. CONCLUSIONS

In this article we have shown that the rates of anomalous
B� L violating transitions in gauge-extended models can
be much larger than in the SM. For models based on the
group SU�2�1 � SU�2�2, such as topflavor and noncom-
muting extended technicolor, we have found that the
instanton-mediated scattering cross sections are too small
to be observed at the LHC, but that nucleon decay implies
an upper bound on the SU�2�1 gauge coupling. This limit is
relevant for these models, and may (through dimensional
deconstruction) provide a glimpse into some nonperturba-
tive processes relevant for certain five dimensional theo-
ries. It similarly suggests that the possibility of raising the
Higgs mass throughD-terms in supersymmetric theories is
limited by the bound on the SU�2�1 gauge coupling. The
opposite limit has the SU�2�2 felt by the first and second
generations to be strongly interacting. However, the instan-
tonic effects associated with the SU�2�2 gauge group are
generally too weak to be seen, even for large values of the
gauge coupling. The rate of baryon and lepton number
violating processes are strongly suppressed by the small
phase space factors arising in this case.

As a byproduct of this analysis, we have also reex-
amined the constraints on the SU�2�1 � SU�2�2 gauge
structure implied by the precision electroweak data. Our
results are roughly in agreement with those in the litera-
ture. In general, we find that to agree with the data, the
symmetry breaking scale of the extended gauge group must
be greater than a few TeV, although the limits may be
relaxed in the case that only the third-generation fermions
are coupled to the strongly interacting gauge group.

It may be possible that other types of experiments could
be sensitive to extended gauge instantons. For example,
even higher energy colliders such as a VLHC will see less
suppression and could have observable rates if the inte-
grated luminosity is sufficiently high. Also, it is possible
that horizontal air showers induced by cosmic neutrinos
could be detected by cosmic ray observatories. Further-
more, they may open a new avenue for electroweak-style
baryogenesis. While these topics are all beyond the scope
of the present work, they are interesting possibilities and
show that nonperturbative effects from new interactions
may be just as exciting and important as the perturbative
effects.
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APPENDIX A: EUCLIDEAN SPACE SPINOR
CONVENTIONS

We use the following conventions in Minkowski space:

����diag��1;�1;�1;�1�;

�������� _���I; ~��; ����� ���� _����I;� ~��;

����
i
4
��� ������ ����; �����

i
4
� ������ ������:

(75)

In Euclidean space we take our vectors to be

p4 � �ip0; pe� � �pi; p4�: (76)

and define the Euclidean space � matrices according to

�e� � � ~�; i�; ��e� � � ~�;�i�;

�e�� �
1

4i
��e� ��e� � �e� ��e��;

��e�� �
1

4i
� ��e��e� � ��e��e��:

(77)

This is slightly different from the conventions in Ref. [15].
With these definitions, it follows that

v�w� � �ve�we�; v��� � ve��e�;

v� ��� � �ve� ��e�; v�w���� � ve�we��e��;

v�w� ���� � ve�w
e
� ��e��;

(78)

where repeated lower indices are summed over.
In terms of the ’t Hooft symbols �a�� [3], we have

�e�� � ��a���
a=2; ��e�� � �a���a=2; (79)

where a � 1; 2; 3 is an SU�2� index. The e’s will be left
implicit in most of the expressions in this work. We will
also follow the convention of Ref. [15] and use �’s for
spin-space sigma-matrices, and �’s for the SU�2�-space
sigma matrices.

APPENDIX B: GAUGE BOSONS IN THE
SU�2�1 � SU�2�2 MODEL

We list here the gauge boson masses and couplings in the
SU�2�1 � SU�2�2 light and heavy gauge extensions. In
both cases, the gauge coupling for the light set of weak
bosons is related to the two original SU�2� gauge couplings
by

gL �
g1g2�����������������
g2

1 � g
2
2

q : (80)

To simplify expressions, we introduce the shorthand nota-
tion,
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c’ � cos’ �
g1�����������������

g2
1 � g

2
2

q ; (81)

s’ � sin’ �
g2�����������������

g2
1 � g

2
2

q ;

for the SU�2� � SU�2� gauge couplings, and

s�� sin��
gy����������������

g2
y�g2

L

q ; c�� cos��
gL����������������

g2
y�g2

L

q ; (82)

is the analog of the weak mixing angle in the SM.

1. The heavy case

The charged gauge boson states consist of A�j � �A
1
j �

iA2
j �=

���
2
p

, j � 1; 2. In this basis, the mass matrix reads

M2
� � u2 g2

1�1� �� �g1g2

�g1g2 g2
2

� �
; (83)

where � � v2=2u2. By assumption, �	 1, and we treat it
as a perturbation, keeping only the terms necessary to
compute the leading order in � to electroweak observables.

The mass eigenstates, W and W0, are related to these, to
O���, by the transformation

A1

A2

� �
�

s’ � s’c
4
’� �c’ � s

2
’c

3
’�

c’ � s
2
’c

3
’� s’ � s’c

4
’�

 !
W
W0

� �
; (84)

and the charged gauge boson masses are given by

M2
W �

g2
Lv

2

2
�1� c4

’��; M2
W0 �

g2
Lu

2

s2
’c2

’
� �g2

1 � g
2
2�u

2;

(85)

where, as above, gL � g1g2=
�����������������
g2

1 � g
2
2

q
is the gauge cou-

pling of the diagonal SU�2�L subgroup.
The coupling of these gauge bosons to the fermions of

the first and second generations has the form

g2A2 ! gL�1� s
2
’c

2
’��W � gL

�s’
c’
� s’c

3
’�
�
W0; (86)

while the coupling with the third-generation fermions is
given by

g1A1 ! gL�1� c
4
’��W � gL

�
�
c’
s’
� s’c

3
’�
�
W0: (87)

The mass matrix for the neutral states in basis �B;A1; A2�
is given by

M2
0 � u2

g2
y� �g1gy� 0

�g1gy� g2
1�1� �� �g1g2

0 �g1g2 g2
2

0
B@

1
CA: (88)

The transformation to the mass eigenstates, �A; Z; Z0� has
the form
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B
A1

A2

0@ 1A�
c� �s�

s�
c�
s’c3

’�

s’s� s’c��
s’c4

’

c�
� �c’�s2

’c3
’�

c’s� c’c��
s2
’c3

’

c�
� s’�s’c

4
’�

0
BBB@

1
CCCA

A
Z
Z0

0@ 1A:
(89)

The masses of the Z and Z0 are

M2
Z �

g2
Lv

2

2c2
�

�1� c4
’��; M2

Z0 � �g
2
1 � g

2
2�u

2: (90)

The couplings of the first and second generations are

�g2A2t
3 � gyYB� ! eQA�

gL
c�
��t3 �Qs2

�� � s
2
’c

2
’�t

3�Z

� gL
s’
c’
t3Z0; (91)

where Q � �t3 � Y�, as usual, and for the third generation
we have

�g1A1t
3 � gyYB� ! eQA�

gL
c�
��t3 �Qs2

�� � c
4
’�t

3�Z

� gL
c’
s’
t3Z0: (92)

2. The light case

The analysis of the light case is very similar to the
previous section. The charged gauge boson mass matrix,
in basis �A1; A2�, is

M2
� � u2 g2

1 �g1g2

�g1g2 g2
2�1� ��

� �
; (93)

where, again, � � v2=2u2 	 1. The corresponding mix-
ing matrix is

A1

A2

� �
�

s’ � s3
’c2

’� �c’ � s4
’c’�

c’ � s
4
’c’� s’ � s

3
’c

2
’�

 !
W
W0

� �
; (94)

and the charged gauge boson masses are given by

M2
W�

g2
Lv

2

2
�1�s4

’��; M2
W0 �

g2
Lu

2

s2
’c2

’
��g2

1�g
2
2�u

2: (95)

The coupling of these gauge bosons to the fermions of the
first and second generations has the form

g2A2 ! gL�1� s4
’��W � gL

�s’
c’
� s3

’c’�
�
W0; (96)

while the coupling with the third-generation fermions is
given by

g1A1!gL�1�s2
’c2

’��W�gL

�
�
c’
s’
�s3

’c’�
�
W0: (97)

The mass matrix for the neutral states, in the basis
�B;A1; A2�, is given by

M2
0 � u2

g2
y� 0 �g2gy�
0 g2

1 �g1g2

�g2gy� �g1g2 g2
2�1� ��

0
B@

1
CA; (98)

leading to the transformation to the mass eigenstates
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�A; Z; Z0�,

B
A1

A2

0@ 1A�
c� �s� � s�

c�
s3
’c’�

s’s� s’c��
s3
’c2

’

c�
� �c’�s4

’c’�

c’s� c’c��
s4
’c’
c�
� s’�s3

’c2
’�

0BBB@
1CCCA

A
Z
Z0

0@ 1A;
(99)

with Z and Z0 masses,

M2
Z �

g2
Lv

2

2c2
�

�1� s4
’��; M2

Z0 � �g
2
1 � g

2
2�u

2: (100)

The first and second generation couplings are

�g2A2t
3 � gyYB� ! eQA�

gL
c�
��t3 �Qs2

�� � s
4
’�t

3�Z

� gL
s’
c’
t3Z0 �O��2�; (101)

and the third-generation couplings are,

�g1A1t3 � gyYB� ! eQA�
gL
c�
��t3 �Qs2

�� � s
2
’c2

’�t3�Z

� gL
c’
s’
t3Z0 �O��2�: (102)
APPENDIX C: PRECISION ELECTROWEAK
CONSTRAINTS

Using the results of the previous appendix, we perform
the matching to input parameters and compute the shifts in
the electroweak observables in both the heavy and light
gauge-extended models. In both cases, � has the same
form as in the SM:

� �
e2

4�
�
g2
Lsin2�
4�

; (103)

and g2
L is given by

g2
L �

4��

sin2�
: (104)
1. Heavy case

The expression for MZ is given in Eq. (90):

M2
Z �

g2
Lv

2

2c2
�

�1� c4
’��: (105)

For GF, which is extracted from muon decay, we must
consider the low-energy effective four-fermion couplings
which arise from integrating out both theW andW0 bosons.
Using the charged gauge boson masses, Eq. (85), as well as
their couplings to the first and second generation fermions,
we find

4
���
2
p
GF �

�
g2
Lv

2

2

�
1� c4

’�
��
�1
g2
L

�
1� s2

’c
2
’�
�

2

�

�
g2
Lu

2

s2
’c2

’

�
�1
g2
L

�s’
c’

�
2
�

2

v2 �1� ��: (106)
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Inverting these relations, we match to our input parame-
ters,

v2�
�1���

2
���
2
p
GF

; sin2��
1

2
�

1

2

�����������������������������������������������
1�4A0�1��1�c4

’���
q

;

(107)

where

A0 �
�����

2
p
GFM2

Z

’ 0:179 059: (108)

These are sufficient to work out the shifts in many of the
electroweak observables relative to the SM. The important
ones for our analysis are

MW � �MW�SM�1� 0:219�1� c4
’���;

�Z � ��Z�SM�1� ��1:348� 0:790c4
’ � 1:684s2

’c
2
’���;

�had � ��had�SM�1� ��1:478� 0:974c4
’

� 1:828s2
’c

2
’���;

�e;� � ��e;��SM�1� ��1:175� 1:175c4
’

� 2:122s2
’c2

’���;

�inv � ��inv�SM�1� ��1:000� 0:333c4
’ � 1:333s2

’c2
’���;

Rb � �Rb�SM�1� �0:059� 1:846c4
’ � 1:828s2

’c2
’���;

Rc � �Rc�SM�1� ��0:114� 0:618c4
’ � 0:583s2

’c2
’���;

R� � �R��SM�1� ��0:302� 1:921c4
’ � 1:828s2

’c2
’���;

Re;� � �Re;��SM�1� ��0:302� 0:201c4
’

� 0:293s2
’c

2
’���;

Ab � �Ab�SM�1� ��0:232� 0:071c4
’���;

Ac � �Ac�SM�1� ��1:786� 1:786c4
’ � 1:242s2

’c
2
’���;

As � �As�SM�1� ��0:232� 0:232c4
’ � 0:161s2

’c
2
’���;

A� � �A��SM�1� ��20:391� 6:215c4
’���;

Ae;� � �Ae;��SM�1� ��20:391� 20:391c4
’

� 14:17s2
’c2

’���;

AbFB � �A
b
FB�SM�1� ��20:621� 20:462c4

’

� 14:17s2
’c2

’���;

AcFB � �A
c
FB�SM�1� ��22:171� 22:171c4

’

� 15:41s2
’c2

’���;

AsFB � �A
s
FB�SM�1� ��20:621� 20:621c4

’

� 14:333s2
’c

2
’���;

A�FB � �A
�
FB�SM�1� ��40:771� 26:602c4

’

� 14:17s2
’c

2
’���;

Ae;�FB � �A
e;�
FB �SM�1� ��40:771� 40:771c4

’

� 28:34s2
’c

2
’���: (109)
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2. The light case

The corresponding expressions for the light case are
M2
Z �

g2
Lv

2

2c2
�

�1� s4
’��;

4
���
2
p
GF �

2

v2 :

(110)
These translate into
v2 �
1

2
���
2
p
GF

sin2� �
1

2
�

1

2

��������������������������������������
1� 4A0�1� s

4
’��

q
:

(111)
The corresponding shifts in the electroweak observables
are
MW � �MW�SM�1� 0:219s4
’��;

�Z � ��Z�SM�1� ��1:348� 1:684s2
’c

2
’ � 0:383s4

’���;

�had � ��had�SM�1� �0:504s2
’c

2
’ � 0:351s4

’���;

�e;� � ��e;��SM�1� ��0:947s4
’���;

�inv � ��inv�SM�1� �0:667s2
’c2

’ � 0:333s4
’���;

Rb � �Rb�SM�1� �1:787s2
’c2

’ � 1:770s4
’���;

Rc � �Rc�SM�1� ��0:504s2
’c2

’ � 0:469s4
’���;

R� � �R��SM�1� ��1:618s2
’c2

’ � 1:526s4
’���;

Re;� � �Re;��SM�1� �0:504s2
’c2

’ � 0:596s4
’���;

Ab � �Ab�SM�1� �0:161s2
’c2

’ � 0:232s4
’���;

Ac � �Ac�SM�1� �0:545s4
’���;

As � �As�SM�1� �0:0708s4
’���;

A� � �A��SM�1� �14:171s2
’c

2
’ � 20:386s4

’���;

Ae;� � �Ae;��SM�1� �6:215s4
’���;

AbFB � �A
b
FB�SM�1� �0:161s2

’c
2
’ � 6:450s4

’���;

AcFB � �A
c
FB�SM�1� �6:760s4

’���;

AsFB � �A
s
FB�SM�1� �6:286s4

’���;

A�FB � �A
�
FB�SM�1� �14:171s2

’c2
’ � 26:602s4

’���;

Ae;�FB � �A
e;�
FB �SM�1� �12:431s4

’���:

(112)
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