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Conditions for CP violation in the general two-Higgs-doublet model
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The most general Higgs potential of the two-Higgs-doublet model (2HDM) contains three squared-
mass parameters and seven quartic self-coupling parameters. Among these, one squared-mass parameter
and three quartic coupling parameters are potentially complex. The Higgs potential explicitly violates CP
symmetry if and only if no choice of basis exists in the two-dimensional Higgs flavor space in which all
the Higgs potential parameters are real. We exhibit four independent potentially complex invariant (basis-
independent) combinations of mass and coupling parameters and show that the reality of all four
invariants provides the necessary and sufficient conditions for an explicitly CP-conserving 2HDM scalar
potential. Additional potentially complex invariants can be constructed that depend on the Higgs field
vacuum expectation values (vevs). We demonstrate how these can be used together with the vev-
independent invariants to distinguish between explicit and spontaneous CP violation in the Higgs sector.
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1We find it convenient and illuminating to give an explicit
proof of this oft-stated result in Appendix A.
I. INTRODUCTION

The standard model (SM) posits the existence of a single
complex hypercharge-one Higgs doublet [1]. Because of
the form of the Higgs potential, one component of this
Higgs scalar acquires a vacuum expectation value (vev)
and the SU�2� � U�1� electroweak symmetry is spontane-
ously broken to U�1�EM. Hermiticity requires that the
parameters of the SM Higgs potential are real.
Consequently, the resulting bosonic sector of the electro-
weak theory isCP conserving. CP violation enters through
the Yukawa couplings of the Higgs field to fermions.
Although there are many potentially complex parameters
in the Higgs couplings to three generations of quarks and
leptons, one can redefine the fermion fields (to absorb
unphysical phases). The end result is one CP-violating
parameter—the Cabibbo-Kobayashi-Maskawa angle [2].

There are a number of motivations for considering ex-
tended Higgs sectors. For example, the minimal super-
symmetric extension of the standard model (MSSM)
requires two complex Higgs doublets [3]. In this paper,
we consider the most general two-Higgs-doublet extension
of the standard model. This model possesses two identical
complex, hypercharge-one Higgs doublets. In contrast to
the standard model, the scalar Higgs potential of the two-
Higgs-doublet model (2HDM) contains potentially com-
plex parameters [4]. Consequently, the purely bosonic
sector can exhibit explicit CP violation (prior to the in-
troduction of the fermions and the attendant complex
Higgs-fermion Yukawa couplings). However as above,
not all complex phases are physical. In this paper, we
exhibit the necessary and sufficient conditions for an ex-
plicitly CP-conserving 2HDM scalar potential.

The procedure for determining whether the Higgs poten-
tial explicitly violates CP is in principle straightforward.
The Higgs potential parameters are initially defined with
respect to two identical Higgs fields �1 and �2. However,
one can always choose to change the basis (in the two-
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dimensional Higgs ‘‘flavor’’ space) by defining two new
(orthonormal) linear combinations of �1 and �2. In this
new basis, all the Higgs potential parameters are modified.
The Higgs potential is explicitly CP violating if and only if
no choice of basis exists in which all the Higgs potential
parameters are simultaneously real.1 If (at least) one basis
choice exists in which all Higgs potential parameters are
real, then the Higgs potential is explicitly CP conserving.
Henceforth, we designate any such basis as a real basis.
CP violation in the scalar sector might still arise if the
scalar field vacuum is not time-reversal invariant. In this
case, CP is spontaneously broken [5].

Given an arbitrary Higgs potential, it may not be pos-
sible to determine by inspection whether a real basis exists.
Since there exist four potentially complex parameters in
the Higgs potential, one must in general solve a set of four
nonlinear equations (requiring that these four parameters
are real in some specific basis to be determined). Thus, we
propose another technique for answering the question of
whether a special basis exists in which all Higgs potential
parameters are real. Our procedure makes use of the tech-
nology introduced in Ref. [6] based on invariant combina-
tions of Higgs potential parameters. By definition, these
invariants are basis-independent quantities; i.e., they do not
depend on the initial basis choice for �1 and �2. We then
search for potentially complex invariants.

Four potentially complex (basis-independent) invariants
govern the CP property of the 2HDM scalar potential. If
any one of these four invariants possesses a nonzero imagi-
nary part, then the 2HDM scalar potential is explicitly
CP violating. CP is explicitly conserved if and only if all
four invariants are real. In the latter case, a real basis must
exist (even though an explicit form for the transformation
that produces such a basis is not determined). Two of the
-1 © 2005 The American Physical Society
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invariants were found by diagrammatic techniques in
Ref. [6]. Recently, three of the four invariants were also
employed in [7]. Other earlier simple (basis-dependent)
conditions proposed for the existence of explicit CP vio-
lation in the Higgs potential [8,9] turn out to be sufficient
but not necessary for an explicitly CP-conserving Higgs
potential.

Finally, we note that in the discussion above, we have
not addressed the question of the minimization of the
Higgs potential. This determines the vevs of the two
Higgs fields,2 which are basis-dependent quantities. The
two vevs can in general be complex, although one can
absorb these complex phases by phase redefinitions of the
individual scalar fields [10]. As shown in Appendix F, the
Higgs sector is fully CP conserving if and only if there
exists a real basis in which the Higgs vacuum expectation
values are simultaneously real. The latter can be estab-
lished by examining three additional invariants (initially
introduced in Ref. [11]) that depend explicitly on the vevs.

In Sec. II, the basis-independent formalism for the
2HDM developed in Ref. [6] is reviewed. In Sec. III, we
exhibit a set of four independent potentially complex in-
variants constructed from the Higgs sector parameters. We
then prove that the imaginary parts of these four invariants
vanish if and only if the 2HDM scalar potential explicitly
conserves the CP symmetry. The proof of this theorem
relies on a number of important lemmas that are proved in
Appendixes C and D. The power of this theorem is dem-
onstrated by exhibiting three simple 2HDM models with
complex parameters that are CP conserving. In Sec. IV we
provide some insight into how the set of four complex
invariants was discovered by surveying all potentially
complex nth-order invariants for n � 6. The manifest real-
ity of all invariants of order three or less is demonstrated
explicitly in Appendix E. Thus, one must search for invar-
iants of order n � 4 to find candidates that are potentially
complex. From the results of our survey, we deduce a
number of general features of the potentially complex
invariants of arbitrary order. The question of spontaneous
CP violation in the 2HDM is treated in Sec. V. To deter-
mine whether an explicitly CP-conserving Higgs potential
exhibits spontaneous CP violation, one must additionally
consider basis-independent quantities, initially introduced
in Ref. [11], that depend on the Higgs vevs. Finally, a brief
discussion of future directions and concluding remarks are
given in Sec. VI.
II. THE HIGGS POTENTIAL OF THE TWO-HIGGS-
DOUBLET MODEL

Consider the most general two-Higgs-doublet extension
of the standard model [1,12]. Let �1 and �2 denote two
2We shall always assume that the Higgs potential parameters
are chosen such that the scalar minimum of interest preserves
U�1�EM.
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complex Y � 1, SU�2�L doublet scalar fields. The most
general SU�2�L � U�1�Y invariant scalar potential is given
by (see, e.g., Ref. [13])

V � m2
11�y1 �1 �m

2
22�y2 �2 � 	m

2
12�y1 �2 � H:c:
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where m2
11, m2

22, and �1; . . . ; �4 are real parameters and
m2

12, �5, �6 and �7 are potentially complex parameters. We
assume that the parameters of the scalar potential are
chosen such that the minimum of the scalar potential
respects the U�1�EM gauge symmetry. Then, the scalar field
vacuum expectation values are of the form

h�1i �
1���
2
p

�
0
v1

�
; h�2i �

1���
2
p

�
0

v2ei�

�
; (2)

where v1 and v2 are real and non-negative, 0 � j�j � �,
and

v2 � v2
1 � v

2
2 �

4m2
W

g2 � �246 GeV�2: (3)

In writing Eq. (2), we have used a global U�1�Y hyper-
charge rotation to eliminate the phase of v1.

Since the scalar doublets �1 and �2 have identical
SU�2� � U�1� quantum numbers, one is free to define
two orthonormal linear combinations of the original scalar
fields. The parameters appearing in Eq. (1) depend on a
particular basis choice of the two scalar fields. Relative to
an initial (generic) basis choice, the scalar fields in the new
basis are given by �0 � U� [6], where U is a U(2)
matrix3:

U � ei 
cos� e�i� sin�

�ei� sin� ei����� cos�

� �
: (4)

Note that the phase  has no effect on the scalar potential
parameters, since this corresponds to a global hypercharge
rotation.

With respect to the new �0-basis, the scalar potential
takes on the same form given in Eq. (1) but with new
coefficients m02ij and �0j. For the general U(2) transforma-
tion of Eq. (4) with �0 � U�, the scalar potential parame-
ters (m02ij, �

0
i) are related to the original parameters (m2

ij, �i)
by

m0211 � m2
11c

2
� �m

2
22s

2
� � Re�m2

12e
i��s2�; (5)
3This U(2) transformation has also been recently exploited in
Ref. [10].
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m0222 � m2
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i��s2�; (6)
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 � Re��5e2i��

� ic2� Im��5e2i�� � s2�c2� Re	��6 � �7�ei�
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� s�s3� Re��6ei�� � c�c3� Re��7ei��

� is2
� Im��6ei�� � ic2

� Im��7ei��; (14)

where

�345 � �3 � �4 � Re��5e2i��: (15)

These equations exhibit the following features. If m2
11 �

m2
22 and m2

12 � 0 in some basis then these two conditions
are true in all bases. Likewise, if �1 � �2 and �7 � ��6 in
some basis then these latter two conditions are true in all
bases.

We noted previously that the parameters m2
12, �5, �6 and

�7 are potentially complex. We now pose the following
question: does there exist a so-called real basis in which all
the scalar potential parameters are real? In general, the
existence of a real basis cannot be ascertained by inspec-
095002
tion. In particular, starting from an arbitrary basis, it may
be quite difficult to determine whether or not there is a
choice of �; �; � above such that all the primed parameters
are real. However, in this paper we will show, using the
basis-independent techniques described in Ref. [6], that
there is a straightforward procedure for determining
whether a real basis exists. To accomplish this goal, we
write the scalar Higgs potential of the 2HDM following
Refs. [4,6]:

V � Ya �b�y�a�b �
1

2
Za �bc �d��

y
�a�b���

y
�c�d�; (16)

where the indices a, �b, c and �d run over the two-
dimensional Higgs flavor space and

Za �bc �d � Zc �da �b: (17)

Hermiticity of V implies that

Ya �b � �Yb �a�
�; Za �bc �d � �Zb �ad �c�

�: (18)

Under a global U(2) transformation, �a ! Ua �b�b (and
�y�a ! �y�bU

y
b �a), where Uyb �aUa �c � �b �c, and the tensors Y

and Z transform covariantly: Ya �b ! Ua �cYc �dU
y

d �b
and

Za �bc �d ! Ua �eU
y

f �b
Uc �gU

y

h �d
Ze �fg �h. The use of barred indices

is convenient for keeping track of which indices transform
with U and which transform with Uy. We also introduce
the U(2)-invariant tensor �a �b, which can be used to con-
tract indices. In this notation, one can only contract an
unbarred index against a barred index. For example,

Z�1�
a �d
� �b �cZa �bc �d � Za �bb �d; Z�2�

c �d
� �b �aZa �bc �d � Za �ac �d:

(19)

With respect to the �-basis of the unprimed scalar fields,
we have

Y11 � m2
11; Y12 � �m2

12;

Y21 � ��m
2
12�
�; Y22 � m2

22;
(20)

and

Z1111 � �1; Z2222 � �2;

Z1122 � Z2211 � �3; Z1221 � Z2112 � �4;

Z1212 � �5; Z2121 � ��5;

Z1112 � Z1211 � �6; Z1121 � Z2111 � ��6;

Z2212 � Z1222 � �7; Z2221 � Z2122 � ��7:

(21)

For ease of notation, we have omitted the bars from the
barred indices in Eqs. (20) and (21). Since the tensors Ya �b
and Za �bc �d exhibit tensorial properties with respect to global
U(2) rotations in the Higgs flavor space, one can easily
construct invariants with respect to the U(2) by forming
U(2)-scalar quantities.

In Sec. III, we shall argue that the scalar potential is
CP conserving if and only if a real basis exists. In this case,
-3
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all possible U(2)-invariant scalars are manifestly real.
Conversely, if the scalar potential explicitly violates CP,
then there must exist at least one manifestly complex U(2)-
scalar invariant. We shall exhibit the simplest set of inde-
pendent potentially complex U(2)-scalar invariants that
can be employed to test for explicit CP invariance or
noninvariance of the 2HDM scalar potential.
III. COMPLEX INVARIANTS AND THE
CONDITIONS FOR A CP-CONSERVING 2HDM

SCALAR POTENTIAL

Given an arbitrary 2HDM Higgs potential, we have al-
ready noted that the scalar potential possesses a number of
potentially complex parameters. We would like to deter-
mine in general whether this scalar potential is explicitly
CP violating or CP conserving. The answer to this ques-
tion is governed by a simple theorem:

Theorem 1.—The Higgs potential is explicitly
CP conserving if and only if a basis exists in which all
Higgs potential parameters are real. Otherwise, CP is
explicitly violated.

Although Theorem 1 is well known and often stated in
the literature, its proof is usually given under the assump-
tion that a convenient basis has been chosen in which the
CP transformation laws of the scalar fields assume a
particularly simple form [4]. In Appendix A, we provide
a general proof of Theorem 1 that does not make any
assumption about the initial choice of the scalar field basis.
As already noted, it may be difficult to determine whether a
basis exists in which all Higgs potential parameters are
real. Thus, we would like to reformulate Theorem 1 in a
basis-independent language. That is, we propose to express
the conditions for an explicitly CP-violating (or conserv-
ing) Higgs potential in terms of basis-independent
invariants.

Before presenting the basis-independent version of
Theorem 1, let us first enumerate the number of indepen-
dent CP-violating phases that exist among the scalar po-
tential parameters of the 2HDM. In Eq. (1), we have noted
four potentially complex parameters: Y12 � �m2

12, �5, �6

and �7. Naively, it appears that there are three independent
CP-violating phases, since one can always perform a phase
rotation on one of the Higgs fields to render one of the
complex parameters real. However, this conclusion is not
correct, since one can utilize a larger SU(2) global sym-
metry to absorb additional phases.4 An SU(2) global rota-
tion is parametrized by one angle and two phases. This can
be used to remove one real parameter and two phases from
the initial ten real parameters and four phases that make up
the scalar potential parameters. Thus, ultimately, the num-
4As previously noted, a U(1) hypercharge global rotation
leaves all the scalar parameters unchanged; that is, the angle  
in Eq. (4) has no effect. If one chooses  � 1

2 ��� ��, then the
matrix U given in Eq. (4) is an SU(2) matrix.
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ber of physical parameters of the scalar potential must be
given by nine real parameters and two phases.
Equivalently, there can only be two independent complex
parameters among the physical parameters that describe
the scalar potential.

This result can be derived in a very simple and direct
fashion as follows [6]. Consider the explicit forms of Z�1�

and Z�2� defined in Eq. (19):

Z�1� �
�1 � �4 �6 � �7

��6 � �
�
7 �2 � �4

� �
;

Z�2� �
�1 � �3 �6 � �7

��6 � �
�
7 �2 � �3

� �
:

(22)

Note that Z�1� and Z�2� are Hermitian matrices that com-
mute so that they can be simultaneously diagonalized by a
unitary matrix. It therefore follows that there exists a basis
in which Z�1� and Z�2� are simultaneously diagonal; that is,
�7 � ��6. Once this basis is established, it is clear that the
phase of �6 and �7 can be removed by a U(1) phase
rotation of �2. Thus, a basis can always be found in which
only two parameters Y12 and �5 are complex. Moreover,
the total number of independent real parameters is nine
(since in a basis where �7 � ��6, only one of these two
parameters is an independent degree of freedom). This
matches the counting of parameters given in the previous
paragraph.

Based on this parameter counting, one is tempted to
conclude that there should be only two independent poten-
tially complex invariants. Nevertheless, this intuition is
misleading. The correct statement is summarized by the
following theorem.

Theorem 2.—The necessary and sufficient conditions for
an explicitly CP-conserving 2HDM scalar potential con-
sist of the (simultaneous) vanishing of the imaginary parts
of four potentially complex invariants:

IY3Z � Im�Z�1�a �cZ
�1�
e �b
Zb �ec �dYd �a�; (23)

I2Y2Z � Im�Ya �bYc �dZb �ad �fZ
�1�
f �c �; (24)

I6Z � Im�Za �bc �dZ
�1�
b �f
Z�1�
d �h
Zf �aj �kZk �jm �nZn �mh �c�; (25)

I3Y3Z � Im�Za �cb �dZc �ed �gZe �hf �qYg �aYh �bYq �f�: (26)

Henceforth, the imaginary parts of potentially complex
invariants shall be referred to as I-invariants.

The case of �1 � �2 and �7 � ��6 is a special isolated
point in the scalar potential parameter space. In particular,
when �1 � �2 and �7 � ��6, the matrices Z�1� and Z�2�

are both proportional to the unit matrix. Thus, if both
equalities �1 � �2 and �7 � ��6 are true in one basis,
then they must also be true in all bases [as previously noted
below Eq. (8)]. Thus, Theorem 2 breaks up into two dis-
tinct cases:
-4
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(i) For the isolated point �1 � �2 and �7 � ��6,
IY3Z � I2Y2Z � I6Z � 0 is automatic [see
Eqs. (28)–(30)]. In this case, the necessary and
sufficient condition for an explicitly CP-conserving
2HDM scalar potential is simply given by I3Y3Z � 0.

(ii) Away from the special isolated point of case (i),
only three of the I-invariants need be considered.
Specifically, at any other point of the parameter
space, the necessary and sufficient conditions for
an explicitly CP-conserving 2HDM scalar potential
are given by5

IY3Z � I2Y2Z � I6Z � 0: (27)

It is trivial to prove that the above conditions are neces-
sary for explicit CP conservation. If any of the above
I-invariants [Eqs. (23)–(26)] are nonzero, then we can
immediately conclude that no basis exists in which all
scalar potential parameters are real. Thus, by Theorem 1,
the scalar potential would be CP violating. The proof that
the conditions of Theorem 2 are sufficient for explicit
5If Eq. (27) is satisfied in case (ii), then I3Y3Z � 0. Thus, the
latter is not needed as a separate requirement.

6Note that if �5 � 0 and Y11 � Y22, then Eq. (31) yields
I3Y3Z � f��1 � �2�

2Y11Y22 � 16	Re�Y12�
�
6�


2gIm�Y12�
�
6�.
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CP conservation will now be given, with further details
provided in Appendixes C and D.

First, we must prove that all four I-invariants listed in
Eqs. (23)–(26) are required in the formulation of
Theorem 2. This may be accomplished by exhibiting four
different models in which only one of the four I-invariants
is nonzero. In Secs. IVA and IV C, we give explicit forms
for these four I-invariants in a generic basis [see Eqs. (39),
(41), (47), and (48), respectively]. However, as already
noted below Eq. (22), it is always possible to choose a
basis in which �7 � ��6. This basis is not unique, since
further basis transformations can be performed while
maintaining �7 � ��6. In any such basis, three of the
I-invariants take particularly simple forms:

IY3Z � ���1 � �2�
2Im�Y12��6�; (28)

I2Y2Z � ��1 � �2�	Im�Y
2
12�

�
5� � �Y11 � Y22�Im�Y12�

�
6�
;

(29)

I6Z � ���1 � �2�
3Im��2

6�
�
5�: (30)

The expression for I3Y3Z in this basis is more complicated:
I3Y3Z�2Im�Y3
12�6���5�

2��4Im�Y3
12��

�
6�

3��	�Y11�Y22�
2�6jY12j

2
�Y11�Y22�Im��2
6�
�
5�

�	��1��3��4���2��3��4��2j�6j
2�j�5j

2
�Y11�Y22�Im�Y2
12�

�
5�

�f��1��2�
2Y11Y22��4j�6j

2�2j�5j
2�	�Y11�Y22�

2�jY12j
2
gIm�Y12��6�

���1��2�2�3�2�4�f�Y11�Y22�Im�Y
2
12��

�
6�

2�� Im�Y3
12�

�
5�
�
6��	�Y11�Y22�

2�jY12j
2
Im�Y12�6�

�
5�g: (31)
7This is always possible as shown below Eq. (22).
8

Working in the �7 � ��6 basis, we consider the four
models:

(1) Ya �b � 0 and �1 � �2;
(2) �6 � 0, �1 � �2 and Y11 � Y22;
(3) �5 � 0, �1 � �2, Y11�Y22�0 and Re�Y12��6��0;
(4) �1 � �2.

Then, in model 1, IY3Z � I2Y2Z � I3Y3Z � 0 whereas I6Z is
potentially nonzero. In model 2, IY3Z � I6Z � I3Y3Z � 0
whereas I2Y2Z is potentially nonzero. In model 3, I2Y2Z �
I6Z � I3Y3Z � 0 whereas IY3Z is potentially nonzero.6

Finally, in model 4, IY3Z � I6Z � I2Y2Z � 0 whereas
I3Y3Z is potentially nonzero. Thus, we have exhibited
four separate models in which CP can be violated explic-
itly, and in each case only one of the four I-invariants is
nonzero. This illustrates that all four I-invariants are
needed to test whether the Higgs potential explicitly con-
serves or violates CP.

The requirement of four I-invariants in the formulation
of Theorem 2 seems to be in conflict with our previous
observation that the number of physical parameters of the
2HDM includes only two phases [see discussion surround-
ing Eq. (22)]. However, one can show that for any particu-
lar model, at most two I-invariants need be considered. To
verify this assertion, we first transform to a basis in which
�7 � ��6 and where �6 (and therefore �7) are real.7 Then
there are a number of cases to consider. (i) If �1 � �2, then
I3Y3Z � 0 implies that the Higgs sector is explicitly
CP conserving. (ii) If �1 � �2 and Y12, �5 and �6 are
nonvanishing, then IY3Z � I6Z � 0 implies that the Higgs
sector is explicitly CP conserving. (iii) If �1 � �2 and two
of the quantities Y12, �5 and �6 are nonzero while the third
vanishes, then only one I-invariant need be considered.
Specifically, for �5 � 0 [�6 � 0], IY3Z � 0 [I2Y2Z � 0]
guarantees a CP-conserving Higgs sector, whereas for
Y12 � 0, I6Z � 0 guarantees a CP-conserving Higgs sec-
tor. Thus, we have shown that it is sufficient to examine at
most two I-invariants to determine whether all four
I-invariants [Eqs. (23)–(26)] simultaneously vanish.8

To complete the proof of Theorem 2, we must show that
if the four I-invariants given by Eqs. (23)–(26) vanish, then
Of course, to take advantage of this observation in practice,
one must be able to take the original model and transform to a
basis where �7 � ��6 is real. In general, this may be difficult
(and require a numerical computation). Thus, in order to test for
explicit CP violation, it is often simpler to directly evaluate all
four I-invariants in the original basis.
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one can find a basis where all Higgs potential parameters
are real. The proof is most easily carried out by first
transforming to a basis in which �7 � ��6 and where �6

(and therefore �7) are real. In this basis, the two cases of
�1 � �2 and �1 � �2 must be treated separately. First, we
consider the case where �1 � �2. If �7 � ��6 � 0, then
I6Z � 0 [Eq. (30)] implies that �5 is also real in this basis,
and IY3Z � 0 [Eq. (28)] implies that Y12 is real. We have
therefore achieved a basis in which all scalar potential
parameters are real. If �6 � �7 � 0, then one can perform
a phase rotation on one of the scalar fields so that �5 is real,
with Y12 potentially complex. In this new basis, if �5 � 0
then I2Y2Z � 0 implies that Y12 is either real or purely
imaginary. In the latter case, Eqs. (12)–(14) demonstrate
that a U(2) transformation [see Eq. (4)] with parameters
� � �=2, sin2� � 0 and � � 0 yields a basis in which
�06 � ��

0
7 � 0, and both �05 � ��5 and Y012 are real.

Finally, if �5 � �6 � �7 � 0, then one can absorb any
phase of Y12 into a phase redefinition of one of the scalar
fields.

Next, we consider the case where �1 � �2 in a basis
where �7 � ��6. In this case, it is always possible to make
a further change of basis so that �5, �6 and �7 are real (this
assertion is Lemma 2, which is proved in Appendix C).9 In
this latter basis where Y12 is potentially complex but all
other scalar potential parameters are real, Eq. (31) yields
the following form for the only potentially nonvanishing
invariant I3Y3Z:

I3Y3Z � 2 ImY12	�2
5 � �5��1 � �3 � �4� � 2�2

6


� 	4�6�ReY12�
2 � �6�Y11 � Y22�

2

� ��3 � �4 � �5 � �1��Y11 � Y22�ReY12
: (32)

Then, I3Y3Z � 0 implies that one of the following three
conditions must be true in a basis where all the �i are real:
(i) Y12 is real; (ii) �2

5 � �5��1 � �3 � �4� � 2�2
6 � 0; or

(iii) 4�6�ReY12�
2���3��4��5��1��Y11�Y22�ReY12

��6�Y11�Y22�
2�0. In Appendix D, we prove Lemma 4

which demonstrates that if Y12 is complex and either
condition (ii) or condition (iii) holds, then it is possible
to find a basis in which Y12 is real, while maintaining the
reality of �5, �6 and �7. Hence it follows that if I3Y3Z � 0,
then there exists a basis in which all 2HDM scalar potential
parameters are real.10 The proof of Theorem 2 is now
complete.

It is instructive to compare the results of Theorem 2 to
one of the basis-dependent conditions that has been pro-
posed in the literature. In a generic basis, a sufficient set of
conditions for an explicitly CP-conserving 2HDM scalar
potential is
9In Appendix C, Lemma 3 demonstrates why the condition of
�1 � �2 is crucial to the proof of Lemma 2.

10The U(2) rotation required to go to this basis is explicitly
constructed in Appendix D.
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Im �Y2
12�

�
5� � Im�Y12�

�
6� � Im�Y12�

�
7� � Im���5�

2
6�

� Im���5�
2
7� � Im���6�7� � 0; (33)

where Y12 � �m
2
12. Clearly, if Eq. (33) is satisfied, then a

simple phase rotation of one of the scalar fields easily
produces a basis in which all the scalar potential parame-
ters are real. However, Eq. (33) is not necessary for
CP conservation. In particular, the following statement is
generally false: ‘‘the Higgs potential is explicitly
CP violating if one or more of the quantities listed in
Eq. (33) are nonvanishing.’’ This is most easily demon-
strated by the following exercise. Start with a model in
which all potentially complex scalar potential parameters
are real. Then, change the basis with a generic U(2) trans-
formation [Eq. (4)]. In a typical case, the resulting parame-
ters Y012, �05, �06, and �07 in the new basis are complex, and
one or more of the quantities listed in Eq. (33) are non-
vanishing. Thus, Eq. (33) is not a necessary condition for
an explicitly CP-conserving Higgs potential.11

Despite the relative simplicity of the forms for IY3Z,
I2Y2Z, I6Z and I3Y3Z in the �7 � ��6 basis, realistic models
rarely conform to this particular basis choice. The power of
the basis-independent formulation of Theorem 2 thus be-
comes evident when considering models where the trans-
formation from the generic basis to the �7 � ��6 basis is
not particularly simple. Fortunately, we possess expres-
sions for these I-invariants in a generic basis [see
Eqs. (39), (41), (47), and (48)], so there is no compelling
need to explicitly perform this change of basis. For pur-
poses of illustration, let us consider three special models.
In model (i),

�1 � �2; �6 � �7 and Y11 � Y22; (34)

where Y12, �5 and �6 have arbitrary phases. In model (ii),

�1��2�2��3��4�; �5�0 and �6��7; (35)

where Y12 and �6 have arbitrary phases. In model (iii),

�1 � �2; �6 � ��7;

Y11 � Y22 and Y12; �5 real;
(36)

where �6 has an arbitrary phase. Model (iii) arises by
imposing on the Higgs potential a discrete permutation
symmetry that interchanges �1 and �2 [14].

In the three models above, we have used Eqs. (39), (41),
(47), and (48) in the generic basis to verify that IY3Z �
I2Y2Z � I6Z � I3Y3Z � 0. Thus models (i), (ii) and (iii) are
explicitly CP conserving. These three models also provide
examples of explicitly CP-conserving 2HDM potentials
An example that illustrates the same point is a model in which
�1 � �2 and �7 � ��6. Lemma 2 of Appendix C implies that
we can transform to a basis in which all the �i are real.
Nevertheless, in this basis, Eq. (32) implies that it is possible
to have an explicitly CP-conserving model with I3Y3Z � 0 and
ImY12 � 0.
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where Eq. (33) is not satisfied. Nevertheless, having veri-
fied that all the I-invariants vanish, one is assured of the
existence of some basis choice for each model for which all
Higgs potential parameters are real.

Here, we provide one explicit example in the case of
model (iii). Starting from the generic basis specified in
Eq. (36), we perform a U(2) transformation [Eq. (4)] with
� � �=4 and � � 0. Then, Eqs. (7), (13), and (14) yield
m0212 � �06 � �07 � 0, while Eq. (12) implies that

�05e
2i� �

1

2
��1 � �3 � �4 � �5� � 2i Im�6: (37)

It is now a simple matter to adjust � so that �05 is real. Thus,
we have exhibited the U(2) transformation that produces
the real basis of model (iii) in which all scalar potential
parameters are real. Applying this U(2) transformation to
the fields, it is easy to check that the resulting real basis
exhibits a discrete symmetry �01 ! �01, �02 ! ��02.
Models that respect the latter discrete symmetry are man-
ifestly CP invariant since �05 is the only potentially com-
plex parameter, whose phase can be rotated away by an
appropriate phase rotation of �02 ! ei��02 .
12The determinants of Y, Z�1� and Z�2� are quadratic invariants
that are related to the invariants given above via the identity
detM � 1

2 	�TrM�2 � Tr�M2�
, which is satisfied by any 2� 2
matrix.
IV. A SURVEY OF COMPLEX INVARIANTS

In general, it is possible to construct an nth-order invari-
ant quantity for any integer value of n, where n is the total
number of Y ’s and Z’s that appears in the invariant. The
vast majority of such invariants are manifestly real. In this
section, we focus on those invariants that are potentially
complex.

The necessary and sufficient conditions for CP con-
servation have been presented in Theorem 2 and depend
on only four potentially complex invariants given by
Eqs. (23)–(26). However, new potentially complex nth-
order invariants arise at every order (for n > 4) that cannot
be expressed in terms of lower-order invariants.
Nevertheless, Theorem 2 guarantees that if the
I-invariants of Eqs. (23)–(26) vanish, then the imaginary
parts of all potentially complex invariants must vanish. In
particular, we have explicitly verified the following state-
ments:

(1) All invariants (of arbitrary order) that are either
independent of Z or linear in Z are manifestly real.

(2) All invariants of cubic order or less are manifestly
real.

(3) Any quartic (i.e., fourth-order) I-invariant is a real
linear combination of IY3Z and I2Y2Z.

(4) Any fourth- or higher-order I-invariant that is qua-
dratic in Z is proportional to I2Y2Z.

(5) Any fifth-order I-invariant vanishes if IY3Z �
I2Y2Z � 0.

(6) Any sixth-order I-invariant that is independent of Y
is proportional to I6Z. Moreover, if Ya �b � 0 then any
I-invariant of arbitrary order vanishes if I6Z � 0.
095002
(7) Any sixth-order I-invariant that is both cubic in Y
and Z respectively is a real linear combination of
I3Y3Z and lower-order invariants that vanish if
IY3Z � I2Y2Z � 0.

(8) Any sixth-order I-invariant that is either linear or
quadratic in Y vanishes if IY3Z � I2Y2Z � 0.

Finally, we reiterate that
(9) Any I-invariant of arbitrary order vanishes if

IY3Z � I2Y2Z � I6Z � I3Y3Z � 0.
This last result is a consequence of Theorem 2. The

explicit verification of statements 1–8 is based on a sys-
tematic study of potentially complex U(2)-invariant scalars
made up of the tensors Ya �b and Za �bc �d. This study gives us
further confidence that the ultimate conclusion given by
statement (9) above is correct.

We begin this study by noting that for n � 1, the only
invariants are TrY, TrZ�1� and TrZ�2�, all of which are
manifestly real. For n � 2, the possible quadratic invari-
ants include the products of the first order invariants and
Tr�Y2�, Tr�YZ�1��, Tr�YZ�2��, Tr�Z�i�Z�j�� [for i; j � 1; 2],
TrZ�31� � Za �bc �dZb �ad �c and TrZ�32� � Za �bc �dZd �ab �c, where

Z�31� and Z�32� are introduced in Eq. (E3).12 By inspection,
all such quadratic invariants are manifestly real. Turning to
the cubic invariants, the enumeration of all possible cases
becomes significantly more complex. Nevertheless, it is
still possible to show by hand that all cubic invariants are
manifestly real. This is demonstrated in Appendix E. Thus,
in order to find a potentially complex invariant, one must
examine invariants of fourth order and higher. At this point,
an explicit hand calculation quickly becomes infeasible,
and we must employ a computer algebra program such as
MATHEMATICA to assist in the analysis. For example, con-
sider all possible invariants that are independent of Ya �b
(such invariants will be called Z-invariants). One can use
MATHEMATICA to evaluate the imaginary part of each in-
variant by explicitly considering invariants which consist
of n-fold products of Z’s. These invariants are of the form:

Za1
�b1c1

�d1
Za2

�b2c2
�d2

 
 
Zan �bncn �dn ; (38)

where one chooses the indices fb1; d1; b2; d2; . . . ; bn; dng to
be a particular permutation of fa1; c1; a2; c2; . . . ; an; cng,
and then sums over the repeated indices as usual. By
considering all possible permutations, one generates all
�2n�! possible invariants (many of which are trivially re-
lated to others in the complete list of invariants). One can
automate the computation with a MATHEMATICA program
and compute the imaginary part of all �2n�! invariants
subject to the constraints of computer time. The procedure
can be generalized to include some number of Ya �b. In
particular, it is easy to show (without computer assistance)
-7
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that all invariants that are independent of Z (such invariants
will be called Y-invariants) are manifestly real, due to the
Hermiticity property of Ya �b.

A. Fourth-order potentially complex invariants

Among the quartic invariants, we first construct all
possible quartic Z-invariants. By an explicit
MATHEMATICA computation, we were able to show that
all 8! � 40 320 quartic Z-invariants are manifestly real.

We next search for potentially complex quartic invari-
ants that are linear in Y. We display one potentially non-
zero I-invariant below:

IY3Z � Im�Z�1�a �cZ
�1�
e �b
Zb �ec �dYd �a�

� 2�j�6j
2 � j�7j

2�Im	Y12���6 � �
�
7�


� ��1 � �2�	Im�Y12��� � Im	Y12��5��6 � �7�



� �Y11 � Y22�	Im	��5��6 � �7�
2


� ��1 � �2�Im���7�6�
; (39)

where

� � ��2 � �3 � �4��6 � ��1 � �3 � �4��7: (40)

Using MATHEMATICA, we have evaluated the imaginary
part of all 7! � 5040 possible invariants that are linear in
Y and cubic in Z. We find that the result either vanishes or
is equal to �IY3Z.

Next, we examine potentially complex quartic invariants
that are quadratic in both Y and Z. We display one poten-
tially nonzero I-invariant in Eq. (41):
095002
I2Y2Z � Im�Ya �bYc �dZb �ad �fZ
�1�
f �c �

� ��1 � �2�Im�Y2
12�

�
5�

� �Y11 � Y22�	Im�Y12��� � Im�Y12��5��6 � �7��


� Im	�Y12�
�
6�

2
 � Im	�Y12�
�
7�

2


� 	�Y11 � Y22�
2 � 2jY12j

2
Im���7�6�: (41)
Moreover, we find as before that the imaginary parts of all
such invariants (there are 6! � 720 invariants that are
quadratic in both Y and Z) either vanish or are equal to
�I2Y2Z.

It is easy to show that quartic invariants that are cubic in
Y (and therefore linear in Z) are manifestly real. In par-
ticular, there are only two such invariants that are not a
product of lower-order invariants: Tr�Y3Z�1�� and
Tr�Y3Z�2��. Both these invariants are manifestly real due
to the Hermiticity properties of Y, Z�1� and Z�2�.

B. Fifth-order potentially complex invariants

We begin by constructing all possible fifth-order
Z-invariants. Again, with the help of MATHEMATICA, we
found that all 10! � 3 628 800 Z-invariants are manifestly
real. Next, we considered the Y4Z invariants, i.e. the fifth-
order invariants that are linear in Y. After computing the
imaginary parts of all 9! � 362 880 such invariants, we
found that only one genuinely new potentially complex
invariant emerged. The corresponding I-invariant is
IY4Z� Im	Z�2�
a �b
Zb �ac �dZ

�2�
d �eZe �cf �gYg �f


���4IY3Z���1��2�Im	Y12���6��
�
7�

2���6��
�
7�
� Im	Y12��5��

2
6�
�
7��

2
7�
�
6�
� Im	Y12�5���26 ��

�2
7 ���

�
6��

�
7�


�
1

2
����1��2���1��2�2�3�2�4��j�7j

2�j�6j
2�Im	Y12�

�
5��6��7�


�
1

2
	��1��2�

2�j�6j
2�j�7j

2
Im	Y12��5��6��7�
�
1

2
��1��2��2j�5j

2�j�6j
2�j�7j

2�Im	Y12���6��
�
7�


�
1

2
��1��2��j�6j

2�j�7j
2�Im	Y12��

�
6��

�
7�
�

1

2
�Y11�Y22�f4�j�6j

2�j�7j
2�Im��6�

�
7����1��2�Im	�

�
5��

2
7��

2
6�


���1��2�2�3�2�4�Im	��5��6��7�
2
g; (42)
where IY3Z is given by Eq. (39). In addition, we have
explicitly verified that the imaginary parts of all potentially
complex Y4Z invariants reduce to a linear combination of
IY4Z and the product of IY3Z times a linear combination of
Tr	Z�1�
 and Tr	Z�2�
.

The fact that IY4Z is a ‘‘new’’ I-invariant means that one
cannot express IY4Z as a sum of terms, each of which is the
imaginary part of a product of lower-order invariants.
Nevertheless, one can show that if IY3Z � I2Y2Z � 0, then
it follows that IY4Z � 0. This is most easily accomplished
in the basis where �7 � ��6. In this basis, Eq. (42) sim-
plifies enormously:
IY4Z � ��1 � �2�
2	�4Im�Y12��6� � Im�Y12�6��5�
: (43)

If Y12 � 0 in the �7 � ��6 basis then IY4Z � 0.
Alternatively, if Y12 � 0, then we make use of

Im �Y12�6��5� �
1

jY12j
2 	Im�Y

2
12�

�
5�Re�Y12��6�

� Im�Y12��6�Re�Y2
12�

�
5�
: (44)

Since IY3Z � I2Y2Z � 0 implies that either �1 � �2 or
Im�Y2

12�
�
5� � Im�Y12��6� � 0 [see Eqs. (28) and (29)], one

can again conclude that IY4Z � 0. Having proved that the
-8
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invariant IY4Z vanishes in one basis, it immediately follows
that IY4Z � 0 in all basis choices.

Similarly, we have analyzed the 2Y3Z invariants, i.e.,
the fifth-order invariants that are quadratic in Y and cubic
in Z. Again, we have computed the imaginary parts of all
40 320 such invariants. We have explicitly verified that any
potentially complex fifth-order invariant of this type is a
linear combination of IY3Z (with coefficient proportional to
TrY), I2Y2Z (with coefficient proportional to a linear com-
bination of Tr	Z�1�
 and Tr	Z�2�
) and one new potentially
complex invariant form. A particular choice for the new
I-invariant is

I2Y3Z � Im	Za �cb �eZc �fd �bZe �gf �hYg �aYh �d
: (45)

One could write out the explicit expression for I2Y3Z [as we
did in Eq. (42) for IY4Z]. However, for our purposes, it is
sufficient to give the form of I2Y3Z in the �7 � ��6 basis:

I2Y3Z���1��2�f4Im�Y2
12�

�2
6 ��2�Y11�Y22�Im	Y12��5�6


���1��2�2�3�Im�Y2
12�

�
5��2�4�Y11�Y22�Im�Y12��6�g:

(46)

Again, we emphasize that I2Y3Z is a new I-invariant in the
sense that one cannot express I2Y3Z as a sum of terms, each
of which is the imaginary part of a product of lower-order
095002
invariants. Nevertheless, IY3Z � I2Y2Z � 0 implies that
I2Y3Z � 0.13

The remaining cases are easily treated. We explicitly
verified that any fifth-order invariants that are cubic in
Y and quadratic in Z are proportional to �TrY�I2Y2Z. It
is also simple to show that all fifth-order invariants that
are linear in Z are manifestly real. In particular, the only
two inequivalent invariants of this type that are not
products of the lower-order invariants are Za �bc �dY

2
b �aY

2
d �c

and Za �bc �dY
2
b �cY

2
d �a. By explicit calculation, using the

Hermiticity properties of Y and Z, it is straightforward
to verify that both these invariants are real. We have
previously noted that all pure Y-invariants are manifestly
real. This completes the proof that all potentially complex
fifth-order invariants are linear combinations of IY3Z and
I2Y2Z or forms that vanish when IY3Z � I2Y2Z � 0. That is,
the consideration of potentially complex fifth-order invar-
iants does not establish any new independent conditions for
CP violation.

C. Sixth-order potentially complex invariants

Two new independent conditions for CP violation arise
from the study of sixth-order potentially complex invari-
ants. We begin by constructing all possible sixth-order
Z-invariants. It is here that we encounter the first poten-
tially complex Z-invariants. One potentially nonzero
I-invariant is
I6Z� Im�Za �bc �dZ
�1�
b �f
Z�1�
d �h
Zf �aj �kZk �jm �nZn �mh �c�

�2j�5j
2Im	���7�6�

2
� Im	��25 ��6��7���6��7�
3
���1��2�j�5j

2Im	��5��6��7�
2
���1��2�Im���5�2�

�2Im���7�6�	j�5j
2	j�6j

2�j�7j
2���1��2�

2
�2�j�6j
2�j�7j

2�2
�2�j�6j
2�j�7j

2�Im	��5���6��7�


���1��2�	Im	���7�
�2
6 ��6�

�2
7 �j�7j

2��6�j�6j
2��7�
�2Im	�5��j�6j

2�j�7j
2���6�

�
7��7�

�3
6 ��6�

�3
7 �

; (47)
13This is easily verified after noting that Im�Y2
12�

�2
6 � �

2 Im�Y12�
�
6�Re�Y12�

�
6�.
where � is defined in Eq. (40).
Theorem 2 implies that if Ya �b � 0 and I6Z � 0, then any

Z-invariant is real. Consequently, the imaginary part of any
sixth-order Z-invariant must be equal to cI6Z, for some real
constant c. Our proof of Theorem 2 in Sec. III leaves no
doubt as to the veracity of this conclusion. Nevertheless, it
is instructive to check this assertion explicitly.
Unfortunately, a complete survey of all possible 12! �
479 001 600 sixth-order complex Z-invariants is beyond
the capability of our desktop computers. However, we
were able to examine roughly 9� 106 sixth-order
Z-invariants, and in these cases the imaginary part of
each sixth-order Z-invariant either vanishes or is equal to
�I6Z or �2I6Z.

If �1 � �2 in a basis where �7 � ��6, then Theorem 2
implies that IY3Z � I2Y2Z � I6Z � 0 is a necessary and
sufficient condition for an explicitly CP-conserving
2HDM scalar potential. However, the case of �1 � �2

and �7 � ��6 (where IY3Z � I2Y2Z � I6Z � 0 is auto-
matic) must be treated separately. In this latter case, the
condition for CP violation depends on an independent
invariant that first arises at sixth order and is made up of
three Y and three Z factors (henceforth denoted as
3Y3Z invariants).

Thus, we have constructed all possible 3Y3Z invariants
and examined their imaginary parts. Of course, some of
these will simply be linear combinations of lower-order
invariants already examined. A complete survey of the
imaginary part of all possible 9! � 362 880
3Y3Z invariants yields one new independent I-invariant.
A representative choice is
-9
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I3Y3Z � Im�Za �cb �dZc �ed �gZe �hf �qYg �aYh �bYq �f�

� �Y11 � Y22�	��1 � �3 � �4���2 � �3 � �4� � j�5j
2 � j�6j

2 � j�7j
2
Im	Y2

12�
�
5
 � Im	Y3

12�
�
5

~��


� 2 Im	Y3
12�

�
6�
�
7��

�
6 � �

�
7�
 � 	�Y11 � Y22�

2 � jY12j
2
j�5j

2Im	Y12���7 � �
�
6�
 � Y11Y22��1 � �2�Im	Y12��


� Im	Y3
12��

�
5�

2��6 � �7�
 � 2	�Y11 � Y22�
2 � Y11Y22 � jY12j

2
	j�7j
2Im�Y12��6� � j�6j

2Im�Y12��7�


� 	�Y11 � Y22�
2 � jY12j

2
Im�Y12��5
~�� � 2Y11Y22	j�7j

2Im�Y12��7� � j�6j
2Im�Y12��6�


� ��1 � �2�Y11Y22Im	Y12��5��6 � �7�
 � �Y11 � Y22�f�Y11Y22 � jY12j
2�	Im	��5��

2
6 � �

2
7�
 � ��1 � �2�Im��6��7�


� �Y2
11 � Y

2
22 � 4jY12j

2�Im	��5�6�7
 � ��1 � �2 � 2�3 � 2�4�Im	Y2
12�

�
6�
�
7
g; (48)
where � is defined in Eq. (40) and

~� � ��2 � �3 � �4��6 � ��1 � �3 � �4��7: (49)

We have explicitly verified that the imaginary part of any
3Y3Z invariant is a real linear combination of I3Y3Z,
�TrY�I2Y3Z, 	TrY
2IY3Z, 	TrY2
IY3Z, Tr	YZ�1�
I2Y2Z,
Tr	YZ�2�
I2Y2Z and �TrY��TrZ�1��I2Y2Z.14 In a basis where
�7 � ��6, I3Y3Z reduces to the expression given by
Eq. (31). Indeed, I3Y3Z is nonzero in explicitly
CP-violating models with �7 � ��6 and �1 � �2, which
confirms that it is a necessary ingredient in the formulation
of Theorem 2.
14Note that TrY TrZ�2� � TrY TrZ�1� � Tr	Y�Z�1� � Z�2��
.
15Although this result is demonstrated in the �7 � ��6 basis,

the conclusion must hold for all basis choices.
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Among other sixth-order invariants, all 6Y and
Z5Y invariants are manifestly real. A 2Z4Y invariant is
potentially complex, but its imaginary part must be pro-
portional to some linear combination of �TrY�2I2Y2Z and
�TrY2�I2Y2Z. This leaves two interesting cases: the Y5Z and
2Y4Z invariants, which we now consider in more detail.

A partial scan of the imaginary part of 10! � 3 628 800
2Y4Z invariants and 11! � 39 916 800 Y5Z invariants has
been performed, and our results yield two genuinely new
potentially complex invariants, whose imaginary parts we
designate by I2Y4Z and IY5Z, respectively. The resulting
expressions in a generic basis are quite complicated and
not very illuminating. Hence, here we provide only the
explicit forms in a basis where �7 � ��6:
I2Y4Z� Im�Z�2�b �cZc �ed �fZe �qf �rZg �bh �dYq �gYr �h�

���1��2�f��1��2�Im�Y2
12�

�2
6 ����1�2�j�5j

2�2j�6j
2�Im�Y2

12�
�
5�

�	2��1Y11��2Y22����3��4��Y11�Y22�
Im�Y12�6��5�

�	2j�5j
2�Y11�Y22����3��4���1Y11��2Y22�
Im�Y12��6��	�Y11�Y22�

2�2jY12j
2
Im��2

6�
�
5�g; (50)
16However, it is not possible to express either I2Y4Z or IY5Z as a
linear combination of I6Z, IY3Z and I2Y2Z with corresponding
and

IY5Z � Im�Z�1�b �cZc �bd �eZe �df �gZ
�1�
g �qZq �fr�sYs�r�

� ��1 � �2�
2f�Y11 � Y22�Im��2

6�
�
5�

� 	�4��1 � �2� � �2
4 � j�5j

2
Im�Y12��6�

� ��1 � �2�Im�Y12�6��5�g: (51)

If Y12 � 0 in the �7 � ��6 basis, then we can use

Im ��2
6�
�
5� �

1

jY12j
2 	Re�Y12��6�Im�Y12�6��5�

� Re�Y12�6��5�Im�Y12��6�
 (52)

along with Eqs. (28), (29), and (44) to conclude that both
I2Y4Z and IY5Z vanish if IY3Z � I2Y2Z � 0.15 However, if
Y12 � 0 in the �7 � ��6 basis, then all invariants of nth-
order with n � 5 are real. In the latter case, both I2Y4Z and
IY5Z can still be nonvanishing, which demonstrates that
these are new I-invariants. Nevertheless, by the same argu-
ment as before, we may conclude that if IY3Z � I2Y2Z �
I6Z � 0, then both I2Y4Z and IY5Z must vanish. For this
reason, I2Y4Z and IY5Z need not be independently consid-
ered in the formulation of Theorem 2.16 In particular, I6Z is
included in the statement of Theorem 2, since (unlike I2Y4Z
and IY5Z) I6Z can be nonzero even when Ya �b � 0.

We have verified17 that the imaginary part of any
2Y4Z invariant can be expressed as a real linear combina-
tion of I2Y4Z, I2Y3Z, I2Y2Z and IY3Z. Likewise, the imaginary
part of any Y5Z invariant can be expressed as a real linear
combination of IY5Z, IY4Z and IY3Z. In both cases, each of
the corresponding coefficients of the linear combination of
terms are real invariant quantities. As an explicit illustra-
coefficients that are invariant quantities.
17Our conclusion is based on a partial scan of about 2� 106

invariants. However, the arguments in the next subsection
strongly suggest that the following results apply to all 2Y4Z
and Y5Z invariants.
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tive example, we have verified

Im	Z�2�b �cZc �bd �eZe �df �gZg �qh �rYq �fYr �h


� I2Y4Z �
1
4TrZ�1�I2Y3Z �

1
2TrYIY4Z

� 1
2	Tr�Z�1�Z�2�� � 1

2�TrZ�1��2 � Za �cb �dZc �ad �b
I2Y2Z

� 1
2	Tr�Z�1�Y� � 1

2 TrY TrZ�2�
IY3Z: (53)
D. General results for nth-order potentially
complex invariants

The analyses of Secs. IVA and IV B permit us to con-
jecture a number of results that we expect to hold for
complex invariants of arbitrary order. These results provide
a method for identifying the number of new potentially
complex invariants at any order. As before, we define a new
nth-order I-invariant to be one that cannot be written as a
sum of terms, each of which is the imaginary part of a
product of known invariants of order � n. By this defini-
tion, new I-invariants arise at each order (for n � 4).
However, as previously stated, if IY3Z � I2Y2Z � I6Z �
I3Y3Z � 0, then any new I-invariant that arises must also
vanish.

Consider an arbitrary nth-order I-invariant IpYqZ made
up of p factors of Y and q � n� p factors of Z. In a basis
where �7 � ��6, for p � 3

IpYqZ � ��1 � �2�
3�pImP�Y12; �5; �6�; (54)

where P is a polynomial of its arguments and their complex
conjugates constructed such that each term in the sum
contains p factors of Ya �b and q� p� 3 factors of the �i,
with the constraint that the weight of each term in the sum
is zero. Here, we define the weight w according to the
rules: w�Y12� � �1, w��5� � �2, w��6� � �1, w�x�� �
�w�x� for any x and w�xy� � w�x� � w�y� for any x, y.18

The polynomial P possesses one additional property of
note: it does not vanish in the limit of �1 � �2 (assuming
that P � 0 in general). That is, the behavior of IpYqZ in the
�1 ! �2 limit is specified explicitly in Eq. (54). If p > 3,
then IpYqZ � 0. For example at sixth order, Tr�Y2�I2Y2Z is a
potentially nonvanishing I-invariant with p � 4, but this
does not constitute a new I-invariant by the above
definition.

Equation (54) is consistent with all the results of
Secs. IVA and IV B. It also provides an explanation for
the absence of complex invariants of low order. For ex-
ample, if we apply Eq. (54) and attempt to construct I5Z,
we would need to find a polynomial P with a nonzero
imaginary part that is quadratic in the �i. No such poly-
nomial exists, and we conclude that I5Z � 0. We can also
18Formally, the weight w � w�x� for any scalar potential pa-
rameter x is defined such that x! eiw�x under a redefinition of
one of the scalar fields by �1 ! ei��1. Of course, w � 0 for any
real scalar potential parameter.
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use Eq. (54) to predict the results of higher-order invari-
ants. For example, all seventh and eighth order
Z-invariants must be proportional to I6Z (a result that we
have confirmed by limited scanning). However, a new
Z-invariant arises at ninth order, which in the �7 � ��6

basis must have an imaginary part that is a linear combi-
nation of I6ZP3��i� and ��1 � �2�

3Im	��2
6�
�
5�

2
, where
P3��i� is a real cubic polynomial of the �i. Although this
is a new I-invariant, it clearly vanishes when I6Z � 0.

Finally, Eq. (54) strongly suggests that there is only one
new 2Y4Z I-invariant and one new Y5Z I-invariant, since
in each case, only one new term, Im��2

6�
�
5� arises that did

not appear in lower-order invariants (in the �7 � ��6

basis).19

V. IMPLICATIONS FOR SPONTANEOUS CP
VIOLATION

If a Higgs potential is explicitly CP conserving, then
there exists a so-called real basis in which all the Higgs
potential parameters are real. A theory with an explicitly
CP-conserving Higgs sector may be CP violating if the
vacuum does not respect the CP symmetry. In this case, we
say that CP is spontaneously broken [5]. To determine
whether CP is spontaneously broken, one must check
whether the vacuum is invariant under time reversal. We
assert the following theorem, which is proved in
Appendix F:

Theorem 3.—Given an explicitly CP-conserving Higgs
potential, the vacuum is time-reversal invariant if and only
if a real basis exists in which the Higgs vacuum expectation
values are real.

Theorem 3 requires one to verify the existence or non-
existence of a basis with certain properties. However, these
theorems can be reformulated in a basis-independent lan-
guage. Here, we follow Ref. [11], and introduce three U(2)
invariants [6]:

�
1

2
v2J1 � v̂��aYa �bZ

�1�
b �d
v̂d; (55)

1

4
v4J2 � v̂��bv̂

�
�cYb �eYc �fZe �af �dv̂av̂d; (56)

J3 � v̂��bv̂
�
�cZ
�1�
b �eZ

�1�
c �f
Ze �af �dv̂av̂d; (57)

where h�0
ai � vv̂a=

���
2
p

, with v � 246 GeV and v̂ is a unit
vector in the complex two-dimensional Higgs flavor space.
The scalar potential minimum condition is easily derived
from Eq. (16):

v̂ ��a

�
Ya �b �

1

2
v2Za �bc �dv̂

�
�cv̂d

�
� 0: (58)
19Unfortunately, this argument fails to explain the existence of
only one 3Y3Z I-invariant, a fact that has been confirmed only
by a complete scan over all possible invariants of this type.
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Thus, we may eliminate Y in the expressions for J1 and J2:

J1 � v̂��av̂
�
�eZa �be �fZ

�1�
b �d
v̂dv̂f; (59)

J2 � v̂��bv̂
�
�cv̂
�
�gv̂
�
�pZb �eg �hZc �fp�rZe �af �dv̂av̂dv̂hv̂r: (60)

Since ImY12 is determined by the scalar potential minimum
conditions in terms of Im�5;6;7, one is left with three
potentially complex parameters in a basis where v̂ is
real. These are in one-to-one correspondence with J1, J2

and J3.
Theorem 4.—Consider the 2HDM scalar potential in

some arbitrary basis. Assume that the minimum of the
scalar potential preserves U�1�EM. Then, the Higgs sector
is CP conserving (i.e., no explicit nor spontaneous
CP violation is present) if J1, J2 and J3 defined in
Eqs. (55)–(57) are real [11].

If the Higgs sector is CP conserving, then according to
Theorem 3 some basis must exist in which the Higgs
potential parameters and the Higgs field vacuum expecta-
tion values are simultaneously real. But in that case, we
may immediately conclude that the invariant quantities J1,
J2 and J3 must be real. Conversely, the reality of J1, J2 and
J3 provides sufficient conditions for a CP-invariant Higgs
sector. This result is proven in Refs. [4,11],20 and we do not
repeat the proof here.

Note that Eqs. (55)–(57) are considerably simpler than
the invariants that govern explicit CP violation of the
Higgs potential [Eqs. (23)–(26)]. However, these two sets
of invariants serve different purposes. To answer the ques-
tion of whether the Higgs sector is CP invariant, one must
first choose a basis and minimize the scalar potential.
Having found v̂a, one may now compute J1, J2 and J3. If
these invariants are all real, then the Higgs potential is
explicitly CP invariant and there is no spontaneous
CP violation. If at least one of the invariants J1, J2 and
J3 is complex, then the Higgs sector is CP violating.
However, in this latter case, one must evaluate the four
I-invariants given in Eqs. (23)–(26) to determine whether
CP is spontaneously or explicitly broken. If these four
I-invariants all vanish, then CP is spontaneously broken.
If at least one of these is nonzero, then CP is explicitly
broken. These conclusions are summarized in our final
theorem:

Theorem 5.—The necessary and sufficient conditions for
spontaneous CP violation in the 2HDM are
(i) IY3Z � I2Y2Z � I6Z � I3Y3Z � 0, and (ii) at least one
of the three invariants J1, J2, and/or J3 possesses a non-
vanishing imaginary part. If (i) is not satisfied then (ii) is
20In fact, there are at most two independent relative phases
among J1, J2 and J3. However, as shown in Ref. [6], there are
cases where two of the three invariants are real and only one has
a nonvanishing imaginary part, which shows that one must check
all three invariants in order to determine whether the Higgs
sector is CP invariant.
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necessarily true, and the CP violation is explicit. If (ii) is
not satisfied, then (i) is necessarily true, and the Higgs
sector is CP conserving.

We provide two simple examples. First, Ref. [15] con-
siders a model in which m2

12 � �6 � �7 � 0 and �5 is real
and positive. Minimizing the scalar potential yields a
purely imaginary v2=v1. Nevertheless, a simple relative
phase redefinition of the two Higgs fields by �=2 yields a
real basis with real vacuum expectation values. (In the new
basis, �05 < 0 and all other Higgs potential parameters are
unmodified.) Hence, this model is CP conserving.

Second, consider a Higgs potential that satisfies
Eq. (36), with �6 real, which was proposed in Ref. [14].
That is, all scalar potential parameters of this model are
real, and the Higgs potential is explicitly CP conserving. In
this case, a minimum of the scalar potential exists where
v1 � v2 and the relative phase of the two vevs, � � 0. That
is, we may write

���
2
p
v̂ � �e�i�=2; ei�=2�. Nevertheless,

Ref. [14] proved that this model is CP conserving. We
may explicitly verify this assertion by performing a U(2)
transformation given by Eq. (4) with  � �=2, � � �=2
and � � �=4. We find that �05 � ��5, m0212 � m2

12 sin�,
�06 � �07 � �6 sin� are all real and v̂0 � �1; 0�. Thus, we
have established a basis in which all scalar potential pa-
rameters and the vacuum expectation values are simulta-
neously real.

Of course, the absence of spontaneous CP breaking in
both examples can also be confirmed by checking that the
invariants J1, J2 and J3 are all real.

VI. CONCLUSIONS

The connection between the CP property of a general
scalar potential and the parameters of the potential and
vacuum expectation values of the Higgs fields is governed
by two well-known theorems. The first, proven here as
Theorem 1, states that the Higgs sector is explicitly
CP conserving if and only if there exists a real basis, that
is choice of basis (in the Higgs flavor space) in which all
the scalar potential parameters are real. The second theo-
rem, proven here as Theorem 3, states that the vacuum is
CP invariant, implying the absence of both explicit and
spontaneous CP violation, if and only if there exists a real
basis in which the Higgs vacuum expectation values are
real. In this paper, we have established a simple procedure
for determining whether or not a general 2HDM is explic-
itly CP conserving by employing a set of four potentially
complex basis-independent invariant combinations of the
Higgs potential parameters. At least one of these invariants
possesses a nonvanishing imaginary part if and only if no
real basis exists.

The imaginary parts of the four complex basis-
independent invariants that govern the explicit
CP-violation properties of the 2HDM scalar potential
are IY3Z [Eq. (39)], I2Y2Z [Eq. (41)], I6Z [Eq. (47)] and
-12
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I3Y3Z [Eq. (48)]. We have shown that a real basis exists,
implying that the 2HDM potential is explicitly
CP conserving, if and only if IY3Z � I2Y2Z � I6Z �
I3Y3Z � 0. We refer to these invariant imaginary parts as
I-invariants.

Note that the above conditions are not sufficient to
guarantee that the scalar sector conserves CP, since
the minimization of the scalar potential may generate
complex vevs. As stated above, if the vevs possess a non-
zero relative phase in all real basis choices, then the model
spontaneously breaks CP. One can formulate basis-
independent conditions for spontaneous CP violation.
First, one must prove that the Higgs sector is explicitly
CP conserving (the corresponding invariant conditions
have been given above). Spontaneous CP violation
depends on the properties of the Higgs field vevs, va,
which can be combined with the Higgs potential parame-
ters to construct additional invariant quantities. Such in-
variant conditions have been previously obtained in
Ref. [11], and are exhibited in Sec. V. Combining the
information from these two classes of invariant conditions,
one can distinguish between explicit and spontaneous
CP violation in the 2HDM.

The phenomenological consequences of our invariants
will be considered in a forthcoming paper. To apply the
basis-independent technology to experimental studies, one
would have to examine various CP-violating observables
and express them in terms of our invariant quantities. The
CERN LHC would provide the first possible arena for such
studies. However, the number of Higgs observables that
could be extracted from LHC analyses is limited. We
anticipate that Higgs-mediated CP-violating effects are
likely to be small, and their extraction will surely require
precision measurements. A future high energy e�e� linear
collider such as the International Linear Collider could
provide the required luminosity and precision to begin a
program of CP-violating Higgs phenomenology. We plan
on examining possible CP-violating observables and de-
termining their sensitivity to the I-invariants. This analysis
will require a better understanding of the relation of the
I-invariants to the mixing of CP-even/CP-odd neutral
Higgs boson eigenstates.

Perhaps the most attractive 2HDM model is the one
associated with the MSSM [16]. Indeed, the tree-level
Higgs sector of the MSSM is CP conserving. However,
when loop effects are included, supersymmetry-breaking
effects, which enter via the loops, can impart nontrivial
phases to parameters of the effective 2HDM scalar poten-
tial [13,17].21 One can therefore express the I-invariants in
terms of fundamental MSSM parameters. This may lead to
21These phases would be directly related to phases of funda-
mental complex MSSM parameters such as the supersymmetric-
conserving � term and the supersymmetry-breaking gaugino
Majorana mass terms and matrix A parameters.
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relations among the four I-invariants introduced above,
depending on the model of supersymmetry breaking.

Ultimately, if nature employs a 2HDM as an effective
theory of electroweak symmetry breaking, it will be crucial
to determine whether Higgs-mediated CP violation exists
and determine its structure. By devising experimental
probes of the four I-invariants, we hope to provide a
model-independent technique for elucidating the funda-
mental theory that is responsible for Higgs sector
dynamics.
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APPENDIX A: EXISTENCE OF A REAL BASIS

In this Appendix, we prove Theorem 1 that was quoted
at the beginning of Sec. III.

Theorem 1.—The Higgs potential is explicitly
CP conserving if and only if a basis exists in which all
Higgs potential parameters are real. Otherwise, CP is
explicitly violated.

A basis in which all Higgs potential parameters are real
will be called a real basis. In order to prove Theorem 1, one
can either consider the most general CP transformation
laws of the scalar fields or invoke the CPT theorem [18]
and consider the most general scalar field transformation
laws under time reversal. Here we choose the latter proce-
dure.22 Following Ref. [19], we note that the form for the
action of the antiunitary time-reversal operator T on a set
of scalar field multiplets is given by

T �a� ~x; t�T
�1 � ei �UT�a �b�b� ~x;�t�;

T �y�a � ~x; t�T
�1 � �y�b � ~x;�t��U

y
T �b �ae�i ;

(A1)

whereUT is a symmetric unitary matrix that depends on the
choice of basis. The arbitrary phase factor ei corresponds
to the freedom to make U�1�Y transformations.23 To prove
that UT is symmetric, we apply the time-reversal operator
twice and use the well-known result that
T 2�a� ~x; t�T

�2 � �a� ~x; t); that is, T 2 � 1 when applied
to a bosonic field [20]. Applying this result to Eq. (A1)
yields U�TUT � I, due to the antiunitarity of T . Since UT
22In Ref. [4], the CP transformation of the scalar fields in the
real basis is used to prove that the scalar Lagrangian is
CP invariant.

23More generally, the time-reversal operator is defined modulo
SU�2� � U�1�Y gauge transformations that leave the Lagrangian
invariant (and hence do not modify the scalar potential
parameters).

-13



JOHN F. GUNION AND HOWARD E. HABER PHYSICAL REVIEW D 72, 095002 (2005)
is unitary, it follows that UT must satisfy UT
T � UT . The

(canonical) kinetic energy terms of the scalar field theory
are automatically time-reversal invariant. It then follows
that the scalar Lagrangian is time-reversal invariant if the
scalar potential satisfies24:

T V ��;fpg�T �1�V �UT�;fp�g��V ��;fpg�; (A2)

where fpg represents the Higgs potential parameters ap-
pearing in V , and the complex conjugated parameters fp�g
appear above due to the antiunitarity of T . If Eq. (A2) is
satisfied, then the action is invariant under time-reversal
transformations.

Suppose that a basis exists in which all the Higgs po-
tential parameters are real. In this case, we may choose
UT � 1, in which case Eq. (A2) is trivially satisfied. To
complete the proof of Theorem 1, we must show that a
basis exists in which all the Higgs potential parameters are
real if Eq. (A2) is satisfied. First, we examine the quadratic
part of the Higgs potential, which we can write in matrix
notation as

V 2 � �yY�; (A3)

where Y is a Hermitian matrix. Time-reversal invariance of
V 2 requires

T �yY�T �1 � �yUyTY
�UT� � �yY�; (A4)

where we have used T YT �1 � Y�. Equation (A4) implies
that

UyTY
�UT � Y: (A5)

As shown in Appendix B, since UT is unitary and sym-
metric, we can write

UT � VTV; (A6)

where V is unitary (but not necessarily symmetric). As a
result, Eq. (A5) will be true if

VyV�Y�VTV � Y; (A7)

which can be converted to

�VYVy�� � VYVy: (A8)

That is Y0 � VYVy is real. But, Y0 is simply Y in the new
basis �0 � V�. Thus, there exists a basis in which the
parameters of V 2 are real.

A similar computation can be performed for the rest of
the terms appearing in the scalar potential. In particular, if
we write the quartic part of the Higgs potential as

V 4 �
1

2
Za �bc �d��

y
�a�b���

y
�c�d�; (A9)

then the analog of Eq. (A5) is
24We henceforth omit exhibiting the explicit dependence of the
fields on the space-time coordinates.
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�UyT �e �a�UT�b �f�U
y
T �g �c�UT�d �hZ

�
a �bc �d
� Ze �fg �h: (A10)

We again apply Eq. (A6) and conclude that

	Vp �aV
y
b �qVr �cV

y
d �sZa �bc �d


� � Vp �eV
y
f �qVr �gV

y
h �sZe �fg �h: (A11)

That is, the unitary transformation V produces the basis in
which all the Higgs potential parameters are real.

Conversely, if no basis exists in which the Higgs poten-
tial parameters are real, then no unitary matrix V exists
such that Eqs. (A8) and (A11) are simultaneously satisfied.
Following the above proof in the backward direction, one
can conclude that no choice of a unitary symmetric matrix
UT exists that satisfies Eq. (A2).

In some cases (see below), more than one suitable time-
reversal operator exists. Any one of these operators can be
used to demonstrate that the Higgs potential is explicitly
CP invariant. Nevertheless, in order to ascertain that the
Higgs sector is invariant under CP, it is necessary to verify
that the vacuum is also CP invariant (equivalently time-
reversal invariant). In particular, the vacuum may select out
a unique time-reversal operator, as shown in Appendix F.
(If the vacuum is noninvariant with respect to all possible
candidate time-reversal operators, then time-reversal in-
variance is spontaneously broken.) Thus, it is important
to consider the possible nonuniqueness in the definition of
T given in Eq. (A1).

For an explicitly CP-conserving Higgs potential, a real
basis must exist. However, the real basis is not unique. In
particular, given a real �0-basis, there exists an O�2� �D
subgroup of U(2) consisting of 2� 2 unitary matrices Wa �b
such that the scalar potential parameters remain real under
�0a ! �00a � Wa �b�0b. Here, D is the maximal discrete
subgroup of U(2) that is a symmetry of the Higgs
Lagrangian. In addition, one is free to make U�1�Y phase
rotations, which simply reflects the fact that UT is only
defined up to an overall phase. If D is trivial, then W is an
orthogonal transformation and UT � I (up to an overall
phase) in any real basis. If D is nontrivial, then WTW �

ei�I (for any phase choice �), in which case the choice of
UT in the definition of the time-reversal operator is not
unique (modulo gauge transformations).

To amplify these remarks, we suppose that in the origi-

nal �-basis another antiunitary operator ~T exists that is a
potential candidate for the time-reversal operator. In par-
ticular, suppose that there exists a symmetric unitary ma-
trix ~UT � ei�UT such that25

~T �a� ~x; t�
~T
�1
� ei ~ � ~UT�a �b�b� ~x;�t�;

V ��; fpg� � V � ~UT�; fp�g�:
(A12)

Then, the analysis above implies that there exists a unitary
25That is, if ~UT � UT in the �-basis, for any choices of the
phases ~ and  , then ~T and T are distinct and equally valid
choices for the time-reversal operator.
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matrix ~V such that ~U � ~VT ~V, and �00 � ~V� is also a real
basis. In this case, the real �0-basis and the real �00-basis
are related by �00 � W�0 where W � ~VV�1. It follows
that WWT � ~VU�1 ~VT � ei�I (for any phase choice �).

Thus, the existence of ~T � T implies that the discrete
group D is nontrivial. Likewise, one can show that
WTW � 	V�1
T ~UV�1 � ei�I.

Given UT in the �-basis, we may determine the form of
UT in any real basis. For example, inserting �0 � V� into
Eq. (A1) and making use of Eq. (A6), we find

T �0a� ~x; t�T
�1 � ei �0a� ~x;�t�: (A13)

That is, in the �0-basis, U0T � I. Equation (A2) then im-
plies that this is a real basis. Now, let us transform to the
real basis �00 � W�0. A similar computation yields

T �00a� ~x; t�T
�1 � ei �WWT��1

a �b
�00b� ~x;�t�; (A14)

where U00T � �WW
T��1 � I in the �00-basis. Similarly, if

we identify ~T as the time-reversal operator, we find that
~U0T � WTW � I and ~U00T � I. We may assemble all pos-
sible real bases into classes. Each class is in one-to-one
correspondence with the elements of the discrete group D.
In the class of real bases associated with the identity
element of D, the corresponding UT � I. In all other
classes of real bases, the corresponding UT � I.

If D is trivial, so that W is an orthogonal transformation
[up to an overall phase that can be absorbed, e.g., into the
multiplicative phase factor in Eq. (A14)], then UT � I in
any real basis. In this case, the definition of the time-
reversal operator T is unique (modulo gauge
transformations).

Finally, we note that the existence of a nontrivial discrete
subgroup D imposes strong constraints on the parameters
of the Higgs potential. Consider a real �0-basis and a real
�00-basis related by �00 � W�0. It then follows that Y00 �
WY0Wy. By assumption, Y0 and Y00 are real. A short
computation then yields the vanishing of the following
commutators:

	Y0; WTW
 � 	Y00;WWT
 � 0: (A15)

A similar constraint arises from the requirement that both
Z0 and Z00 are real. Using these results, it is straightforward
to verify that Eq. (A12) is satisfied for ~U0T � WTW in the
�0-basis and Eq. (A2) is satisfied for U00T � �WW

T��1 in
the �00-basis.
26The Takagi factorization of a complex symmetric matrix is
the basis for the mass diagonalization of a general Majorana
fermion mass matrix [22].

27Since �1 � �2 and �7 � ��6, it follows that �07 � ��
0
6, and

further consideration of �7 is unnecessary.
APPENDIX B: A PROOF OF A RESULT FROM
MATRIX ANALYSIS

In the proof of Theorems 1 and 4, the following lemma is
required:

Lemma 1.—A complex n� n matrix U is unitary and
symmetric if and only if there is a complex n� n unitary
matrix V such that U � VTV.
095002
This result is given as problem 17 on p. 215 of Ref. [21].
Here, we give an explicit proof. Clearly if V is unitary it
follows thatU is unitary and symmetric. Thus, we focus on
the proof that given U, the unitary matrix V exists.
Lemma 1 is a special case of the Takagi factorization of
a complex symmetric matrix (see pp. 204–206 of
Ref. [21]). Namely, for any complex symmetric matrix
M, there exists a unitary matrix V such that M � VTDV,
where D is a real non-negative diagonal matrix whose
elements are given by the non-negative square roots of
the eigenvalues of MMy.26 Applying the Takagi factoriza-
tion to a unitary matrix M � U (i.e., UUy � I), it imme-
diately follows that D � I. Hence, U � VTV for some
unitary matrix V.

The matrix V is not unique. In particular, if U � VTV
then U � WTW, where the unitary matrix W � KV and K
is an arbitrary orthogonal matrix. However, the proof of
Theorem 4 simply requires the existence of V, which has
been proven above.
APPENDIX C: DOES A BASIS EXIST IN WHICH
ALL THE �i ARE REAL?

Lemma 2.—If the parameters of the 2HDM satisfy the
relations, �1 � �2 and �7 � ��6, then one can always
transform to a new basis in which �05 and �07 � ��

0
6 are all

real.
We begin with Eqs. (12) and (13) and require that the

imaginary parts of �05 and �06 are zero. We assume that
�6 � 0 (if �7 � ��6 � 0, it is trivial to transform to a
basis where �5 is real by rephasing one of the scalar fields).
Moreover, without loss of generality, we may assume that
�6 is real by rephasing one of the scalar fields appropri-
ately.27 If �5 is also real after the rephasing, we are done. If
not, we write �5 � j�5jei�5 and obtain

Im�05 � �
1

2
fb sin2�� fa cos2�; (C1)

Im�06 � �
1

4
fd sin��

1

2
fc cos�; (C2)

where

fa � j�5jc2� sin��5 � 2�� � 2�6s2� sin�; (C3)

fb � ��1 � �3 � �4�s2
2� � j�5j�2� s2

2�� cos��5 � 2��

� 2�6s4� cos�; (C4)

fc � j�5js2� sin��5 � 2�� � 2�6c2� sin�; (C5)
-15



JOHN F. GUNION AND HOWARD E. HABER PHYSICAL REVIEW D 72, 095002 (2005)
fd � 	j�5j cos��5 � 2�� � �1 � �3 � �4�
s4�

� 4�6c4� cos�: (C6)

As before, we abbreviate s4� � sin4�, c4� � cos4�, etc.
We proceed to solve Im�05 � 0, which yields an equation
for cot2�, and Im�06 � 0, which yields an equation for
cot�:

cot2� �
fb
2fa

; (C7)

cot� �
fd
2fc

: (C8)

Under the assumption that fa � 0 and fc � 0, we can
eliminate � by employing the well-known identity

cot2� �
cot2�� 1

2 cot�
; (C9)

which leads to the following result:

G��; �� � fa�f
2
d � 4f2

c� � 2fbfcfd � 0: (C10)

We wish to prove that there exists at least one � and � that
solves Eq. (C10). From any such solution, we may com-
pute � from Eqs. (C7) and (C8). This would then provide
the elements of the U(2) transformation matrix that yields
the basis in which all the �i are real.

To prove that a solution to G��; �� � 0 exists, we note
that

fa�� � 0; �� � �fa�� � �=2; �� � j�5j sin��5 � 2��;

(C11)

fb�� � 0; �� � �fb�� � �=2; �� � 2j�5j cos��5 � 2��;

(C12)

fc�� � 0; �� � �fc�� � �=2; �� � 2�6 sin�; (C13)

fd�� � 0; �� � �fd�� � �=2; �� � 4�6 cos�; (C14)

from which it follows that

G�0; �� � �G��=2; �� � 16�2
6j�5j sin�5: (C15)

This means that G will have at least one sign change as a
function of �. Hence, for any value of � there exists a value
of � for which G��; �� � 0. Thus, we have proved the
existence of a U(2) transformation that results in a basis
in which all the �i are real.

The assumption above that fa � 0 and fc � 0 for values
of � and � at which G��; �� � 0 is not strictly necessary.
For example, if fa � 0 (but fb � 0), then one can rewrite
Eq. (C7) in terms of tan2�. We then end up again with
Eq. (C10). The only special cases that need be considered
are (i) fa � fb � 0 and (ii) fc � fd � 0. If (i) and (ii)
both hold, then we immediately conclude that �05 and �06
are real and we are finished. If only (i) [only (ii)] holds,
095002
then we simply use Eq. (C8) [Eq. (C7)] to determine �, and
we are finished.

We have used Lemma 2 in the proof of Theorem 2 (see
Sec. III). It is instructive to examine the necessity of the
condition of �1 � �2 in the proof of Lemma 2. For this
reason, we prove a second lemma.

Lemma 3.—If �1 � �2 and Im���5�
2
6� � 0 in a basis

where �7 � ��6 � 0, then it is impossible to transform
to a basis in which �05, �06 and �07 are all real.

The proof of Lemma 3 is trivial using invariants.
Namely, in a basis where �7 � ��6 � 0, we use
Eq. (30) to conclude that I6Z � 0. Hence in this case, there
is no basis in which all the �i are real.

Even without invariants, it is not difficult to show that no
basis exists in which all the �i are real. We first rephase one
of the scalar fields such that the resulting value of �6 is real.
In this basis, �5 � j�5jei�5 , where �5 � 0�mod��. We then
use Eqs. (13) and (14) in the case of �7 � ��6 to obtain

Im ��06 � �
0
7� �

1

2
sin�s2���1 � �2�: (C16)

Since �1 � �2, it follows that Im�06 � Im�07 � 0 implies
that either sin2� � 0 or sin� � 0.

If sin2� � 0, then Eqs. (12) and (13) yield

�05e
2i� � j�5je

�i�2����; (C17)

�06e
i� � j�5je

�i�; (C18)

where the choice of sign above corresponds to the sign of
cos2�. Thus,

�05
�026
�
j�5j

�2
6

e�i�5 ; (C19)

and we see that no basis exists in which �05 and �06 are
simultaneously real.

Next, suppose that sin2� � 0 and sin� � 0.
Equations (12) and (13) then yield

Im ��05� � j�5jc2� sin��5 � 2�� � 2�6s2� sin�; (C20)

Im ��06� �
1

2
j�5js2� sin��5 � 2�� � �6c2� sin�: (C21)

If sin� � 0, then Im��06� �
1
2 j�5j sin2� sin�5 � 0. Thus,

sin� � 0 if �06 is real. Using Eqs. (C20) and (C21) to set
Im��05� � Im��06� � 0 yields

tan2� � � cot2� �
j�5j sin��5 � 2��

2�6 sin�
: (C22)

However, Eq. (C22) implies that tan22� � �1, which is
impossible. Once again, we conclude that no basis exists in
which �05 and �06 are simultaneously real. The proof of
Lemma 3 is now complete.
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28Other U(2) transformations with � � �=2 can also produce a
basis where all Higgs potential parameters are real. For example,
a numerical analysis suggests that if � � 0 �mod�� and �6 � 0,
then one can choose � as a function of � such that Im�05 � 0.
Using this choice for �, one again finds that Im�06 � 0 as a
consequence of Eq. (D1), independently of the value of �.
Finally, � can be chosen to yield ImY012 � 0. Of course, only
one solution for ��; �; �� must be exhibited to prove the validity
of Lemma 4.
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APPENDIX D: PROOF OF LEMMA 4

Consider the special isolated point of the Higgs parame-
ter space in which �1 � �2 and �7 � ��6. By Lemma 2,
we may assume without loss of generality that all the �i are
real. Thus, Y12 remains as the only potentially complex
parameter. Lemma 4 provides the conditions under which
it is possible to find a new basis in which all the Higgs
potential parameters are real.

Lemma 4.—If the parameters of the 2HDM satisfy the
relations, �1 � �2 and �7 � ��6, and the basis is chosen
such that all the �i are real and Y12 is complex, then there
exists a new basis in which all the Higgs potential parame-
ters are real if and only if (at least) one of the following two
conditions is satisfied:

�2
5 � �5��1 � �3 � �4� � 2�2

6 � 0; (D1)

and/or

4�6�ReY12�
2 � ��3 � �4 � �5 � �1��Y11 � Y22�ReY12

� �6�Y11 � Y22�
2 � 0: (D2)

It is easy to prove that if neither Eq. (D1) nor Eq. (D2) is
satisfied, then there is no basis in which all Higgs potential
parameters are real. The latter conclusion follows directly
from I3Y3Z � 0, which is a consequence of Eq. (32). Thus,
we focus on the inverse statement: if either Eq. (D1) or
Eq. (D2) is satisfied, then there exists a basis in which all
the Higgs potential parameters are real.

Suppose that Eq. (D1) is satisfied, under the assumption
that all the �i are real (for �1 � �2 and �7 � ��6) and Y12

is complex. We search for a U(2) transformation to a new
basis in which the �0i and Y012 are real. It will be sufficient to
consider solutions with � � �=2. At this point, we assume
that �6 � 0 (we shall treat the case of �6 � 0 separately).
Then, we demand that � is the solution (as a function of �)
of the following equation:

�6 sin2� � �5 cos2� cos�: (D3)

Using Eq. (C1) with � � �=2 and real �5, it is easy to
check that Eq. (D3) implies that Im�05 � 0. Next, using
Eq. (C2) with � � �=2 and real �5 yields

Im�06 � �
1

4
��5 cos2�� �1 � �3 � �4� sin4�

� �6 cos4� cos�: (D4)

Using Eq. (D3), we obtain

sin4� � 2 sin2� cos2� �
2�5 cos22� cos�

�6
; (D5)

cos4� � cos22�� sin22� � cos22�
�
1�

�2
5 cos2�

�2
6

�
:

(D6)

Inserting these results into Eq. (D4) and simplifying the
095002
resulting expression yields

Im�06 �
cos22� cos�

2�6
	�2

5 � �5��1 � �3 � �4� � 2�2
6
:

(D7)

Thus, using Eq. (D1), we see that Im�06 � 0 for any value
of �. We now choose � in order that ImY012 � 0. Using
Eq. (7) with � � �=2 and Y12 � jY12je

i�12 , we find

2jY12j cos2� cos��12 � �� � �Y11 � Y22� sin2�: (D8)

Using Eq. (D3) to eliminate �, we end up with

tan� � cot�12 �
�5�Y11 � Y22�

2�6jY12j sin�12
: (D9)

Finally, we treat the case of �6 � 0. We may assume that
�5 � 0 (otherwise, a simple rephasing of one of the Higgs
fields is sufficient to yield a real Y12). In this case, we
choose � � � � �=2. Then, Im�05 � 0 is satisfied [see
Eq. (D3)] for arbitrary �. Inserting � � �=2 into
Eq. (D4) yields

Im�06 �
1

4
��5 � �1 � �3 � �4� sin4� � 0; (D10)

after using Eq. (D1) with �6 � 0 and �5 � 0. We now
choose � in order that ImY012 � 0. After putting � � �=2
in Eq. (D8), the end result is

cot2� �
Y22 � Y11

2jY12j sin�12
: (D11)

To summarize, if Eq. (D1) is satisfied, we have exhibited
a U(2) transformation [Eq. (4) with � � �=2, � given by
the solution to Eq. (D3) and � given by Eq. (D9) if �6 � 0,
and � � � � �=2 and � given by the solution to Eq. (D11)
if �6 � 0] such that all Higgs potential parameters are real
in the transformed basis.28

Next, suppose that Eq. (D2) is satisfied, under the as-
sumption that Y12 is complex and all the �i are real (where
�1 � �2 and �7 � ��6). We again search for a U(2) trans-
formation to a new basis in which the �i are still real and
Y12 is real. In this case, we choose � � �=2 and � � �.
For this choice, Im�05 � 0 is automatic (independently of
the value of �). Again, we first assume that �6 � 0 (the
case of �6 � 0 is treated separately). Then, the constraints
ImY012 � 0 [Eq. (D8)] and Im�06 � 0 [Eq. (D4)] reduce to
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cot2� �
Y22 � Y11

2jY12j cos�12
; (D12)

cot4� �
�5 � �1 � �3 � �4

4�6
; (D13)

respectively. Using the double-angle formula analogous to
Eq. (C9), we may combine Eqs. (D12) and (D13) to yield
the following constraint:

4�6jY12j
2cos2�12��6�Y22�Y11�

2

���5��1��3��4��Y22�Y11�jY12jcos�12�0; (D14)

which is identical to Eq. (D2), which is assumed to be
satisfied. Thus, Eqs. (D12) and (D13) are consistent and
provide a solution for �.

Finally, we examine the case of �6 � 0. In this case,
Eq. (D2) reduces to

��1 � �3 � �4 � �5��Y11 � Y22� cos�12 � 0: (D15)

The case of �1 � �3 � �4 � �5 � 0 (with �6 � 0) is
equivalent to Eq. (D1) and has already been treated.
Thus, it is sufficient to examine the cases of Y11 � Y22

and cos�12 � 0. In both cases, we may choose � � �=2
and � � � as before. Then, it is easy to check that if
cos2� � 0 in the case of Y11 � Y22 and sin2� � 0 in the
case of cos�12 � 0, the U(2) transformation [Eq. (4)]
yields Im�05 � ImY012 � 0.

To summarize, if Eq. (D2) is satisfied, we have exhibited
a U(2) transformation [e.g., Eq. (4) with � � �=2, � � �
and � given by the solution to Eq. (D12) if �6 � 0] such
that all Higgs potential parameters are real in the trans-
formed basis.

Thus, we have explicitly constructed a U(2) transforma-
tion that renders all Higgs potential parameters real if
either Eq. (D1) or Eq. (D2) is satisfied. Consequently,
I3Y3Z � 0, and it follows that if �1 � �2 and �7 � ��6,
then the condition I3Y3Z � 0 is the necessary and sufficient
condition for an explicitly CP-conserving Higgs potential.
This concludes the proof of Lemma 4.
APPENDIX E: ALL CUBIC INVARIANTS
ARE REAL

In this Appendix, we examine invariants constructed
from the Ya �b and Za �bc �d. We show that all invariants that
are at most cubic in the Z’s and independent of Y are real.
Similarly, we demonstrate that invariants that are linear in
Y and at most quadratic in the Z’s are real. Finally, we
prove that invariants that are linear in Z and quadratic in
the Y’s are real.
29That is, we omit tensors that can be expressed as a product of
a scalar quantity times Z�m�

a �b
, m�1;2 (e.g., Zc �cd �dZe �ea �b�

	TrZ�2�
Z�2�
a �b

).

095002
First, we introduce some notation. We consider all pos-
sible nontrivial29 second-rank tensors that are quadratic in
the Z’s. Using the symmetry properties of the Z’s, we find
six tensors of this kind:

Z�11�
c �d
� Z�1�

a �b
Zb �ac �d; Z�12�

c �d
� Z�1�

a �b
Zb �dc �a; (E1)

Z�21�
c �d
� Z�2�

a �b
Zb �ac �d; Z�22�

c �d
� Z�2�

a �b
Zb �dc �a; (E2)

Z�31�
c �d
� Za �be �dZb �ac �e; Z�32�

c �d
� Za �be �dZc �ab �e; (E3)

where Z�1� and Z�2� are defined in Eq. (19). A quick
computation shows that the Z�m� (m � 1; 2) and the Z�pn�

(p � 1; 2; 3 and n � 1; 2) are Hermitian; that is,

Z�m�
a �b
� 	Z�m�b �a 


�; Z�pn�
a �b
� 	Z�pn�b �a 


�: (E4)

Next, we consider all possible nontrivial30 fourth-rank
tensors that are quadratic in the Z’s. These fall into a
number of different classes. First, we have

Z�1�
a �bc �d
� Za �be �fZc �df �e; Z�4�

a �bc �d
� Za �df �eZc �be �f; (E5)

Z�2�
a �bc �d
� Za �fe �dZf �bc �e; Z�5�

a �bc �d
� Za �ef �bZc �fe �d; (E6)

Z�3�
a �bc �d
� Za �fc �eZf �be �d; Z�6�

a �bc �d
� Za �fc �eZe �bf �d: (E7)

These fourth-rank tensors possess the same symmetry and
Hermiticity properties as Za �bc �d, that is,

Z�n�
a �bc �d
� Z�n�

c �da �b
; 	Z�n�

a �bc �d

� � Z�n�b �ad �c: (E8)

Note that Z�n�3�
a �bc �d

� Z�n�
c �ba �d

for n � 1; 2; 3. The second class
of rank-four tensors consists of

~Z �1�
a �bc �d
� Za �be �fZc �ef �d; ~Z�3�

a �bc �d
� Za �ef �dZc �be �f; (E9)

~Z �2�
a �bc �d
� Za �ef �bZc �de �f; ~Z�4�

a �bc �d
� Za �de �fZc �ef �b: (E10)

Note that ~Z�n�2�
a �bc �d

� ~Z�n�
c �ba �d

for n � 1; 2. Unlike Za �bc �d and

Z�n�
a �bc �d

, the tensors ~Z�n�
a �bc �d

are not symmetric under inter-
change of the first and second pair of indices. In particular,

~Z �1�
a �bc �d
� ~Z�2�

c �da �b
; ~Z�3�

a �bc �d
� ~Z�4�

c �da �b
: (E11)

Consequently, we must distinguish between two types of
Hermiticity conditions. For n � 1; 2, the ~Z�n�

a �bc �d
satisfy the

Hermiticity condition of the first kind:

	~Z�n�
a �bc �d

� � ~Z�n�b �ad �c; n � 1; 2; (E12)

whereas for n � 3; 4, the ~Z�n�
a �bc �d

satisfy the Hermiticity
30Again, we omit those tensors that are products of simpler
tensors (e.g., Za �bb �dZc �ce �f � Z�1�

a �d
Z�2�
e �f

).
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31In particular, it is straightforward to show that Ya �bYc �dZ
�n�
b �ad �c

and Ya �bYc �d
~Z�n�b �ad �c are real due to the Hermiticity properties of Y,

Z�n� and ~Z�n�.
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condition of the second kind:

	 ~Z�n�
a �bc �d

� � ~Z�n�d �cb �a; n � 3; 4: (E13)

The final class of rank-four tensors involves Z�n�
a �b

(for
n � 1; 2). These are

Z�1n�
a �bc �d
� Za �bc �fZ

�n�
f �d
; Z�5n�

a �bc �d
� Za �bf �dZ

�n�
c �f
; (E14)

Z�2n�
a �bc �d
� Zc �ba �fZ

�n�
f �d
; Z�6n�

a �bc �d
� Zc �bf �dZ

�n�
a �f
; (E15)

Z�3n�
a �bc �d
� Zc �da �fZ

�n�
f �b
; Z�7n�

a �bc �d
� Zc �df �bZ

�n�
a �f
; (E16)

Z�4n�
a �bc �d
� Za �dc �fZ

�n�
f �b
; Z�8n�

a �bc �d
� Za �df �bZ

�n�
c �f
: (E17)

These tensors possess neither the Hermiticity nor the sym-
metry properties of Za �bc �d. Instead, we have (for n � 1; 2)

	Z�mn�
a �bc �d

� � Z�m�4;n�

b �ad �c ; m � 1; . . . ; 4: (E18)

Note that Z�2n�
a �bc �d
� Z�1n�

c �ba �d
, Z�3n�

a �bc �d
� Z�1n�

c �da �b
, and Z�4n�

a �bc �d
�

Z�1n�
a �dc �b

are all distinct due to the lack of symmetry under
the interchange of indices.

We proceed to examine all possible quadratic and cubic
scalar Z-invariants. The quadratic scalar Z-invariants are
obtained by summing over the indices of the tensors de-
fined above in all possible allowed ways. However, note
that the two-index tensors are Hermitian, and any four-
index tensor summed over two indices yields a two-index
Hermitian tensor. Hence any quadratic Z-invariant is the
trace of a Hermitian tensor and is hence real. We thus turn
to the (nontrivial) cubic Z-invariants. These must be of the
form Z�n�

a �b
Xb �a (n � 1 or 2) where Xb �a is one of the quadratic

second-rank tensors defined above, or of the form
Za �bc �dXb �ad �c, where Xb �ad �c is one of the quadratic fourth-
rank tensors defined above. But, for any Hermitian second-
rank tensor, Xb �a, the quantity Z�n�

a �b
Xb �a is real. Similarly, for

any fourth-rank tensor Xb �ad �c that either satisfies the
Hermiticity conditions of the first or second kind [see
Eqs. (E12) and (E13)], the quantity Za �bc �dXb �ad �c is real.
All that remains is to check that the scalar quantities of
the form Za �bc �dZ

�mn�
b �ad �c are real. This is proved by first estab-

lishing the following nontrivial result:

Za �bc �dZ
�mn�
b �ad �c � Za �bc �dZ

�m�4;n�
b �ad �c : (E19)

We have checked this result explicitly with MATHEMATICA

(although a simple analytic proof eludes us). Using
Eq. (E18), it immediately follows that all such
Z-invariants are real. This completes the proof that all
cubic Z-invariants are real.

We next turn to the scalar invariants that are linear in Y.
Since for any Hermitian two-index tensor Xb �a, the quantity
Ya �bXb �a is real, it immediately follows that any scalar
invariant that is linear in Y and at most quadratic in the
095002
Z’s is real. Finally, consider scalar invariants that are
quadratic in the Y’s. Note that Ya �bYc �d has the same
Hermiticity property as Za �bc �d, and Ya �cYc �b is a Hermitian
two-index tensor. Thus, any scalar invariant quadratic in
the Y’s and linear in Z is real. Hence, we have proven that
all cubic invariants are real.

It is instructive to see where the above arguments break
down when quartic invariants are considered. The simplest
complex scalar invariant that is linear in Y is at least cubic
in Z. Indeed,

IY3Z � Im�Z�1�a �cZ
�11�
c �d
Yd �a� � Im	Tr�Z�1�Z�11�Y�
 (E20)

is a potentially complex quartic invariant. Note that
although Y, Z�1� and Z�11� are all Hermitian 2� 2 matrices,
IY3Z is not necessarily real because Z�1� and Z�11� do not
commute. More generally, one can check that all mani-
festly complex scalar invariants that are linear in Y and
cubic in Z can be written in the form Tr�Z�n�Z�pq�Y� or
Tr�Z�pq�Z�n�Y�. A simple MATHEMATICA computation re-
veals that

IY3Z � Im�Z�n�a �c Z
�pq�
c �d

Yd �a� � �Im�Z�pq�
c �d

Z�n�a �c Yd �a� (E21)

for all possible values of n; q � 1; 2 and p � 1; 2; 3. The
last equality in Eq. (E21) follows from the Hermiticity of
the Z�n�, Z�pq� and Y. Hence, we conclude that the imagi-
nary parts of all complex invariants of this type are equal to
�IY3Z.

The simplest complex scalar invariant that is quadratic
in Y is at least quadratic in Z. Indeed,

I2Y2Z � Im�Ya �bYc �dZ
�11�
b �ad �c� (E22)

is a potentially complex quartic invariant. This quantity is
not necessarily real since Z�11�

b �ad �c does not satisfy any
Hermiticity conditions. More generally, one can check
that all manifestly complex scalar invariants that are qua-
dratic in both Y and Z can be written in the form
Ya �bYc �dZ

�mn�
b �ad �c (for m � 1; . . . ; 8 and n � 1; 2).31 A simple

MATHEMATICA computation reveals that

I2Y2Z � Im�Ya �bYc �dZ
�mn�
b �ad �c� � �Im�Ya �bYc �dZ

�m�4;n�
b �ad �c � (E23)

for all possible values ofm � 1; . . . ; 4 and n � 1; 2 [where
the second equality above is a consequence of Eq. (E18)].
Hence, we conclude that the imaginary parts of all complex
invariants of this type are equal to �I2Y2Z.

Finally, a comprehensive analytic study of nth-order
pure Z-invariants for n � 4 of the type employed above
(in the analysis of the cubic invariants) seems prohibitive.
Thus, a systematic MATHEMATICA-aided study was carried
-19



32One can also perform a U�1�Y transformation, which does not
modify the relative phase of the two vacuum expectation values.
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out to prove that all fourth- and fifth-order Z-invariants are
real.

APPENDIX F: TIME-REVERSAL INVARIANCE OF
THE HIGGS VACUUM

In this Appendix, we assume that the Higgs scalar action
is explicitly CP conserving (and hence time-reversal in-
variant by the CPT theorem). That is, there exists a time-
reversal operator T that satisfies Eq. (A2) (for some choice
ofUT). In this context, we ask whether the Higgs vacuum is
time-reversal invariant. However, there is an apparent am-
biguity, since as shown in Appendix A there may be a
number of distinct choices for the time-reversal operator
(under which the action is invariant). This ambiguity cor-
responds to a nontrivial discrete group D that is a symme-
try of the scalar Lagrangian. In general, the vacuum is not
invariant with respect to D. In this case, the vacuum may
select one distinct choice for the time-reversal operator. We
shall denote this choice below by T . That is, the theory is
time-reversal invariant if the Higgs scalar action is
CP conserving and the vacuum is invariant with respect
to (at least) one of the distinct choices for the time-reversal
operator. If there is no choice for the time-reversal operator
such that the vacuum is invariant, then time-reversal in-
variance is spontaneously broken.

We denote the vacuum state by j0i and define �aj0i �
j�i. The action of the time-reversal operator is denoted by

T j0i � j0Ti; T j�i � j�Ti: (F1)

The antiunitarity of T implies that h0T j �Ti � h0 j �i�.
Invariance of the vacuum under time-reversal invariance
implies that j0i � j0Ti. Hence h0 j �Ti � h0 j �i�. It then
follows that

h0jT �aT
�1j0i � h0j�aj0i

�; (F2)

after inserting TT �1 in the appropriate spot and using
T j0i � j0i. Using Eq. (A1), we end up with [19]:

�UT�a �bh�bi � h�ai
�; (F3)

where h�ai � h0j�aj0i. We can use the above results to
prove Theorem 3 of Sec. V.

Theorem 3.—Given an explicitly CP-conserving Higgs
potential, the vacuum is time-reversal invariant if and only
if a real basis exists in which the Higgs vacuum expectation
values are real.

We prove this theorem by demonstrating that Eq. (F3)
provides the real basis in which the vacuum expectation
values are real. By assumption, Eq. (F3) is satisfied in the
�-basis (which may or may not be a real basis). As shown
in Appendix B, one can always write UT � VTV, where
the unitary matrix V is unique up to multiplication on the
left by an arbitrary orthogonal matrix. Inserting this result
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into Eq. (F3) yields

Vh�i � 	Vh�i
�; (F4)

which implies that the vacuum expectation values are real
in the �0-basis, where �0 � V�. However, Eqs. (A8) and
(A11) imply that the �0-basis is a real basis. Of course, if
the vacuum expectation values are real in a basis in which
all the Higgs potential parameters are real, then the choice
UT � I in Eq. (A1) yields a viable time-reversal operator.
Conversely, if the Higgs scalar action is time-reversal
invariant but no real basis exists in which the vacuum
expectation values are real, then no viable time-reversal
transformation law exists. In particular, no choice of UT
exists that satisfies Eq. (F3). This can only imply that
T j0i � j0i. In this case, the time-reversal symmetry is
spontaneously broken. Thus, Theorem 3 is proven.

The conditions for a time-reversal invariant theory can
therefore be reformulated. The scalar sector of the theory is
time-reversal invariant if aUT exists that satisfies Eqs. (A2)
and (F3). In practice, the existence or nonexistence of such
a UT may be difficult to discern, whereas the correspond-
ing basis-independent conditions quoted in Sec. V are
straightforward to implement.

Note that the existence of real bases does not necessarily
imply that the vacuum expectation values are real in all
possible real basis choices. In Appendix A, we demon-
strated that if the scalar action is time-reversal invariant
then different choices for T correspond to different real
bases in which UT � I. If the time-reversal operator is
defined according to Eq. (A1) then UT � VTV yields a
real basis �0 � V� in which U0T � I. Alternatively, if the
time-reversal operator is defined according to Eq. (A12),
then ~UT � ~VT ~V yields a real basis �00 � ~V� in which
~U00T � I. The transformation between these two real bases
is �00 � W�0, where W spans an O�2� �D subgroup of
U(2).32 In Appendix A, we noted that U00T � �WW

T��1 and
~U0T � WTW. If D is trivial, then WWT � WTW � I and
UT � I (up to an overall phase) in any real basis.
Equation (F3) then implies that the vacuum expectation
values are relatively real in any real basis [and can be
chosen real with an appropriate U�1�Y phase rotation]. If
D is nontrivial, then the vacuum expectation values cannot
be relatively real in both the �0-basis and the �00-basis if
�00 � W�0, where WWT � ei�I.

As a simple example, consider again the model specified
by Eq. (36) with �6 real, which was examined at the end of
Sec. V. The �-basis in this case is a real basis but the
vacuum expectation values,

���
2
p
v̂ � �e�i�=2; ei�=2�, exhibit

a nontrivial relative phase for � � 0 (mod�). Nevertheless,
the Higgs vacuum is time-reversal invariant. In this case,
we can explicitly exhibit the matrix UT that satisfies
Eq. (F3) and a unitary matrix V such that UT � VTV:
-20



CONDITIONS FOR CP VIOLATION IN THE GENERAL . . . PHYSICAL REVIEW D 72, 095002 (2005)
UT�
0 1
1 0

� �
; V�

1���
2
p

cos� �sin�
sin� cos�

� �
1 1
�i i

� �
; (F5)

where � is an arbitrary angle. Indeed, the matrix V trans-
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forms the (real) �-basis to another real basis in which the
vacuum expectation values are real. In particular, the
choice of � � �=2 yields v̂0 � Vv̂ � �1; 0� as noted at
the end of Sec. V.
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