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Investigations in 1� 1 dimensional lattice �4 theory
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In this work we perform a detailed numerical analysis of (1� 1) dimensional lattice �4 theory. We
explore the phase diagram of the theory with two different parametrizations. We find that symmetry
breaking occurs only with a negative mass-squared term in the Hamiltonian. The renormalized mass mR
and the field renormalization constant Z are calculated from both coordinate space and momentum space
propagators in the broken symmetry phase. The critical coupling for the phase transition and the critical
exponents associated with mR, Z and the order parameter are extracted using a finite-size scaling analysis
of the data for several volumes. The scaling behavior of Z has the interesting consequence that h�Ri does
not scale in 1� 1 dimensions. We also calculate the renormalized coupling constant �R in the broken
symmetry phase. The ratio �R=m2

R does not scale and appears to reach a value independent of the bare
parameters in the critical region in the infinite volume limit.
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I. INTRODUCTION

Over the years the 1� 1 dimensional �4 theories have
been used and investigated for many purposes, including
theoretical and algorithmic developments in novel non-
perturbative approaches. There is a large body of work
that deals with the theory in the continuum starting from
the mid-1970s until now [1]. They involve techniques such
as Hartree approximation, Gaussian effective potential,
post Gaussian approximations, random phase approxima-
tion and discrete and continuum light front Hamiltonian.
These studies have been done with a positive bare mass-
squared (m2 > 0) and diverging contribution to the mass at
the lowest nontrivial order of the coupling [O���] arising
from normal ordering was cancelled by a counter term,
effectively dropping the divergent piece. A phase transition
to broken symmetry phase was found at strong quartic
coupling. Critical value for �=m2 has been found to lie
somewhere between 30 and 60.

Lattice regularization is naturally suited to determine the
phase diagram of a quantum field theory. There has been an
attempt on the lattice [2] to extract the critical value of
�=m2. This calculation was performed with a negative bare
mass-squared term in the lattice action resulting in the
broken symmetry phase at small coupling. The negative
mass squared was converted to a positive mass squared in
the infinite volume limit by a renormalization performed
after the lattice data had been extracted and a critical value
for �=m2 was quoted.

In this paper we investigate the 1� 1 dimensional �4

theory on the lattice. To the best of our knowledge, there
does not exist any detailed study of the critical region of
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this theory using the nonperturbative numerical program of
quantum field theories on the lattice. Our aim is to explic-
itly determine the scaling behavior of the renormalized
mass, the renormalized coupling and the field renormal-
ization constant including their amplitudes. We also want
to investigate the topological sector of this theory in the
broken phase. In a companion work [3] we have calculated
the topological charge using the same nonperturbative
techniques and have shown its relation to the renormalized
parameters in the quantum theory.

In this theory the quartic coupling has the dimension of
mass squared and a ‘‘physical’’ (relevant in the continuum)
quantity to calculate is the dimensionless ratio of the
renormalized parameters �R=m2

R. We determine the phase
diagram in the two dimensional bare parameter space
which agrees with the phase diagram of [2]. We have not
found a phase transition from the symmetric phase to the
broken symmetry phase with a positive mass-squared term
in the action. The symmetry breaking occurs in our lattice
theory only with a negative mass-squared term. We per-
form a detailed study of the scaling region of the broken
symmetry phase and determine the ratio �R=m2

R which
appears to be constant in the scaling region irrespective
of the bare lattice parameters. The vacuum expectation
value of the renormalized field h�Ri also seems to be
constant irrespective of the parameters in the scaling region
of the 1� 1 dimensional theory. We have determined these
ratios using numerical lattice techniques on a variety of
lattice sizes. We have estimates for their infinite volume
values.

For a nonperturbative approach like the lattice, the no-
tion of perturbative renormalizability is to be replaced by
the existence of critical manifolds and universality classes.
The �4 theories are generally believed to be in the same
universality class as the Ising model. This notion originally
came from the renormalization group and in two Euclidean
dimensions is consistent with a conjecture based on con-
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formal field theory [4]. In our investigation we determine
the critical exponents of h�i and mR independently in �4

theory and find them to be the same as the Ising values.
Another important ingredient relevant in our analysis is the
field renormalization constant Z which appears in the two-
point correlation function. The critical exponent of Z
emerging from our finite-size scaling (FSS) analysis in
�4 theory is found to be consistent with the exponent of
susceptibility in the Ising model.

Although it is not the ultimate goal of our work, our
results provide an independent confirmation of the univer-
sality of Ising model and �4 theory (with negative mass
squared) in 1� 1 dimensions using numerical techniques
of lattice field theory. However, in an actual calculation,
always done in a bare theory with an ultraviolet cutoff like
the lattice (which also has a finite size), there are many
important issues still to be resolved, for example, the onset
of the scaling region, effects of the finite size, possible
scaling violation, etc. The above needs to be done in each
theory for a complete understanding of the process of the
continuum limit.

In order to determine the ratio �R=m2
R, we need to know

the field renormalization constant Z and the renormalized
mass mR which can be defined and determined in two
ways: (1) the exponential falloff in Euclidean time of the
zero-spatial-momentum bare lattice propagators in the co-
ordinate space, and (2) the behavior of the momentum
space propagators for small four-momenta. We expect
respective critical exponents corresponding to the renor-
malized mass and the field renormalization constant to
agree for the two methods and we verify this in the current
paper. In this connection, we wish to point out that we have
made use of finite-size scaling for accurate determination
of the critical point and verification and determination of
the critical exponents. For recent calculations in 3� 1
dimensional Ising model, see [5].

Cluster algorithms, known for beating critical slowing
down in Ising models, are not directly applicable to the �4

theories. However, owing to a development by Wolff [6]
using embedded Ising variables [7] we have been able to
use cluster algorithms in conjunction with the usual
Metropolis Monte Carlo.

The plan of the paper is as follows. In Sec. II we define
the two parametrizations of the �4 theory on the lattice
followed by Sec. III where we discuss the use of embedded
Ising variables in �4 theory for use of the cluster algo-
rithms. We show the phase structure of the lattice theory in
Sec. IV. In Sec. V we present the calculation of the con-
nected scalar propagator in coordinate space and momen-
tum space and then in Sec. VI we extract the critical
exponents for mass mR and field renormalization constant
Z and determine the critical coupling using finite size
scaling analysis. In Sec. VII the renormalized coupling
constant �R and the quantities �R=m2

R and �R are dis-
cussed. Finally in Sec. VIII we conclude with a summary
of our results.
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II. �4 THEORY ON LATTICE

In this section we present the lattice action of
(1� 1) dimensional lattice �4 theory in two different
parametrizations.

A. Parametrization as in the continuum

We start with the Lagrangian density in Minkowski
space (in usual notations)

L �
1

2
@��@���

1

2
m2�2 �

�
4!
�4; (2.1)

which leads to the Lagrangian density in Euclidean space

L E �
1

2
@��@���

1

2
m2�2 �

�
4!
�4: (2.2)

Note that in one space and one time dimensions, the
scalar field � is dimensionless and the quartic coupling �
has dimension of mass2.

The Euclidean action is

SE �
Z
d2xLE: (2.3)

Next we put the system on a lattice of spacing a withZ
d2x � a2

X
x

: (2.4)

Because of the periodicity of the lattice sites in a toroidal
lattice, the surface terms will cancel among themselves
(irrespective of the boundary conditions on fields) enabling
us to write

�@���
2 � ��@2

�� (2.5)

and on the lattice

@2
�� �

1

a2 ��x�� ��x�� � 2�x�: (2.6)

�x�� is the field at the neighboring sites in the ��
direction. Introducing dimensionless lattice parameters
m2

0 and �0 by m2
0 � m2a2 and �0 � �a2 we arrive at the

lattice action in two Euclidean dimensions

S � �
X
x

X
�

�x�x�� �

�
2�

m2
0

2

�X
x

�2
x �

�0

4!

X
x

�4
x:

(2.7)

We shall henceforth call this lattice action the continuum
parametrization.

All dimensionful quantities in the following are ex-
pressed naturally in the lattice units, basically meaning
that they become dimensionless in the lattice formulation
by getting multiplied by appropriate powers of the lattice
spacing a.
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B. Another parametrization

A different parametrization in terms of field � and
parameters � and ~�, henceforth called the lattice parame-
trization is obtained by setting

� �
������
2�
p

�; m2
0 �

1� 2 ~�
�

� 2d; �0 � 6
~�

�2

(2.8)

where, d � 2 in our case. This leads to the lattice action

S0 � �2�
X
x

X
�

�x�x�� �
X
x

�2
x � ~�

X
x

��2
x � 1�2

(2.9)

where we have ignored an irrelevant constant.
In the limit ~�! 1, configurations with �2

x � 1 are
suppressed. As a result, field variables assume only two
values �x ! �1 and S0 is reduced to the Ising action SIsing

with

SIsing � �2�
X
x

X
�

�x�x��: (2.10)

The lattice action given in Eq. (2.9) is invariant under the
staggered transformation

�! ��; �x ! �st;x; (2.11)

where �st;x � ��1�x1�x2 �x. As a result, if �c is a critical
point, there exists another critical point at ��c. We have
three phases: broken phase for � > �c�h�i � 0; h�sti �
0�, symmetric phase for ��c < �< �c�h�i � h�sti � 0�
and a staggered broken phase for � <��c�h�i �
0; h�sti � 0�. Note that the staggered broken phase is
inaccessible in the continuum parametrization.

Wherever possible, we have made use of the lattice
parametrization to check the implementation of the our
algorithm since it allows a cross checking of the critical
points.
III. ALGORITHM FOR UPDATING
CONFIGURATIONS

It is well known that most algorithms become extremely
inefficient near criticality (i.e. near the continuum limit).
This phenomenon is known as critical slowing down
(CSD). To beat CSD in our �4 theory (which has an
embedded Ising variable as explained below) we have
used a cluster algorithm (known to beat CSD in Ising-
like systems) to update the embedded Ising variables and
combined it with the usual Metropolis Monte Carlo algo-
rithm. The variant of the cluster algorithm that we have
used is due to Wolff [8] and is known as ‘‘single cluster
algorithm.’’
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To see what an embedded Ising variable is and how it is
made use of, note that the part of the �4 action that
responds to a change of sign is

SI��� � �
X
x;�

�x�x��

� �
X
x;�

j�xjj�x��j�x�x��

� �
X
x;�

Jx;x���x�x��; (3.1)

where�x � sign��x� is called the embedded Ising variable
and Jx;x�� � j�xjj�x��j resembles a coupling that de-
pends on both position and direction.

Notwithstanding the resemblance, the above action does
not describe an inhomogeneous, anisotropic Ising model
since the couplings J will vary over configurations. In
general one cannot update different aspects of a degree
of freedom (for example, the modulus and sign of �)
separately and independently. Nevertheless, updating the
Ising sector (sign of �) in �4 theory is legitimate owing to
a result due to Wolff [6] that we will call Wolff’s theorem.

We describe the theory underlying this procedure, not
always easy to find elsewhere. We start by explaining
Wolff’s theorem.

Consider a group G of transformations T acting on the
configurations C of some system:

C! TC: (3.2)

Now let us consider the group G as an auxiliary statis-
tical system whose (micro)states are the group elements
{Tg. We define the induced Hamiltonian governing the
distribution of the auxiliary system by H�TC� where H is
just the Hamiltonian of the original system now considered
as a function of T.

Let us now define an algorithm W with transition prob-
abilities p�C;T ! T0� such that (1)

P
Te
�H�TC�p�C;T !

T0� � e�H�T
0C�, (2) p�TC;T1 ! T2� � p�C;T1T ! T2T�.

Wolff’s theorem states that a legitimate algorithm for
updating the original system is
(i) F
-3
ix C � C1 and T � I (identity transformation),

(ii) U
pdate T1 ! T2 using the W algorithm,
(iii) A
ssign C2 � T2C1 as the new configuration.
We shall now demonstrate that if Wolff’s theorem is
applied to �4 theory with an appropriate choice of G, it is
equivalent to updating the Ising sector independently.

Take G � ZN2 where N is the number of sites. Elements
T of ZN2 can be represented by Ising variables. T � f�xg
with �x � �1 or �1 so that

TC 	 Tf�xg � f�x�xg: (3.3)
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The induced Hamiltonian is

H�TC� � �
X
x;�

��x�x���x���x���

� �
X
x�

j�xjj�x��j�xsx�x��sx��

� �
X
x;�

j�xjj�x��js
0
xs
0
x��; (3.4)

where �x � j�xjsx and s0x � �xsx.
The proof of our proposition follows if we note that the

above Hamiltonian is indeed an inhomogeneous, aniso-
tropic Ising Hamiltonian and there is a 1-1 mapping be-
tween the variables s0x and �x.

We have used Wolff’s single cluster variant of the cluster
algorithm to update the Ising variables. Since the configu-
ration space for the �0s is much larger than that for the
Ising variables, to ensure ergodicity, the algorithm was
blended with the standard Metropolis algorithm. The
blending ratio used was 1:1 i.e every cluster sweep was
followed up by a Metropolis sweep.

We summarize the main steps in the algorithm. We start
with some initial configuration for the � fields. We then
update the sign of the � fields using Wolff‘s single cluster
algorithm using the action (3.1): We choose some site
(seed) at random and select a group of � fields (cluster)
around the seed having the same sign as the field sitting at
the seed. The probability for selecting a particular field is
governed by the action (3.1). This process is called growing
a cluster. We flip the sign of the fields belonging to the
cluster [the variables � in (3.1)] when the cluster is fully
grown. Finally we execute a Metropolis sweep over the
entire lattice updating the full � fields. This completes one
updation cycle.

Throughout this paper we have used periodic boundary
conditions. However, in the companion work [3] dealing
with topological charge we have used antiperiodic bound-
ary conditions where cluster algorithms do not work [9].
-3 -2.5 -2 -1.5 -1 -0.5 0
m

0
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0
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λ 0
>−−− 

<|φ|> = 0

<|φ|> = 0/

FIG. 1 (color online). Phase diagram for continuum parame-
trization.
IV. PHASE STRUCTURE

The phase structure is determined by looking at the order
parameter h�i which takes a nonzero value in the sponta-
neously broken phase. With the cluster algorithm however,
since the sign of the field of all the members of the cluster
are flipped in every updation cycle the algorithm actually
enforces tunneling between the two degenerate vacua in
the broken phase. As a result, as an artifact, the average of
� over configurations, i.e., the expectation value becomes
zero. Thus to get the correct nonzero value for the conden-
sate we measure hj�ji where � � 1

Volume

P
sites�x. To

understand the mod let us consider a local order parameter
h�xi. Since the configurations will be selected at random
dominantly from the neighborhood of either vacua in the
broken phase, h�xi will vanish when averaged over con-
figurations thus wiping out the signature of a broken phase.
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If one uses hj�xji as the order parameter then in the broken
phase it correctly projects itself onto one of the vacua
yielding the appropriate nonzero value. The use of this
mod, unfortunately, destroys the signal in the symmetric
phase completely by wiping out the significant fluctuations
in sign. However if we choose to use hj 1

Volume

P
sites�xji, it

correctly captures the broken phase as well as the symmet-
ric phase. While the sign fluctuation over configurations
are still masked, the fluctuations over sites survive produc-
ing hj�ji � 0 correctly in the symmetric phase.

The phase diagram for the continuum parametrization
obtained for a 5122 lattice is presented in Fig. 1.
Classically, spontaneous symmetry breaking (SSB) occurs
for negative m2

0. For small negative m2
0, as two minima are

shallow and very close to each other, quantum fluctuations
can restore the symmetry. So, larger negative values of m2

0
are required for SSB to take place. Consequently, the phase
transition line is found in the negative m2

0 semiplane. Our
phase diagram agrees qualitatively with that obtained for
much smaller lattices in [10,11]. In [2] the authors have
extrapolated their results to infinite volume. We find that
our 5122 lattice results are as good as the infinite volume
result in [2].

In lattice parametrization, phase diagram obtained for a
1002 lattice is presented in Fig. 2(a). We have restricted
ourselves only to � 
 0 region. The symmetry of the phase
-4
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FIG. 2 (color online). (a) Phase diagram for lattice parametrization. (b) Manifestation of the staggered symmetry of lattice
parametrization of the action.
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diagram for � < 0 and � > 0 is evident from the behavior
of h�i and h�sti as a function of �, shown in Fig. 2(b).

As mentioned in the Introduction, in the continuum
version of 1� 1 dimensional �4 theory with a positive
mass-squared term in the Hamiltonian, there have been
many attempts to calculate critical couplings for phase
transition from the symmetric phase to the broken phase
[1]. We have investigated the phase diagram of the lattice
theory in the region of positive mass-squared and have
been unable to detect a phase transition in this region of
the parameter space. In Fig. 3 we show the measurement of
the mass gap mR extracted from coordinate space propa-
gator in positive mass-squared region. We find that the
mass gap mR monotonically increases with the coupling.

An alternative way to probe the same region of the
parameter space of the continuum parametrization is to
perform simulations with the lattice parametrization of the
action. From the phase diagram for the latter presented in
Fig. 2(a), we reconfirm the absence of phase transition for
the lattice theory in the positive mass-squared region in the
continuum parametrization since this whole region can be
mapped onto the symmetric phase in the lattice parametri-
zation using the transformation Eq. (2.8).

V. CALCULATION OF PROPAGATOR

We have made use of two-point connected correlation
function to calculate the fundamental boson mass and field
-5
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renormalization constant. We have carried out our simula-
tion both in coordinate and momentum space.

A. Coordinate space

In coordinate space, 2-point connected correlation func-
tion Gc�x; x0� is given by

Gc�x; x0� � h�� ~x; t��� ~x0; t0�i � h�� ~x; t�ih�� ~x0; t0�i

� h�� ~x; t��� ~x0; t0�i � h�i2: (5.1)

For the derivation of the last equation translational invari-
ance has been assumed. As explained before, we actually
calculate hj�ji instead of h�i in Eq. (5.1) The notation ~x
may be confusing in 1� 1 dimensions; however, it is kept
to distinguish between the spatial and temporal directions.

We have extracted the renormalized scalar mass mR
(pole mass) and the field renormalization constant Z from

Gc�t� �
Z

2mR
�e�mRt � e�mR�L�t�� � higher states; (5.2)

where Gc�t� is the zero-spatial-momentum projection of
0
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1

m
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FIG. 4 (color online). mR from coordinate space propagator for
different lattices (a) 322, (b) 482, (c) 642, (d) 802, (e) 962 and
(f) 1282 (m2

0 � �0:5).
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the 2-point connected correlation function. The second
exponential term in the right-hand side of the above equa-
tion is due to the periodicity of the lattice.

In this calculation, to ensure thermalization, we have
discarded the first 106 configurations before starting our
measurements. Measurements were carried out on 100 bins
of 2� 105 configurations. In each bin, to fulfill the require-
ment that measurements be made on statistically indepen-
dent configurations, measurements were performed every
tenth configuration (hop-length).

Figures 4 and 5 show mR and Z extracted from the
connected propagator in coordinate space for lattices of
six different sizes as function of �0 for fixed m2

0 � �0:5.
The figures clearly demonstrate scaling ofmR and Z as one
moves towards the critical point. The critical point is given
roughly by the dip in each curve. These dips are clearly not
at the same place for mR and Z at the smaller lattices. A
phenomenological finite-size scaling analysis has been
done in the next section on these data and the data obtained
from momentum space propagators to calculate the critical
exponents and the critical coupling in the infinite volume
limit. Around the critical region in Figs. 4 and 5, all the
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FIG. 5 (color online). Z from coordinate space propagator for
different lattices (a) 322, (b) 482, (c) 642, (d) 802, (e) 962 and
(f) 1282 (m2

0 � �0:5).
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curves have a thick appearance because of the proximity of
the many data points with the associated errors shown for
each point. Outside the scaling region, a region not of
interest to us, the data is relatively sparse and we also
have suppressed the error bars for them. Unlike in the
Ising model (�0 ! 1), at finite �0 the hj�ji takes on large
values outside the scaling region in the broken phase. In
calculating the connected propagator, one performs a sub-
traction between the large expectation values of two quan-
tities measured independently. This enhances the error bars
outside the scaling region in the broken symmetry phase.

B. Momentum space

Connected propagator in momentum space is
Gc�p� �
X
x

eipx�h�x�0i � h�xih�0i�: (5.3)
To improve statistics in numerical simulation, averaging
over source y is performed.
0
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m
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FIG. 6 (color online). (a) mR0 in the critical region for different L f
different L from momentum space both for m2

0 � �0:5
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G�p� �
1

V

X
x;y

eip�x�y��h�x�yi � h�xih�yi�

�

*
1

V

X
x;y

�x�y cosp�x� y�

+
� jh�ij2��p�: (5.4)

At small momenta, the momentum space propagator be-
haves as

G�p� �
Z0

m2
R0 � p̂

2 (5.5)

where, p̂2 � 4
P
�sin2�

p�
2 � with � � 1; 2 is the dimension-

less lattice equivalent of the momentum square in the
continuum.

From the intercept of inverse propagator on the ordinate
and slope at p̂2 � 0, mR0 and Z0 can be determined.
However, it is only near the critical coupling that the
pole of the propagator is actually near zero and it is here
that mR0 approaches the pole mass mR. A similar argument
applies to Z0 and Z. We have thus calculated the momen-
tum space propagators only near the critical point.
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rom momentum space propagator, (b) Z0 in the critical region for
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Since the calculation of momentum space propagators
were extremely time consuming, we had to restrict our-
selves to smaller lattices. For thermalization 105 configu-
rations were discarded before starting the measurements.
The number and size of bins as well as the hop-length were
the same as that for coordinate space propagators.

As the inverse propagator was found to be nonlinear in
the small momenta region, one could use only the lowest
few momentum modes for the determination ofmR0 and Z0.
For this calculation we took the lowest 2 and 3 modes
excluding the zero momentum mode because the con-
nected propagator value for the zero mode is prone to
relatively large statistical error arising from the subtrac-
tion, in the critical region, between two quantities mea-
sured independently [5]. In Figs. 6(a) and 6(b), we have
presented mR0 and Z0 extracted from momentum space
propagator with m2

0 � �0:5 for four different lattices.
Results obtained using 2-point and 3-point fitting are found
to be quite close to each other. The 3-point fitting is more
stable and has been used in our study of finite-size scaling
in the next section.
VI. CRITICAL EXPONENTS AND CRITICAL
COUPLING FROM FINITE-SIZE SCALING

ANALYSIS

In this section, we perform a phenomenological FSS
analysis of our data to extract critical exponents and critical
coupling. Let us first briefly summarize the main aspects
[12] of this FSS analysis. In a finite-size system, there are,
in principle, three length scales involved: correlation
length �, size of the system L and the microscopic length
a (lattice spacing). FSS assumes that close to a critical
point, the microscopic length a drops out. According to
FSS [13], for an observable PL (whose infinite volume
limit displays nonanalyticity at the critical point �c0), cal-
culated in a finite size of linear dimension L,

PL���=P1��� � f�L=�1����; (6.1)

where � � ��c0 � �0�=�c0 and the function f (commonly
known as scaling function) is universal in the sense that it
does not depend on the type of the lattice, irrelevant
operators etc. It does depend on the observable P, the
geometry, boundary conditions etc. For fixed L as �! 0,
strictly there is no phase transition. Consequently PL��� is
not singular at �0 � �c0. Near the critical point we have,
�1��� � A��

�	 where 	 is the critical exponent associated
with the correlation length. Suppose, near the critical point,
P1��� � AP��
. Then from Eq. (6.1)

PL��� � AP��
f�A�1
� L�	�: (6.2)

Since PL��� should have smooth behavior as �! 0, a
simple ansatz for f may be taken as f�L�	� � �L�	�
=	

so that PL��� does not blow up as �! 0. Thus f�x� �
Cx
=	 as x! 0.
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Alternatively, we may write

PL��� � APA
�
=	
� L
=	g�A�1=	

� �L1=	�; (6.3)

where g is another scaling function. Since PL��� should
have no singularity as �! 0, L finite, we have, g�x� !
constant as x! 0.

Thus we have

L
=	=PL��� � A�1
P A
=	� F�A�1=	

� �L1=	�

where the function F is the inverse of the scaling function g
and F�A�1=	

� �L1=	� ! a constant as �! 0 for finite L. So,
we can write

L
=	=PL��� � A�1
P A
=	� �CP � DPA

�1=	
� �L1=	 �O��2��

(6.4)

as �! 0 (CP and DP are universal constants in the same
sense as the finite-size scaling functions). The utility of
Eq. (6.4) is that if we plot L
=	=PL��� versus the coupling
�0 for different values of L, all the curves will pass through
the same point when � � 0 or equivalently �0 � �c0 [14].
These ideas provide us with a very good method for
evaluating the critical point and checking the critical
exponents.

We have performed finite-size scaling analysis for the
observables h�i�1, m�1

R (or m�1
R0 ) and Z�1�orZ0�1�. The

critical behavior of h�i, mR and Z may be written as

h�i � A�1
� ��; mR � A�1

� �	; Z � A�1
Z ��: (6.5)

From the general expectation that in 1� 1 dimensions, �4

theory and Ising model belong to the same universality
class, we have used the Ising values for the corresponding
exponents as inputs in our FSS analysis. Thus, � � 0:125,
	 � 1 and � � 0:25.

According to the discussion following Eq. (6.4), we have
plotted L
=	=PL��� as a function of �0 near �c0 for different
L, with PL��� � m�1

R , Z�1 and h�i�1 respectively.
Figures 7(a) and 7(b) show the plots of LmR and LmR0

for different values of L against �0 with mR and mR0

obtained from coordinate and momentum space propaga-
tors, respectively. All results are with m2

0 � �0:5. We can
clearly identify the critical point with remarkable precision
from these plots and this agrees well with the value shown
in Fig. 1. Since in this case 
 � 	, we cannot verify the
critical exponent for mR (or mR0) solely from these plots.
However, on differentiating [14], Eq. (6.4) (with PL��� �
1=mR) with respect to �0 we get

@
@�0
�LmR� � BL1=	as�! 0;

where B is a constant. The exponent 	 can be computed
easily by taking the logarithm of the above equation:
-8
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log
@
@�0
�LmR� � logB�

1

	
logL: (6.6)

Determination of 	 using Eq. (6.6) is presented in Fig. 8. In
this calculation, we have used the lattice data obtained
from coordinate space propagator for four largest lattices
�642; 802; 962; 1282�. The value of 	 extracted from our
fitting is 1:01� 0:18 which is consistent with the Ising
value �	 � 1� to our numerical accuracy.

Figures 7(a) and 7(b) also give the value of the universal
constant C� appearing in Eq. (6.4). Applying Eq. (6.4) for
the case of mR, we find at � � 0

LmR � A�1
� A�C� � C� (6.7)

because 
 � 	. Discarding the 322 data which seem not to
conform to FSS, from Fig. 7(a) we find that C�  5:1. Data
in Fig. 7(b) are noisy; however, they still give a value
around 5.5.

Plots of ZL0:25 and Z0L0:25 against �0 for lattices of
different lengths L with Z and Z0 computed from coordi-
nate and momentum space propagators are presented in
Figs. 9(a) and 9(b) respectively. We also present the plots
of hj�jiL0:125 against �0 for different lattice sizes in
Fig. 10. Critical points obtained from all these FSS plots
are very close to each other. These plots also provide a very
good confirmation of the critical exponents for Z and order
parameter hj�ji.
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The critical exponent for hj�ji is also determined by
fitting our data for the largest lattice (5122) at m2

0 � �0:5
to the corresponding scaling formula for hj�ji. As is shown
in Fig. 11, the fit is very satisfactory and the results for the
critical exponent and the amplitude are

� � 0:1233� 0:0007 and A�1
� � 0:9811� 0:0032

�5122 lattice�:

(6.8)

Also, the critical exponent obtained from hj�ji data with
m2

0 � �1:0, although not shown here, agrees well with that
extracted for m2

0 � �0:5.
Within our numerical accuracy, critical exponent for

hj�ji calculated in the two different ways, namely, the
FSS and the direct fit of the scaling formula on the 5122

lattice, are very close to each other, indicating that 5122

lattice is as good as the infinite system.

VII. RATIOS �R=m2
R AND h�Ri

We choose the following definition [15] of �R, appro-
priate for broken phase, in terms of the renormalized scalar
mass mR (or mR0) and the renormalized vacuum expecta-
tion value h�Ri,

�R � 3
m2
R

h�Ri
2 � 3Z

m2
R

h�i2
: (7.1)
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FIG. 12 (color online). �R for different L from coordinate
space propagator for m2

0 � �0:5.
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It does not require any knowledge of four point Green
function which is computationally demanding. The renor-
malized coupling �R calculated using mR and Z from
coordinate space propagator for six different lattices using
the above method is presented in Fig. 12. Error bars are not
shown outside the scaling region for the reason explained
earlier. As evident from the figure, the renormalized cou-
pling is close to the tree level result in the weak coupling
limit. However, �R deviates noticeably from the tree level
expectation at stronger couplings; it has a scaling behavior
in the critical region and actually vanishes at the critical
point modulo finite-size effects.

In the previous section, we have already shown that the
results of our numerical analysis are consistent with the
Ising values of the critical exponents, namely, � � 0:125,
	 � 1 and � � 0:25. This has the interesting consequence
that in 1� 1 dimensions, the ratio �R=m2

R (or �R=m2
R0) is

independent of the bare couplings in the critical region, as
follows:

�R=m2
R � 3=h�Ri

2 � 3Z=h�i2 (7.2)

���c0 � �0�
�=��c0 � �0�

2� � ��c0 � �0�
0; (7.3)

using � � 2� � 0:25.
In Figs. 13 and 14 for m2

0 � �0:5 and m2
0 � �1:0

respectively, we plot the quantity h�Ri with Z evaluated
from coordinate space propagator data, versus �0 for six
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different lattice volumes for a set of bare couplings close to
and including the critical region. These figures are consis-
tent with Eq. (7.3) which shows that in the infinite volume
limit h�Ri is independent of the bare couplings. The figures
show that for larger lattices the value of h�Ri gets close to
unity along a plateau region just away from the critical
point in the broken phase and quickly goes to a value close
to zero on the symmetric phase side. Judging from the
trend in these figures, we expect the curve in the infinite
volume limit to take the shape of a step function at the
critical point with h�Ri dropping from around unity to zero
as it passes the critical point from the broken symmetry
phase to the symmetric phase.

One can also try to take the infinite volume limit of h�Ri
in the scaling region (as will be shown in the following for
the ratio �R=m2

R in Figs. 15 and 16). From our extrapola-
tions, although not shown here and already quite apparent
from Figs. 13 and 14, this value seems to be very close to
unity.

Equation (7.2) then immediately tells us that the infinite
volume limit of �R=m2

R in the scaling region would be
close to 3. This is what is indicated in Figs. 15 and 16. The
significant error bars in our data result mostly from inac-
curacies in the determination of the field renormalization
constant Z and do not permit us to take a more accurate
infinite volume limit. However, the trend is quite
unmistakable.
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We notice that for both of the two figures 13 and 14, the
curves for different volumes meet at the same value of
around 0.65 of h�Ri at the critical values of �0 (� 1:93 for
m2

0 � �0:5 and �4:46 for m2
0 � �1:0). To explain this,

we need to look at Eq. (6.4) from which one can write, at
� � 0 and finite volume,

h�Ri �
h�i����
Z
p �

������
AZ
p

A�

C�������
CZ
p : (7.4)

Factors of the lattice linear dimension L cancel between
the numerator and the denominator in the above equation.
From the scaling laws Eq. (6.5) we find that the ratio������
AZ
p

=A� is the infinite volume limit of h�Ri which we
find to be constant irrespective of the parameters of the
theory. In addition, because the coefficients C� and CZ are
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constants (they may, however, depend on things like the
boundary conditions etc.), the value of h�Ri at � � 0 is
also constant irrespective of the parameters and volume, as
shown in Figs. 13 and 14 for two sets of bare couplings.
VIII. CONCLUDING DISCUSSION

Our investigation of the 1� 1 dimensional �4 theory on
the lattice has certainly turned out to be more challenging
and absorbing than what one would generally expect for a
lower dimensional theory.

On the algorithmic front, since the Metropolis algorithm
was extremely inefficient near the critical region and for
our study we required to obtain a large number of uncorre-
lated configurations, we had to incorporate the cluster
algorithm. Cluster algorithms are generally applicable
only to Ising-type systems. In our case, we used a result
due to Wolff [6] to apply the cluster algorithm to the
embedded Ising variables in the �4 theory. To update the
radial modes of the fields the standard Metropolis algo-
rithm had to be blended with the cluster algorithm.

We explored the phase diagram of the lattice theory in
two different parametrizations. We have found that sym-
metry breaking occurs only with a negative mass-squared
term in the Hamiltonian.

We needed a large number of configurations to get
numerically stable results for the connected propagators
in the broken phase. Away from the critical point, the
magnitude of the � field is large, and the connected
propagator which would be a relatively small number
had to be extracted from the subtraction of two large
numbers. In addition, the momentum space propagators
showed signs of curvature for small lattice momenta, a fact
which made the determination of the renormalized mass
and the field renormalization constant a tough one and we
had to be as close to the zero momentum as possible.

Using a definition appropriate for broken symmetry
phase, we have calculated the renormalized coupling �R
which involves mR; Z and h�i. At weak coupling limit our
result is close to the tree level result but deviates signifi-
cantly in the strong coupling regime.
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We have used the finite-size scaling analysis to deter-
mine the critical point and verify and ultimately determine
the critical exponents associated with mR; Z and h�i.
Verification of critical exponents for mR and Z are per-
formed using the data for both coordinate and momentum
space propagators. Apart from verifying the critical expo-
nent for h�i using FSS analysis, we have also indepen-
dently determined this quantity by fitting our data for a
large enough lattice (5122). Our results are consistent with
the expectation that in 1� 1 dimensions the �4 theory and
the Ising model are in the same universality class.

One of the most important observation in 1� 1 dimen-
sions is that the field renormalization constant scales with a
particular critical exponent, something that does not hap-
pen in 3� 1 dimensions. This has the interesting conse-
quence that the renormalized field does not scale and in the
infinite volume limit, it drops from a value approximately
around unity to zero abruptly as we pass from the broken
symmetry phase to the symmetric phase. Moreover, the
ratio of the renormalized quartic coupling to the square of
the renormalized mass also does not scale and appears to
be independent of the bare parameters in the scaling re-
gion. Numerically this ratio seems to approach a value
around 3 in the infinite volume limit. However, our infinite
volume extrapolations are approximate due to large finite-
size effects and systematic error in the calculation of the
field renormalization constant Z.

For reliable extrapolation of the above amplitude ratios
to infinite volume there exist methods [16] which we have
not tried in the present work. We need to have smaller error
bars especially on the mR and Z data and this can be taken
up in a future work.
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