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Clash of positivities in topological density correlators

Miguel Aguado and Erhard Seiler
Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 Munich, Germany
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We discuss the apparent conflict between reflection positivity and positivity of the topological
susceptibility in two-dimensional nonlinear sigma models and in four-dimensional gauge theories. We
pay special attention to the fact that this apparent conflict is already present on the lattice; its resolution
puts some nontrivial restrictions on the short-distance behavior of the lattice correlator. It is found that
these restrictions can be satisfied both in the case of asymptotic freedom and the dissident scenario of a
critical point at finite coupling.
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I. INTRODUCTION

Topological density correlators have some positivity
properties that may seem paradoxical at first sight. If we
denote the topological density by q�x� and (minus) its two-
point function (in Euclidean space) by

F�x� � �hq�0�q�x�i; (1)

reflection positivity (RP), i.e. positivity of the metric in
Hilbert space demands that

F�x� � 0 for x � 0; (2)

as has been pointed out long ago (see [1,2]). Actually it is
easy to see that F cannot vanish anywhere (unless it
vanishes identically), i.e.

F�x�> 0 for x � 0; (3)

on account of the Lehmann-Källén spectral representation.
On the other hand the topological susceptibility

�t �
Z
dxhq�0�q�x�i � �

X
x

F�x� (4)

should be nonnegative on account of the positivity of the
euclidean functional measure (at least if there is no non-
zero � angle), since it can be obtained as

�t � lim
V!1

1

V
hQ2

Vi; (5)

where QV is the topological charge in the finite volume V.
As has been stressed repeatedly, these two properties can
be reconciled only by requiring specific contact terms in
F�x�, something that is of no physical relevance in axiom-
atic quantum field theory, because contact terms do not
contribute to the analytic continuation from Euclidean to
Minkowski space.

We want to approach this problem by considering the
quantum field theory as a continuum limit of a lattice field
theory in which both positivities are already satisfied at
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nonzero lattice spacing. We are aware of the fact that (2)
does not hold for all lattice versions of the models in
question, but if we rely on the universality principle we
should be allowed to restrict our attention to the lattice
theories satisfying it. After all, RP (for gauge invariant
fields) has to be true in the continuum limit, if the theory
is to make physical sense. Similarly, there are nonlocal
definitions of the topological density that do not satisfy (2),
but again the violation should only be a lattice artefact.
II. TWO DIMENSIONS

We will discuss the case of the two-dimensional O�3�
nonlinear � model in some detail and remark about the
CPN�1 models and the massless and massive Schwinger
models at the end.

The lattice O�3� model is defined in terms of the stan-
dard lattice action

S �
X
hxyi

s�x� � s�y�; (6)

where s�:� 2 S2 � R3 and the Gibbs density is propor-
tional to e��S. We are working on the unit lattice Z2 in a
regime �< �crt where the model shows exponential clus-
tering with correlation length �. The dynamically defined
lattice spacing a is proportional to the inverse correlation
length

a �
‘0

�
; (7)

where the constant ‘0 defines the standard of length.
Of course according to the standard wisdom �crt � 1,

but Patrascioiu and Seiler have raised doubts about this
over the years (for a recent summary see [3] and references
given there) and the issue remains an open mathematical
question [4].

The most natural definition of the topological density
q�x	� on the lattice is associated with a plaquette or equiv-
alently with a site x	 of the dual lattice; other definitions
associate q with lattice sites. As examples we mention two
choices that satisfy RP:
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(a) ‘‘
field theoretic definition’’ [5],

qft�x��
1

32�

X
��

X
ijk

	��	ijksi�x�
sj�x��̂�

�sj�x��̂��
sk�x� �̂��sk�x� �̂�� (8)
(b) ‘‘
geometric definition’’ [6]

qgeom�x
	� �

1

8�
fA�s�1�; s�2�; s�3��

� A�s�1�; s�3�; s�4��

� A�s�1�; s�2�; s�4��

� A�s�2�; s�3�; s�4��g (9)

where the sites 1, 2, 3, 4 are the four corners of the
plaquette dual to x	 and A�:; :; :� is the area of the
spherical triangle spanned by the three points on the
sphere appearing as arguments.
(9) arises from the expression found in [6] by symmetriza-
tion, so as to make it antisymmetric with respect to time
reflections, a prerequisite for RP.

We study the two-point correlation function at a certain
value of �, which we prefer to parameterize by a��� �
‘0=����

Fa�x� � �a
�4

�
q�0�q

�
x
a

��
(10)

where we inserted the prefactor a�4 in anticipation of the
continuum limit

F0�x� � lim
a!0

Fa�x�; (11)

which is not expected to require any divergent field
strength renormalization.

Note that the whole lattice definition of the topological
charge density (in particular, all contact terms of the two-
point correlator arising from this definition) must be taken
into account to analyze the interplay of the behavior of the
correlator at x � 0 and at x � 0 necessary to fulfill pos-
itivity requirements. For instance, additive renormaliza-
tions suggested to define a ‘‘physical‘‘ topological
susceptibility in the continuum limit should not be intro-
duced here. We do not want to make any claims concerning
the existence of the continuum limit of the topological
susceptibility, which is a difficult issue in the case of the
O�3� model (see for instance [7,8]). The two-point corre-
lator of the topological charge density could be well de-
fined in this limit even if �t is not.

Since q�x� is a dimension 2 operator, naively one would
expect that the short-distance behavior of its two-point
correlation function is

F0�x� � O
�

1

jxj4

�
: (12)
094502
The two positivities satisfied by Fa are

Fa�x�> 0 for x � 0 (13)

and

�at � �
X
x

a2Fa�x� � 0: (14)

These two inequalities imply

hq�0�2i � �
X
x�0

hq�0�q
�
x
a

��
�
X
x�0

a2Fa�x� (15)

and if we rewrite (15) as

�at � hq�0�2ia�2 �
X
x�0

a2Fa�x� � 0; (16)

we see that the topological susceptibility is the remainder
of the incomplete cancellation of the two sides of (15).

Replacing heuristically the right hand side of Eq. (15) by
its continuum limit one is tempted to write

Z
jxj�ad

F0�x�d2x 
 a�2hq�0�2i (17)

with some constant d of order 1. Using the fact that
according to tree level perturbation theory (which is un-
contested) there is a constant c such that for � greater than
some �0

hq�0�2i 

c

�2 (18)

we then would conclude that

Z
jxj�ad

F0�x�d2x 

c0

�2a2 : (19)

We will later give a more precise derivation of a slightly
weaker inequality than Eq. (19), that depends, however, on
a certain assumption about the approach to the continuum.

Note that in this equation a should be considered as a
function of �. It has to remain valid as a! 0, i.e. �!
�crt. So Eq. (19) expresses a remarkable link between the
short-distance behavior of the topological correlator and
the value of the critical coupling �crt. If, as commonly
believed, �crt � 1, it implies that the short-distance sin-
gularity of F0�x� has to be softer than 1=jxj4. As will be
discussed, this is in fact consistent with RG improved
perturbation theory. But Eq. (19) can obviously also easily
be satisfied in the dissident scenario of a finite value of
�crt; in this case the ‘‘classical’’ behavior (12) is allowed.

Another remarkable feature in the conventional scenario
is this: according to asymptotic scaling the topological
susceptibility should be exponentially small in �, but the
first term on the right hand side of (16) is O�1=�2�. That
means that also the second term has to be of that order and
the cancellation between the two terms has to be almost
complete. It has of course been known for a long time that
for instance the geometric definition does not satisfy
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asymptotic scaling [6] numerically; it is an open question if
it is satisfied for any definition that also obeys RP in the
continuum limit. But maybe one should not worry about
this point too much, since asymptotic scaling has also not
been verified for the correlation length; the only interesting
open question is the existence of a nontrivial continuum
limit of �at , which is, however, not our concern here.

Let us now turn to the derivation of (19). It is certainly to
be expected that the two-point function Fa�x� converges to
the continuum limit F0�x� pointwise. But one cannot ex-
pect that the approach is uniform in x; it is to be expected
that the convergence is slower the shorter the distance x is.
We make the following assumption about the approach of
Fa to the continuum: there are constants d > 0 (indepen-
dent of a) and a0 > 0 such that
��������Fa�x�F0�x�

� 1

��������
 1

2
for a 
 a0 and ‘0 � jxj � ad:

(20)

This assumption limits the amount of nonuniformity per-
mitted in the approach to the continuum; it holds for
correlators of free fields and can be checked in perturbation
theory. In principle it can also be tested numerically. We
omitted large distances because we are considering the
massive continuum limit and the correlation function will
decay exponentially in ‘0jxj.

To use this assumption we reinterpret the lattice function
Fa�x� as a piecewise constant function in the continuum
and the sum

P
jxj�adFa�x� as an integral. We get, using the

triangle inequality

X
‘0�jxj�ad

Fa�x� �
Z
‘0�jxj�ad

F0�x�d2x�
Z
‘0�jxj�ad

jF0�x�

� Fa�x�jd2x

�
1

2

Z
‘0�jxj�ad

F0�x�d
2x: (21)

Inserting this in (15) we get

Z
‘0�jxj�ad

F0�x�d
2x 
 2a�2hq�0�2i; (22)

which is the announced replacement for (19).
Next we discuss inequality (22) in the conventional

scenario. According to RG improved tree level perturba-
tion theory we have (cf. [9,10])

F0�x� � g2�x�
1

jxj4
�O�g3�x�� for x! 0: (23)

Inserting the leading order perturbative running coupling

g2�x� �
const.
�ln�jxj�2

(24)

we get
094502
F0�x� �
const.

jxj4�ln�jxj�2
; (25)

i.e. the short-distance behavior is indeed softer than the
naive one. It is now not hard to see that with this behavior
one gets

Z
‘0�jxj�ad

F0�x�d2x � O
�

a�2

�ln��ad��2

�
: (26)

This is consistent with (22) if one assumes asymptotic
scaling, because then to leading order �2 � O��lna�2�.

The above discussion carries over without any essential
changes to the two-dimensional CPN�1 models; in fact it is
even simpler due to the fact that there is a very natural
definition of the topological density as the field strength of
the auxiliary Abelian gauge field in these models.

In the (massive or massless) Schwinger model the situ-
ation is slightly different: the value of �crt is finite; in the
massless version there is perfect cancellation between the
two terms in (22), whereas in the massive Schwinger
model the cancellation is incomplete. The Schwinger
model is also atypical in that the topological density is
really a dimension 0 field—this is due to the fact that there
is a dimensional parameter (the electric charge) in this
model.
III. FOUR DIMENSIONS

The discussion in four dimensions, in particular, QCD,
parallels the one in two dimensions, so we will limit
ourselves to pointing out the necessary modifications of
the previous discussion.

Again there are different lattice definitions of the topo-
logical density to be considered. Among them the so-called
field theoretic definition [11] satisfies RP in a straightfor-
ward manner. There are also geometric definitions satisfy-
ing RP [12,13]. The physically most relevant definitions,
however, are based on the relation between chirality and
topology; only these lead to a solution of the U�1� problem
of QCD via credible derivations of the Witten-Veneziano
formula [2,14–19], and are generally nonlocal, making RP
very nonobvious. In this context it is gratifying that re-
cently the topological two-point function based on the
overlap Dirac operator has been measured and found in-
deed to satisfy RP, at least for lattice distances greater than
2 [20].

The topological density, being given by g2

32�
2F�� ~F�� in

the continuum, is now a dimension 4 operator and hence its
two-point correlator on the lattice should be defined as

�Fa�x� � a�8

�
q�0�q

�
x
a

��
; (27)

where xmay be a site of the original or the dual lattice. The
short-distance behavior of the continuum limit F0�x� is
now naively
-3
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F0�x� � O
�

1

jxj8

�
(28)

and the topological susceptibility is the difference of two
almost cancelling positive terms:

�at � hq�0�2ia�4 �
X
x�0

a4Fa�x� (29)

as in two dimensions. Again the contact term satisfies

hq�0�2i 

c

�2 (30)

just as in two dimensions.
The approach to the continuum should satisfy the same

uniformity as in two dimensions (see Eq. (20)). By the
same reasoning as above we obtain then

Z
‘0�jxj�ad

F0�x�d4x 
 2a�4hq�0�2i (31)

and again we find that this can be satisfied either by
assuming the softened short-distance behavior
094502
F0�x� �
1

jxj8�ln��jxj��2
(32)

or, of course, by the existence of a critical point at finite �.

IV. CONCLUSIONS

The two positivities of the topological two-point func-
tion are superficially in conflict with each other. To recon-
cile them, one needs first of all specific contact terms. It is a
remarkable fact that we obtain restrictions on nonuniversal
‘‘unphysical’’ quantities from these considerations.

In addition we found out that:

(a) e
-4
ither the short-distance behavior of F0�x� is soft-
ened logarithmically compared to the naive tree
level behavior, in a way consistent with RG im-
proved tree level perturbation theory,
(b) o
r there is a critical point at a finite value of �. In
another paper [21] we report on a direct lattice
perturbation calculation for the 2D O�3� model,
which verifies consistency with the RG improved
tree level expression Eq. (23).
ACKNOWLEDGMENTS

We thank Peter Weisz for a useful discussion.
[1] E. Seiler and I. O. Stamatescu, KEK Report No. MPI-PAE/
PTh 10/87 (scanned version available from KEK via
SPIRES).

[2] E. Seiler, Phys. Lett. B 525, 355 (2002).
[3] E. Seiler, in Proceedings of the Seminar on Applications

of RG Methods in Mathematical Sciences, Kyoto, Japan,
2003 (unpublished); hep-th/0312015.

[4] Open Problems in Mathematical Physics, http://www.
iamp.org.

[5] A. Di Giacomo, F. Farchioni, A. Papa, and E. Vicari, Phys.
Lett. B 276, 148 (1992); Phys. Rev. D 46, 4630 (1992).
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