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Baryons with Ginsparg-Wilson quarks in a staggered sea
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We determine the masses and magnetic moments of the octet baryons in chiral perturbation theory
formulated for a mixed lattice action of Ginsparg-Wilson valence quarks and staggered sea quarks. Taste-
symmetry breaking does not occur at next-to-leading order in the combined lattice spacing and chiral
expansion. Expressions derived for masses and magnetic moments are required for addressing lattice
artifacts in mixed-action simulations of these observables.
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I. INTRODUCTION

Lattice QCD has made impressive progress. As fully
dynamical simulations for a wide range of observables are
carried out at lighter quark masses, our confidence in
lattice QCD as a predictive tool grows. There are a number
of fermion discretizations used on the lattice. These are at
various stages of development, and are fraught with dispa-
rate difficulties. Further confidence in lattice QCD will
eventually be built through comparisons of simulations
employing different lattice fermions.

Presently lattice QCD studies using dynamical stag-
gered fermions [1] reach smaller quark masses as com-
pared with other lattice fermions. The publicly available
MILC configurations [2], moreover, have launched dy-
namical staggered fermions as readily accessible for lattice
calculations [3–8]. The fourth-root trick is employed by
these simulations to reduce the number of so-called taste
degrees of freedom. In the continuum limit, there are no
taste-changing interactions and the trick is kosher. On the
lattice at finite a, however, the question of locality emerges
and the trick remains controversial; for various recent
investigations see [9–17]. Nonetheless, even with im-
proved staggered actions the discretization effects are sur-
prisingly large. Chiral perturbation theory has been
extended to staggered actions to control the systematic
errors associated with the continuum extrapolation [18–
23].

Simulations that employ Ginsparg-Wilson fermions
[24], on the other hand, do not suffer from the precarious
theoretical situation of staggered fermions.1 These fermi-
ons, moreover, have an exact chiral symmetry (which in
practice is limited by how well the overlap operator [25–
27] is approximated, or how well the domain wall fermion
[28–30] is realized). Computationally, however, Ginsparg-
Wilson fermions are numerically quite costly. Midground
between these two lattice fermions can be found. Ginsparg-
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Wilson quarks can be utilized for the valence quarks, where
they are computationally less demanding. One can then
calculate correlation functions in the background of the
existing staggered sea of the MILC configurations. This
efficacious solution has costs comparable to quenched
Ginsparg-Wilson simulations, and numerical investiga-
tions in mixed-action lattice QCD have been undertaken
[31–34]. Mixed-action chiral perturbation theory has re-
cently been formulated in the meson sector [35] to analyze
the lattice-spacing dependence of meson observables.

In this work, we construct the baryon chiral Lagrangian
for a mixed lattice action consisting of Ginsparg-Wilson
valence quarks and staggered sea quarks. We apply this
Lagrangian to the computation of octet baryon masses and
magnetic moments. To address the effects of finite lattice
spacing, one formulates the underlying lattice theory and
matches it onto a chiral effective theory [36]. To do so, we
utilize a dual expansion in the quark masses and lattice
spacing. We assume a hierarchy of energy scales

mq � �QCD �
1

a
; (1)

and further choose the power counting scheme

"2 �

�
mq=�QCD

a2�2
QCD;

(2)

which is currently relevant for simulations employing im-
proved staggered quarks [6]. The resulting quark mass and
lattice-spacing dependent expressions will be useful for the
analysis of numerical results from simulations of baryon
observables in mixed-action lattice QCD.

Our presentation has the following organization. First
we briefly review the Symanzik Lagrangian for the mixed
lattice action in Sec. II. Here we recall the form of the
chiral Lagrangian in the meson sector [35], and cite the
relevant details for our calculation. The baryons are then
included in the theory. In Sec. III, we determine the mag-
netic moments to O�"� in the combined expansion, while
in Sec. IV, we calculate the masses of the octet baryons up
to O�"3�. These calculations at their respective orders
include the leading nonanalytic dependence on the quark
masses, and are shown to be devoid of taste-symmetry
-1 © 2005 The American Physical Society
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breaking. Taste-symmetry breaking interactions contribute
at O�"4� from loops that scale generically as
O�a2mq logmq� and O�m2

q logmq�. A summary ends the
paper (Sec. V). For completeness we include a discussion
of the finite volume corrections in the Appendix.
II. CHIRAL LAGRANGIAN

Before including baryons into the mixed-action chiral
Lagrangian for Ginsparg-Wilson valence quarks and stag-
gered sea quarks, we first give a brief review of the
Symanzik Lagrangian. Next we recall the form of the
chiral effective theory in the meson sector, and list results
pertinent for the calculations in this paper. The relevant
pieces of the baryon Lagrangian are then detailed.

A. Symanzik Lagrangian

The lattice action can be described in terms of a con-
tinuum effective field theory. This effective theory is de-
scribed by the Symanzik action [37,38], which is built from
continuum operators and is based on the symmetries of the
underlying lattice theory. The Symanzik Lagrangian is
organized in powers of the lattice spacing a, namely

L Sym � L� aL�5� � a2L�6� � a3L�7� � � � � ; (3)

where L�n� represents the contribution from dimension-n
operators.2 The symmetries of the mixed lattice action are
respected by the Symanzik Lagrangian LSym order by
order in a. In the continuum limit, a! 0, only the opera-
tors of L survive. We consider here the case of a mixed
action in partially quenched QCD (PQQCD). This type of
action allows not only for the valence and sea quarks to
have different masses, but to be different types of lattice
fermions. An important feature of mixed-action theories
concerns the general lack of symmetry between the valence
and sea sectors [39]. Because different types of lattice
fermions are used in each sector of the theory, the flavor
symmetry of the mixed action is generally a direct product
of the separate symmetries in the valence and sea sectors.

The underlying lattice action we consider is built from
three flavors of Ginsparg-Wilson valence quarks and three
flavors of staggered sea quarks. In the continuum limit, the
Lagrangian L is just the partially quenched action,3

namely

L � QD6 Q�QmqQ; (4)

where the quark fields appear in the vector
2One should note that not all a dependence is parametrized in
Eq. (3). The coefficients of operators in L�n� depend on the
gauge coupling, and hence can have a weak logarithmic depen-
dence on a.

3We use the supersymmetric formulation of partially quenched
theories that stems back to [40]. One could equivalently use the
replica method [41].
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Q � �u; d; s; j1; j2; j3; j4; l1; l2; l3; l4; r1; r2; r3; r4; ~u; ~d; ~s�T:

(5)

Notice that fermion doubling has produced four tastes for
each flavor �j; l; r� of staggered quark. In a partially
quenched generalization of the isospin limit, the mass
matrix is given by

mq � diag�mu;mu;ms;mj�I; mj�I;mr�I; mu;mu;ms�;

(6)

with �I as the 4� 4 taste identity matrix. In the massless
limit, the Lagrangian L has a graded chiral symmetry of
the form SU�15 j 3�L 	 SU�15 j 3�R. For our discussion
below, it is useful to define projection operators for the
valence (V) and sea (S) sectors of the theory: P V �
diag�1; 1; 1; 0; . . . ; 0; 1; 1; 1�, and P S � diag�0; 0; 0; 1�I;
1�I; 1�I; 0; 0; 0�.

The Ginsparg-Wilson sector of the theory possesses an
exact chiral symmetry in the limit of zero quark mass [42].
Thus there can be no operators in L�5� involving only
valence quarks because the only dimension-5 operator
(after field redefinitions [43]) is a chiral symmetry break-
ing quark bilinear. Also there are no dimension-5 operators
built from just staggered quark fields [44,45]. Finally the
symmetries of the mixed action forbid bilinear operators
formed from one valence and one sea quark. Thus L�5� �0.

Next we consider the dimension-6 operators, of which
there are purely gluonic operators, quark bilinears and
four-quark operators. The gluonic operators can be omitted
from consideration. This is because they transform as
singlets under chiral transformations in the valence and
sea sector, and their contribution in the effective theory will
be identical to those from two-quark and four-quark op-
erators of dimension-6 that do not break the SU�15 j 3�L 	
SU�15 j 3�R chiral symmetry. We decompose the
dimension-6 operators into three classes as follows:

L �6� � L�6�val �L�6�sea �L�6�mix: (7)

The first term L�6�val consists of operators formed from only
valence quark fields. When the valence quark masses are
zero, these operators have an SU�3 j 3�L 	 SU�3 j 3�R chi-
ral symmetry which is reduced to a vector symmetry when
the valence masses are turned on. There is also a four-
derivative valence bilinear in L�6�val that breaks the SO�4�
rotational invariance of Euclidean space down to the hyper-
cubic group SW4. The dimension-6 terms in L�6�val for un-
quenched theories have been detailed long ago [46]; for a
recent discussion that addresses Ginsparg-Wilson valence
quarks specifically, see [47].

The second term L�6�sea consists of operators formed from
only sea-quark fields. The case of one staggered flavor
(corresponding to four tastes) was considered in [18,48].
More recently these results were generalized to the case of
multiple flavors in [19,21]. Terms that do not break taste
-2
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symmetry have the same form as operators in L�6�val. These
operators have an SU�12�L 	 SU�12�R chiral symmetry in
the massless sea-quark limit, and a vector symmetry away
from zero mass. There is a single four-derivative term
which reduces the rotational symmetry of taste-symmetric
terms down to SW4. When one considers taste-symmetry
breaking terms, one has four-quark operators of the form


Q��A 	 ��B�P SQ�
Q��A 	 ��B�P SQ� (8)

where �A denotes a Dirac matrix that acts on the spin
indices of the quark fields, and ��B denotes a generator of
SU�4� taste that acts on the taste indices of the quark fields.
We treat the sum over staggered flavors as implicit. The
presence of explicit ��B matrices breaks the taste symmetry.
When the collective labels A and B are unrelated, the
operator respects SO�4� rotational invariance. On the other
hand, when the Lorentz indices contained in label A are
contracted with those in B, both taste and rotational sym-
metries are broken and consequently the distinction be-
tween the two is blurred.

Finally operators in L�6�mix are operators that involve both
valence and sea-quark fields. Because of the mixed-action
symmetry, all of these terms are four-quark operators con-
sisting of a product of a bilinear of valence quarks with a
bilinear of sea quarks. These operators were constructed in
[35], where it was shown that only taste-singlet sea-quark
bilinears are present. The possible Dirac structures of these
bilinears are constrained by the exact chiral symmetry
required in the valence sector, and the axial symmetry
required in the sea sector. Only vector and axial-vector
bilinears are consistent with both symmetries. Ignoring
color structure which has no bearing in the construction
of the chiral Lagrangian, we have two terms in L�6�mix

L �6�
mix � CVmix�Q��P VQ��Q��P SQ�

� CAmix�Q���5P VQ��Q���5P SQ�: (9)

These terms have a SU�3 j 3�L 	 SU�3 j 3�R 	 SU�12�L 	
SU�12�R chiral symmetry.

Finally we consider the terms in L�7�. We do not con-
sider operators that have a quark mass insertion because
these will necessarily be higher order in our power count-
ing. There are no operators that consist only of Ginsparg-
Wilson valence quarks because we cannot build parity
even, chirally symmetric operators of dimension-7. As
discussed in [21], there are no dimension-7 operators built
solely from staggered quark fields due to the staggered
axial symmetry. Finally any operators in L�7� that consist
of both staggered quarks and Ginsparg-Wilson quarks must
occur as a product of bilinears of each fermion type. Again
this is because there is no symmetry relating the two
sectors of the mixed-action theory. There are no such
bilinears, however, because one cannot write down a
dimension-7 operator consisting of a chirally symmetric
094501
Ginsparg-Wilson bilinear and an axially symmetric stag-
gered bilinear. Thus L�7� � 0.

B. Mesons

In this section, we review the construction of chiral
perturbation theory in the meson sector of this partially
quenched mixed-action theory. Partially quenched chiral
perturbation theory was developed through a series of
papers [49–53]. The construction of the chiral effective
theory for Ginsparg-Wilson valence quarks and staggered
sea quarks was carried out in [35]. We will focus only on
the ingredients of this theory necessary for determining
baryon properties at next-to-leading order.

As commented above, in the massless and continuum
limit the Symanzik action has a graded chiral symmetry
SU�15 j 3�L 	 SU�15 j 3�R. We expect this symmetry to be
spontaneously broken down to SU�15 j 3�V in analogy
with QCD. Thus we can build an effective theory of
mixed-action PQQCD written in terms of the pseudo-
Goldstone modes that emerge from spontaneous chiral
symmetry breaking. These modes acquire masses from
the explicit chiral symmetry breaking introduced by the
quark mass term in the continuum action. Additionally we
shall see below that the a-dependent terms in the Symanzik
action also generate masses for some of these modes. We
shall generically call the pseudo-Goldstone modes mesons,
and collect them in an U�15 j 3� matrix exponential �

� � e2i�=f  �2; (10)

that is written in terms of the meson matrix �. We work
almost exclusively in the quark basis due to the fact that
mesons composed of two sea quarks will enter our next-to-
leading order calculations only as taste singlets.

At O�"2� in the combined lattice spacing and chiral
expansion the effective Lagrangian of partially quenched
chiral perturbation theory (PQ�PT) that describes the me-
sons has the form [35]

L �
f2

8
str�@��y@��� � � str�mq�y �myq��

�
1

6
�2

0�str��2 � a2V : (11)

With these conventions, the pion-decay constant f �
132 MeV. The potential V contains the effects of
dimension-6 operators in the Symanzik action. It can be
decomposed into three terms [35]

V �US �U0
S �UV: (12)

Above US and U0
S are taste-symmetry breaking potentials

involving single trace and two trace operators, respectively
[18,19]. These potentials involve only the mesons com-
posed of two sea quarks and arise from L�6�sea in the
Symanzik action. The potential UV contains all terms
that stem from Symanzik operators involving the valence
-3
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quark fields. These operators are in L�6�val and L�6�mix. As
shown in [35], there is only one term in the valence
potential

U V � �a2Cmix str��3��3�y�; (13)

where �3 � P S � P V . This term only acts on mesons
composed of one valence quark and one sea quark. At
this order there are no contributions from operators that
act on valence-valence mesons as their effects lead to a2

renormalization of the lowest order parameters [47].
Working to tree level, we can determine the meson

masses needed below for the calculation of baryon observ-
ables. When one expands the Lagrangian in Eq. (11) to
leading order, one finds that mesons formed of two
Ginsparg-Wilson quarks QQ0 have mass

m2
QQ0 �

4�

f2 �mQ �mQ0 �; (14)

which accordingly vanishes in the chiral limit. Mesons
consisting of a staggered quark Qi, i.e. of flavor Q and
quark taste i, and a Ginsparg-Wilson quarkQ0 have masses

m2
QiQ0
�

4�

f2 �mQ �mQ0 � �
16a2Cmix

f2 : (15)

Notice that these masses do not depend on the quark taste.
Masses of mixed mesons do not vanish in the chiral limit
because the full chiral symmetry of L is explicitly broken
by L�6�mix down to the mixed-action chiral symmetry. The
final mesons relevant to baryon observables at next-to-
leading order are those with two staggered quarks in a
flavor-neutral, taste-singlet combination. In the quark ba-
sis, their masses are given by

m2
QQ �

8�

f2 mQ �
64a2

f2 �C3 � C4�; (16)

where C3 and C4 are parameters entering the potential US.
Notice that in Eq. (11) the matrix � is not supertrace-

less, and we have included the singlet mass parameter �0.
This is a device to derive the form of the flavor-neutral
propagators [53]. Partially quenched theories have a U�1�A
anomaly which renders the singlet heavy. Thus the form of
flavor-neutral propagators can be derived in the limit that
�0 ! 1, and the singlet [here of SU�15 j 3�V] is inte-
grated out of the low-energy theory. For the staggered
flavor-neutral propagators, the analysis has been carried
out in [19], including the 1=4 factors corresponding to the
fourth-root trick. There it was shown that different flavor-
neutral propagators exist for the taste singlet, vector and
axial-vector channels. To the order we work, the only
flavor neutrals required will be composed of two
Ginsparg-Wilson valence quarks. Thus as with the meson
mass and decay constant in mixed-action PQ�PT [35],
only the taste-singlet flavor-neutral propagator is required.
For a; b � u; d; s, this propagator is given by
094501
G �a�b �
�ab

k2 �m2
aa
�

1

3

�k2 �m2
jj��k

2 �m2
rr�

�k2 �m2
aa��k2 �m2

bb��k
2 �m2

X�
;

(17)

where the masses of the valence-valence mesons, m2
aa and

m2
bb, are given in Eq. (14), while those of the sea-sea

mesons, m2
jj and m2

rr, are given in Eq. (16). The mass mX

is defined as m2
X �

1
3 �m

2
jj � 2m2

rr�. The flavor-neutral
propagator can be conveniently rewritten as

G �a�b � �abPa �H ab�Pa; Pb; PX�; (18)

where

Pa �
1

k2 �m2
aa
; Pb �

1

k2 �m2
bb

;

PX �
1

k2 �m2
X

;

H ab�A;B;C� � �
1

3

�
�m2

jj �m
2
aa��m

2
rr �m

2
aa�

�m2
aa �m

2
bb��m

2
aa �m

2
X�
A

�
�m2

jj �m
2
bb��m

2
rr �m

2
bb�

�m2
bb �m

2
aa��m

2
bb �m

2
X�
B

�
�m2

jj �m
2
X��m

2
rr �m

2
X�

�m2
X �m

2
aa��m

2
X �m

2
bb�
C
�
: (19)

In the limit that b! a, we require a separate form of the
flavor-neutral propagator to handle the double pole. The
functional form, however, can be related to a derivative of
the single pole form, namely

H aa�A; A; C� � �
1

3

�
@

@m2
aa

�m2
jj �m

2
aa��m2

rr �m2
aa�

�m2
aa �m2

X�
A

�
�m2

jj �m
2
X��m

2
rr �m

2
X�

�m2
X �m

2
aa�

2 C
�
; (20)

keeping in mind that A � A�m2
aa�.

C. Baryons

Having reviewed the mixed-action Symanzik
Lagrangian and the relevant pieces of meson PQ�PT at
finite a, we now extend mixed-action PQ�PT to the baryon
sector. In the continuum limit, the flavor symmetry group
of the mixed-action theory is SU�15 j 3�V . There are no
taste-symmetry breaking interactions present when the
lattice spacing is zero. Thus we can construct spin-1=2
and spin-3=2 baryon flavor tensors in the usual fashion
[54–56].4 In general we can find the dimensionality of
-4
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these multiplets in SU�M j N�V using the Young super-
tableaux [57,58]. For the spin-1=2 multiplet Bijk, we have
a

1

3

�M� 1�M�M� 1� � �N � 1�N�N � 1��

�MN�M� N� (21)

dimensional representation of SU�M j N�V , while the
spin-3=2 multiplet T ijk

� furnishes a

1

4
M�M� 1� �

1

12
M�M� 1��2M� 1� �

1

2
MN�M� N�

�
1

2
�N � 1��N � 2� � �N;0 (22)

dimensional representation.
For the case at hand, SU�15 j 3�V PQ�PT, we embed the

spin- 1
2 baryons in the 1938-dimensional supermultiplet

Bijk. The spin- 3
2 baryons are embedded in the

1086-dimensional supermultiplet T ijk
� . For baryon

PQ�PT at next-to-leading order (and indeed at next-to-
next-to-leading order as well), we shall need the states in
these multiplets consisting of at most one sea quark or at
most one ghost quark. To this end, we decompose the
irreducible representations of SU�15 j 3�V into irreducible
representations of SU�3�val 	 SU�12�sea 	 SU�3�ghost [59].
To describe these superalgebra multiplets we refer to their
floors, where the floor number coincides with the number
of bosonic ghost quarks contained in states. The ground
floor is synonymous with zero ghost quarks. Additionally
we refer to the levels of the multiplet [55] to distinguish
between baryon states with differing numbers of sea
quarks. Level A baryons do not have a sea quark, level B
baryons have one sea quark, and so on.

The ground floor, level A of the multiplet Bijk consists of
baryons that transform as a �8; 1; 1� under SU�3�val 	

SU�12�sea 	 SU�3�ghost. These are the octet baryons, and
are embedded in the tensor Bijk in the standard way when
all of the indices are restricted to 1–3 [60]. The first floor,
level A of Bijk transforms as a �6; 1; 3� � �3; 1; 3�. These
states have been constructed explicitly in [55]. The ground
floor, level B of the Bijk multiplet transforms as a
�6; 12; 1� � �3; 12; 1�. The states constructed in [55] can
be used with minimal modifications. One merely must
reindex so that the range of qsea is extended from 1–3 to
1–12, or merely attach a taste index to each flavor tensor.

The situation is the same with respect to the spin-3=2

baryon tensor T ijk
� . Either the states have already been

constructed in [55], or it is trivial to extend to the present
case those which have not. The ground floor, level A of the
spin-3=2 multiplet transforms as a �10; 1; 1� under
SU�3�val 	 SU�12�sea 	 SU�3�ghost, and consists of the dec-
uplet baryons which are embedded in the usual fashion.
The first floor, level A of T ijk

� transforms as a �6; 1; 3�,
while the ground floor, level B transforms as a �6; 12; 1�.
094501
Thus the total number of baryon states relevant for calcu-
lating loop diagrams up to next-to-next-to-leading order is
243, which is considerably smaller than the total number of
baryons in the theory 3024.

To O�"2�, the free Lagrangian for the Bijk and T ijk
�

fields retains the same form as in quenched and partially
quenched theories [55,60] with the addition of new lattice-
spacing dependent terms,

L � i�Bv �DB� � 2	M�BBM�� � 2
M�BM�B�

�
1

2
�M�BB�str�M�� � a2VB � i�T �v �DT ��

� ��T �T �� � 2�M�T �M�T ��

�
1

2
�M�T �T ��str�M�� � a

2VT : (23)

The baryon potentials VB and VT arise from the opera-
tors in L�6� of the Symanzik Lagrangian. For our next-to-
leading-order calculations, we will not require the explicit
form of either term. The effective contribution can be
deduced from symmetry considerations alone. In the
baryon Lagrangian, the mass operator is defined by

M� �
1

2
��ymQ�

y � �mQ��: (24)

Above, the parameter �� "�� is the mass splitting be-
tween the 1938 and 1086 in the chiral limit. The paren-
thesis notation used in Eq. (23) is that of [60] and is defined
so that the contractions of flavor indices maintain proper
transformations under chiral rotations.

The Lagrangian describing the interactions of the Bijk

and T ijk
� with the pseudo-Goldstone mesons is

L � 2	�BS�BA�� � 2
�BS�A�B�

� 2H �T �S�A�T �� �

���
3

2

s
C
�T �A�B�

� �BA�T ���: (25)

The axial-vector and vector meson fields A� and V� are
defined by A� �

i
2 ��@��

y � �y@��� and V� �
1
2 �

��@��y � �y@���. The latter appears in Eq. (23) for the
covariant derivatives of Bijk and T ijk that both have the
form

�D�B�ijk � @�Bijk � �V��ilBljk � ���
�i��j��m�

� �V��jmBimk � ���
��i��j���k��n�

� �V��knBijn: (26)

The vector S� is the covariant spin operator [61,62]. The
interaction Lagrangian in Eq. (25) also receives lattice-
spacing corrections. In calculating baryon observables,
however, these lead to effects that are O�"2� higher than
the next-to-leading-order results.
-5
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The parameters that appear in the mixed-action PQ�PT
Lagrangian can be related to those in �PT by matching.
One realizes that QCD is contained in the fourth root of the
sea sector of the theory. Thus we can relate the parameters
of �PT by matching onto terms in the above Lagrangian
restricted to one taste for each flavor of staggered sea
quark. For definiteness, we restrict the indices to 4, 8, 12
corresponding to j1, l1, and r1. This allows the usual
identifications 	 � 2

3D� 2F, 
 � � 5
3D� F, and the re-

maining parameters 	M, 
M, �M, �M, �M, C, and H all
to have the same numerical values as in �PT.

III. BARYON MAGNETIC MOMENTS

In this section, we calculate the octet baryon magnetic
moments in mixed-action PQ�PT. We choose to present
the calculation of magnetic moments first due to their
simplicity. Recall that in the continuum limit, the baryon
magnetic moments have the behavior [63–65]

���0 � 	
�������
mq
p

� � � � (27)

in the chiral expansion. Terms denoted by � � � scale with a
higher power of mq, and are first encountered from one-
loop graphs at next-to-next-to-leading order. At next-to-
leading order then, the magnetic moments receive O�"�
contributions from loops.

Moving away from the continuum, we are forced to
address the corrections from O�a2� operators. While there
are new a2-dependent terms in the baryon Lagrangian,
there are still further terms because the vector-current
operator also receives O�a2� corrections in the effective
theory. Potential contributions from any such terms, how-
ever, scale as O�"2� and are relevant only at next-to-next-
to-leading order. We can safely ignore such contributions.
This situation is similar to the calculation of magnetic
moments with mixed actions of Wilson and Ginsparg-
Wilson quarks [66]; see also [67]. Thus the lattice-spacing
artifacts at next-to-leading order can only enter through
loop effects. Of the diagrams that contribute to the elec-
tromagnetic current in PQ�PT [68], the one-loop graphs
that give a contribution to the octet magnetic moments are
depicted in Fig. 1.

To calculate these diagrams and the tree-level contribu-
tions, we must extend the electric charge matrix Q, which
is not uniquely defined in partially quenched theories [69].
FIG. 1. Loop diagrams contributing to the octet baryon mag-
netic moments at O�"�. The photons are pictured as wiggly lines,
mesons are denoted by dashed lines, and thin solid lines denote
1938 baryons, while the double lines denote 1086 baryons.
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By imposing the charge matrix Q to be supertraceless in
SU�15 j 3�, no new operators involving the singlet compo-
nent are introduced. There are various ways to accomplish
this, however, many are not practical to implement time-
wise in current lattice computations. We require that ghost
charges equal their valence counterparts so that operator
self-contractions from the valence quarks are completely
canceled by ghosts [70]. Thus our form of the SU�15 j 3�
charge matrix is

Q � diag�qu; qd; qs; qj�I; ql�I; qr�I; qu; qd; qs�; (28)

where to maintain supertracelessness qj � ql � qr � 0.
Taking the fourth root of the determinant in the continuum,
and making the sea quarks degenerate with the valence
quarks, QCD is recovered only for the specific choice of
charges: qu � qj �

2
3 , and qd � qs � ql � qr � �

1
3 .

Using unphysical charges for the valence and sea quarks
provides a means to access low-energy constants, and
thereby determine the physical magnetic moments, for
example. Notice the choice, qj � ql � qr � 0, is allowed
by supertracelessness, and would considerably free up
computation time by eliminating all operator self-
contractions.

In PQ�PT the leading contribution to the octet magnetic
moments arises from two dimension-5 operators [55]5

L �
ie

2MB

�	�B
S�; S��BQ�

��
�B
S�; S��QB��F��; (29)

which can be matched onto the �PT Lagrangian upon
restricting the baryon field indices to 4, 8, 12, and taking
the charges to be their physical values. In terms of the
SU�3� matrix B containing the octet baryons, the corre-
sponding �PT Lagrangian is

L �
ie

2MB

�D tr�B
S�; S��fQ; Bg�

��F tr�B
S�; S��
Q; B���F��; (30)

and hence we find �	 �
2
3�D � 2�F, and �
 �

� 5
3�D ��F by matching. These operators contribute to

the magnetic moments at O�"0�. There are additional
operators that make contributions of O�"� that have iden-
tical flavor structure, and differ only by the insertion of
�=��. These operators come with new low-energy con-
stants and are allowed because the mass-splitting parame-
ter is a chiral singlet. These �-dependent operators also
function as counterterms for the one-loop divergences. We
shall not keep these operators explicitly, and merely treat
the leading low-energy constants as arbitrary linear func-
tions of �. The ability to determine coefficients for the
5Here we use F�� � @�A� � @�A�.
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TABLE I. Tree-level coefficients for the magnetic moments of
octet baryons.

Q 	D

p qu � qs qu � qs
n qd � qs qd � qs
�� qu � qd qu � qd
�0 0 qu � qd
�� �qu � qd qu � qd
�0 �qd � qs qd � qs
�� �qu � qs qu � qs
� 0 1

3 �qu � qd � 4qs�
�� 0 1��

3
p �qu � qd�
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�-dependent operators requires the ability to vary �, and
for this reason we treat the � dependence only implicitly.

Having spelled out the operators for tree-level contribu-
tions to the magnetic moments, we now comment on the
computation of the loop diagrams. Because flavor-neutral
mesons remain charge neutral, even with arbitrary quark
charges, there are no hairpin contributions at next-to-
leading order, see Fig. 1. Loop graphs containing inter-
mediate state baryons with all valence quarks, or two
valence quarks and one ghost quark are identical to those
calculated for SU�6 j 3� in [55] (modulo the different
choice of electric charge matrix) because the ground floor,
level A, and first floor, level A transform identically in each
theory (both are singlets in the sea sector where the group
structure is different). Finally there are the diagrams with
baryons consisting of two valence quarks and one sea
quark. The corresponding loop mesons are mixed mesons;
they have one valence quark and one sea quark. The
propagation of these modes does not break taste symmetry.
This is because the Lagrangian in the mixed sector does not
contain explicit taste matrices only the matrix �3. Thus the
mixed-meson propagator obeys [35]

�QiQ0� ~Q0 ~Qj

^

�k2� �
�Q0 ~Q0�Q ~Q�ij
k2 �m2

QiQ0
; (31)

where Qi, ~Qj label the staggered quark flavors and tastes,
and Q0, ~Q0 label the Ginsparg-Wilson quark flavors. The
mixed-meson mass m2

QiQ0
is given in Eq. (15), and is

independent of the quark taste i. Now because there is no
taste changing in the loop, and the relevant meson and
baryon masses are quark taste independent, we obtain a
factor of 4 for each staggered quark flavor that can propa-
gate in the loop. This factor is then canceled by the fourth-
root trick. Explicit calculation verifies this. The baryon
magnetic moments hence have the same form as in SU�6 j
3� PQ�PT [55], and depend only on one new low-energy
constant Cmix. This low-energy constant appears in the
loop meson masses that contain a sea quark and a valence
quark.

Combining the tree-level and one-loop graphs, we have

� � Q�F � 	D�D �
MB

4f2

X
�

�

�m� � 


0
�

C2



�

�
F �m�;�; �� �

5

3

��
; (32)

where we have carried out the spin algebra in
D dimensions. The nonanalytic function appearing in the
above expression is defined by

F �m;�;���
�����������������
�2�m2

p
log
��

��������������������������
�2�m2� i�
p

��
��������������������������
�2�m2� i�
p ��log

m2

�2 :

(33)

The coefficients Q, and 	D for the tree-level diagrams are
094501
listed in Table I. Ordinarily Q is the baryon charge; this is
no longer the case with the quark electric charge matrix Q
given in Eq. (28). The computed values for the 
�, and 
0�
coefficients are listed for the octet baryons in Tables II, III,
IV, V, VI, VII, VIII, and IX. The corresponding values of
these coefficients for the ��0 transition moment are given
in Table X. In each table we have listed the values corre-
sponding to loop mesons that have mass m�. In these
diagrams there are valence-valence mesons, with masses
given in Eq. (14), and valence-sea mesons, with masses
given in Eq. (15). If a particular meson is not listed then the
values for 
�, and 
0� are zero.

The charges qj and ql do not appear explicitly in these
tables because, in the isospin limit, they always come in the
combination qj � ql and this is identical to�qr. Again we
remark that the supertracelessness of Q is maintained by
the computation-time simplifying choice qj � ql � qr �
0. For this choice of charges, one is not computing the
physical magnetic moments; however, the unphysical mo-
ments determined are sensitive to the physical low-energy
constants, hence predictions can be made. Additionally one
has complete freedom to adjust the charges qu, qd, and qs
as these do not contribute to the supertrace of Q. One can,
for example, choose these charges to isolate the low-energy
constants at tree level, see Table I, or to simplify the chiral
extrapolation by eliminating particular loop mesons. The
form of the continuum extrapolation of baryon magnetic
moments is thus highly constrained, especially since the
only new low-energy constant at this order, Cmix, could be
determined independently from the masses of mixed me-
sons [35].
IV. BARYON MASSES

In this section we determine the octet baryon masses in
mixed-action PQ�PT. Let us first recall the behavior of the
baryon mass in the continuum, and near the chiral limit
[71–74]

MB �M0 � 	mq � 
m
3=2
q � � � � ; (34)
-7



TABLE IV. The coefficients 
�, and 
0� for the ��.

� 
� 
0�

K � 4
3D

2�qu � qs� � 1
6 �qu � qs�

ju � 2
3 �D

2 � 3F2��2qu � qr�
1
18 �2qu � qr�

ru � 2
3 �D

2 � 3F2��qu � qr�
1
18 �qu � qr�

js ��D� F�2�2qs � qr�
1
9 �2qs � qr�

rs ��D� F�2�qs � qr�
1
9 �qs � qr�

FIG. 2. Loop diagrams contributing to the octet baryon masses
at O�"3�. Mesons are denoted by dashed lines, flavor neutrals
(hairpins) by crossed dashed lines, and thin solid lines denote
1938 baryons, while double lines denote 1086 baryons.

TABLE V. The coefficients 
�, and 
0� for the �0.

� 
� 
0�

K � 2
3D

2�qu � qd � 2qs� � 1
12 �qu � qd � 2qs�

ju � 2
3 �D

2 � 3F2��qu � qd � qr�
1

18 �qu � qd � qr�
ru � 1

3 �D
2 � 3F2��qu � qd � 2qr�

1
36 �qu � qd � 2qr�

js ��D� F�2�2qs � qr�
1
9 �2qs � qr�

rs ��D� F�2�qs � qr�
1
9 �qs � qr�
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where we have retained the leading nonanalytic piece and
the � � � denotes terms with higher powers of the quark
mass. The nonanalytic term above stems from the one-
loop diagrams shown in Fig. 2. A mass calculation at next-
to-leading order is O�"3� in our power counting. To per-
form a complete O�"3� calculation, we must retain the
a2-dependent piece of the loop meson masses and evaluate
the potential VB in Eq. (23) at tree level. Remember that
there are no a3 terms in the Lagrangian.

Without writing down the explicit form of the baryon
potential, we can deduce the net contribution from VB to
the octet masses at tree level. Because the external states all
involve Ginsparg-Wilson quarks, the action of the potential
is necessarily a taste singlet at tree level. Furthermore since
insertion of the mass matrix is at O�"4�, there are no
valence flavor matrices around. This implies that the evalu-
ation of the baryon potential is identical for all octet states:
in essence all Ginsparg-Wilson quarks are identical in the
potential at this order. While there are terms in the potential
that violate SO�4� rotational invariance [75], the mass only
picks up an indiscernible additive shift from such terms [it
is the dispersion relation that is sensitive to SO�4� break-
ing]. Therefore the effect of the potential at O�a2� can be
described by just one operator

V B�
eff
�C0�BB�: (35)
TABLE III. The coefficients 


� 
�

 4
3D

2�qu � qd�
ju �2�D� F�2qu �

4
3 �D

2 � 3F2�qd � �
5
3

ru ��D� F�2qu �
2
3 �D

2 � 3F2�qd � �
5
3D

TABLE II. The coefficients 


� 
�

 � 4
3D

2�qu � qd�
ju � 4

3 �D
2 � 3F2�qu � 2�D� F�2qd � �

5
3

ru � 2
3 �D

2 � 3F2�qu � �D� F�2qd � �
5
3D

094501
This term and the familiar tree-level terms that are linear in
the quark masses are straightforwardly evaluated. We must
keep in mind that 	M, 
M, and �M are to be treated as
arbitrary linear functions of �=��. The linear terms, for
example, function in part as counterterms for the one-loop
diagrams.

Now we turn to the loop diagrams in Fig. 2. As with the
computation of the magnetic moments, the diagrams in-
volving baryons with three valence quarks, or two valence
quarks and one ghost quark are identical to those in SU�6 j
3� PQ�PT [55], because these particular floors and levels
of each multiplet are identical. Furthermore, diagrams with
one sea quark flowing in the loop are evaluated in precisely
the same way as before. The mixed-meson propagators are
diagonal in taste and flavor, while the meson and baryon
masses are taste independent. Consequently the loops
come with a fourfold degeneracy when one sums over
the sea-quark tastes. This degeneracy is canceled by the
factor of 1=4 to implement the fourth-root trick. The only
new contribution as compared to the magnetic moments is
�, and 
0� for the neutron.


0�
1
6 �qu � qd�

D2 � 2DF� 3F2�qr
1
18 �4qu � 2qd � 3qr�

2 � 2DF� 3F2�qr
1
18 �2qu � qd � 3qr�

X, and 
0X for the proton.


0�

� 1
6 �qu � qd�

D2 � 2DF� 3F2�qr
1
18 �2qu � 4qd � 3qr�

2 � 2DF� 3F2�qr
1
18 �qu � 2qd � 3qr�
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TABLE IX. The coefficients 
�, and 
0� for the �.

� 
� 
0�

K 2
3D

2�qu � qd � 2qs�
1

12 �qu � qd � 2qs�
ju � 2

9 �7D
2 � 12DF� 9F2��qu � qd � qr�

1
6 �qu � qd � qr�

ru � 1
9 �7D

2 � 12DF� 9F2��qu � qd � 2qr�
1

12 �qu � qd � 2qr�
js � 1

9 �D
2 � 6DF� 9F2��2qs � qr� 0

rs � 1
9 �D

2 � 6DF� 9F2��qs � qr� 0

TABLE X. The coefficients 
�, and 
0� for the ��0 transi-
tion.

� 
� 
0�

 � 4
3
��
3
p D2�qu � qd� � 1

6
��
3
p �qu � qd�

K � 2
3
��
3
p D2�qu � qd� � 1

12
��
3
p �qu � qd�

ju 4
3
��
3
p �D2 � 3DF��qu � qd� � 1

6
��
3
p �qu � qd�

ru 2
3
��
3
p �D2 � 3DF��qu � qd� � 1

12
��
3
p �qu � qd�

TABLE VI. The coefficients 
�, and 
0� for the ��.

� 
� 
0�

K � 4
3D

2�qd � qs� � 1
6 �qd � qs�

ju � 2
3 �D

2 � 3F2��2qd � qr�
1

18 �2qd � qr�
ru � 2

3 �D
2 � 3F2��qd � qr�

1
18 �qd � qr�

js ��D� F�2�2qs � qr�
1
9 �2qs � qr�

rs ��D� F�2�qs � qr�
1
9 �qs � qr�

TABLE VII. The coefficients 
�, and 
0� for the �0.

� 
� 
0�

K 4
3D

2�qu � qs�
1
6 �qu � qs�

ju ��D� F�2�2qu � qr�
1
9 �2qu � qr�

ru ��D� F�2�qu � qr�
1
9 �qu � qr�

js � 2
3 �D

2 � 3F2��2qs � qr�
1
18 �2qs � qr�

rs � 2
3 �D

2 � 3F2��qs � qr�
1

18 �qs � qr�
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that of flavor-neutral modes. But at this order, the flavor-
neutral mesons which propagate in loops are those consist-
ing of two Ginsparg-Wilson valence quarks. These are
necessarily taste singlets; their propagators appear in
Eq. (17), and involve taste-singlet sea-sea meson masses,
which are a2 dependent.

Assembling the tree-level results with the loop dia-
grams, we find

MB � M0 � 2muCu � 2msCs � 2�M�2mj �mr� � a
2C0

�
1

8f2

�X
�

A�m3
� �

X
��0
A��0M3�m�;m�0 �

�

�
C2

82f2

�X
�

B�F�m�;�; ��

�
X
�;�0

B��0F�m�;m�0 ;�; ��
�
: (36)

The nonanalytic functions appearing in the expression for
the octet baryon masses are defined by

F�m;�;��� �m2��2�

� �����������������
�2�m2

p
log
��

��������������������������
�2�m2� i�
p

��
��������������������������
�2�m2� i�
p

�� log
m2

�2

�
�

1

2
�m2 log

m2

�2 ; (37)
TABLE VIII. The coefficients 
�, and 
0� for the ��.

� 
� 
0�

K 4
3D

2�qd � qs�
1
6 �qd � qs�

ju ��D� F�2�2qd � qr�
1
9 �2qd � qr�

ru ��D� F�2�qd � qr�
1
9 �qd � qr�

js � 2
3 �D

2 � 3F2��2qs � qr�
1
18 �2qs � qr�

rs � 2
3 �D

2 � 3F2��qs � qr�
1
18 �qs � qr�
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and

M 3�m�;m�0 � �H��0 �m3
�;m

3
�0 ; m

3
X�; (38)

F�m�;m�0 ; �; ��

�H��0 
F�m�; �;��; F�m�0 ; �; ��; F�mX; �; ���;

(39)

for the flavor-neutral contributions.
In Table XI, we list the coefficients Cu and Cs for the

octet baryons. In Tables XII and XIII, we list the loop
coefficients A�, A�;�0 , B� and B��0 . These coefficients are
grouped according to loop mesons with mass m�, and for
flavor-neutral contributions are grouped according to pairs
of quark-basis flavor-neutral mesons. Notice the sum on
��0 runs over �u�u, �u�s, and �s�s to avoid double
counting.

The lattice-spacing dependence of the octet masses too
is highly constrained. There are only three free parameters:
C0, which is the same for all octet baryons; Cmix, which
alternately can be determined from mixed-meson masses;
and the combination of parameters C3 � C4, which is al-
ready constrained from staggered meson lattice data [6].
TABLE XI. Tree-level coefficients for the octet baryon
masses.

Cu Cd

N 	M � 
M 0
� 1

6 �5	M � 2
M�
1
6 �	M � 4
M�

� 1
2 �	M � 2
M�

1
2	M

� 1
6 �	M � 4
M�

1
6 �5	M � 2
M�
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TABLE XIII. The coefficients B� and B��0 in PQ�PT. Coefficients are listed for the octet
baryons, and for B� are grouped into contributions from loop mesons with mass m�, while for
B��0 are grouped into contributions from pairs of quark-basis �q mesons.

B� B��0
 K �s ju ru js rs �u�u �u�s �s�s

N 2
3 0 0 2

3
1
3 0 0 0 0 0

� 1
9

5
9 0 2

9
1
9

4
9

2
9

2
9 � 4

9
2
9

� 1
3

1
3 0 2

3
1
3 0 0 0 0 0

� 0 5
9

1
9

4
9

2
9

2
9

1
9

2
9 � 4

9
2
9

TABLE XII. The coefficients A� and A��0 in PQ�PT. Coefficients are listed for the baryon
octet, and for A� are grouped into contributions from loop mesons with mass m�, while for A��0
are grouped into contributions from pairs of quark-basis �q mesons.

A�
 K �s

N � 4
3 �D

2 � 3DF� 0 0
� � 2

3 �D
2 � 3F2� � 2

3 �D
2 � 6DF� 3F2� 0

� � 2
9 �D

2 � 12DF� 9F2� � 2
9 �5D

2 � 6DF� 9F2� 0
� 0 � 2

3 �D
2 � 6DF� 3F2� � 2

3 �D
2 � 3F2�

ju ru js rs

N 2
3 �5D

2 � 6DF� 9F2� 1
3 �5D

2 � 6DF� 9F2� 0 0
� 4

3 �D
2 � 3F2� 2

3 �D
2 � 3F2� 2�D� F�2 �D� F�2

� 4
9 �7D

2 � 12DF� 9F2� 2
9 �7D

2 � 12DF� 9F2� 2
9 �D� 3F�2 1

9 �D� 3F�2

� 2�D� F�2 �D� F�2 4
3 �D

2 � 3F2� 2
3 �D

2 � 3F2�

A��0
�u�u �u�s �s�s

N �D� 3F�2 0 0
� 4F2 �4�DF� F2� �D� F�2

� 4
9 �2D� 3F�2 � 4

9 �2D
2 � 3DF� 9F2� 1

9 �D� 3F�2

� �D� F�2 �4�DF� F2� 4F2
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V. SUMMARY

Above we have included baryons into mixed-action
partially quenched chiral perturbation theory for
Ginsparg-Wilson valence quarks and staggered sea quarks.
Working at next-to-leading order, we determined the
lattice-spacing artifacts for the octet baryon magnetic mo-
ments and masses. The recipe for adding finite volume
corrections is discussed in the Appendix.

To O�"3�, baryon masses depend on the lattice spacing
via three parameters. The first is C0, which is a represen-
tative coefficient of local a2 operators in the baryon
Lagrangian. The contribution from C0 is the same for all
members of the baryon octet. The second parameter is
Cmix, which affects the masses of mesons made from a
Ginsparg-Wilson quark and a staggered quark. The third
parameter is a combination of low-energy constants, C3 �
C4, which governs the mass of taste-singlet staggered
mesons. To O�"�, baryon magnetic moments only depend
094501
on the lattice spacing through loop-meson masses.
Furthermore there is only one free parameter involved at
next-to-leading order, Cmix.

A simplifying feature of the mixed-action baryon theory
is that at next-to-leading order, there is no taste-symmetry
violation. Beyond next-to-leading order, however, this is
no longer the case. Taste-symmetry breaking interactions
start at O�"4� in our power counting. They arise from two
sources. Contributions that scale as O�m2

q logmq� can lead
to taste-symmetry violation. Expanding out the sigma
terms in the baryon Lagrangian (23) leads to contributions
to the baryon masses that scale as m2

q logmq, and involve
completely disconnected meson loops. In PQ�PT these
loops involve only mesons formed from two sea quarks
[76–78]. For staggered sea quarks this becomes a sum over
the various meson tastes (vector, axial-vector, . . .) and no
longer is there a cancellation of factors of 1=4 inserted
from the fourth-root trick. Explicit taste-symmetry viola-
tion occurs from operators that scale as O�a2mq logmq�.
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These arise from the loop diagrams generated by terms in
VB (for which one would need to decompose C0 into
various contributing terms). Terms in VB containing taste
spurions will generate taste-symmetry violation at the one-
loop level. These are the only possible sources for taste-
symmetry violation at next-to-next-to-leading order. The
remainder of contributions to the baryon masses and other
observables arise from valence-valence or valence-sea me-
sons in the absence of explicit taste matrices. These do not
violate taste symmetry as we demonstrated above.

Nonetheless the issue of addressing lattice-spacing cor-
rections to baryon observables calculated in mixed-action
lattice QCD is very tractable. The chiral symmetry prop-
erties of Ginsparg-Wilson valence quarks effectively sup-
press the taste-symmetry violation from the staggered sea.
While taste-symmetry violation does occur at next-to-next-
to-leading order, expressions at leading order are taste
symmetric and involve only a few new parameters.
Mixed-action simulations in the baryon sector are a timely
way of getting physical observables from lattice QCD.
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APPENDIX: FINITE VOLUME CORRECTIONS

In this Appendix, we assemble the relevant formulas for
finite volume corrections. This is a trivial extension of
Ref. [79], and is included for completeness. Let L denote
the size of the cubic box in one spatial direction. We
assume the lattice simulations are carried out in a region
of parameter space where chiral physics lives inside the
box, i.e. for fL� 1, and further that we are in the
p regime of chiral perturbation theory, mL * 1. In this
case, the Poisson formula can be used to cast mode sums
from loop diagrams into the infinite volume results plus
finite volume modifications. We list these modifications for
the octet baryon masses and magnetic moments. For finite
094501
volume corrections in mixed-action simulations, we imag-
ine that the Ginsparg-Wilson valence quarks will be the
lightest. Thus modulo possible cancellations from additive
a2 mass shifts for the valence-sea and sea-sea mesons, the
valence-valence pions should dominate the finite volume
corrections.

The finite volume corrections to the magnetic moments
have the form [79]

�L���
MB

62f2

X
�



�Y�m�;0��

0
�C

2Y�m�;���; (A1)

where

Y �m;�� �
Z 1

0
d�

X
n�0


3K0�
�jnjL�

� 
�jnjLK1�
�jnjL��; (A2)

with 
2
� � m2 � 2��� �2 and the Kn�x� are modified

Bessel functions. The coefficients 
� and 
0� are listed
for the octet baryons in Tables II, III, IV, V, VI, VII, VIII,
and IX. The coefficients for the ��0 transition moment
appear in Table X.

The finite volume corrections to the masses have the
form [79]

�LMB � �
1

4f2

�X
�

A�K�m�; 0�

�
X
��0
A��0K�m�;m�0 ; 0�

�
�

C2

42f2

�

�X
�

B�K�m�;��

�
X
��0
B��0K�m�;m�0 ;��

�
; (A3)

where

K�m;�� �
Z 1

0
d�
2

�

X
n�0

�
K1�
�jnjL�

�jnjL

� K0�
�jnjL�
�
;

(A4)

and
K�m�;m�0 ;��

�H��0 
K�m�;��;K�m�0 ;��;K�mX;���: (A5)

The coefficients A� and A�;�0 are listed for the octet
baryons in Table XII, while B� and B��0 appear in
Table XIII.
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