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In charmless nonleptonic B decays to �� or ��, the ‘‘color allowed’’ and ‘‘color suppressed’’ tree
amplitudes can be studied in a systematic expansion in �s�mb� and �QCD=mb. At leading order in this
expansion their relative strong phase vanishes. The implications of this prediction are obscured by penguin
contributions. We propose to use this prediction to test the relative importance of the various penguin
amplitudes using experimental data. The present B! �� data suggest that there are large corrections to
the heavy quark limit, which can be due to power corrections to the tree amplitudes, large up-penguin
amplitude, or enhanced weak annihilation. Because the penguin contributions are smaller, the heavy quark
limit is more consistent with the B! �� data, and its implications may become important for the
extraction of � from this mode in the future.
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INTRODUCTION

Nonleptonic B decays to light hadrons provide informa-
tion about CP violation. In particular, the decays to ��,
�� and �� can determine the weak phase �. The theoreti-
cal challenge is to disentangle the strong interaction phys-
ics from the weak phase one would like to determine. For
the decay B0 ! ���� the B factories study the CP asym-
metry,

�� �B0�t� ! ����� � ��B0�t� ! �����

�� �B0�t� ! ����� � ��B0�t� ! �����

� S�� sin��mt� � C�� cos��mt�; (1)

with the present world averages [1,2]

S�� � �0:50� 0:12; C�� � �0:37� 0:10: (2)

If the B! ���� amplitude were dominated by contribu-
tions with a single weak phase, the observable

sin�2�eff� � S��=
�������������������
1� C2

��

q
; (3)

would be equal to sin2� and C�� would be zero. The data
indicate that this is not a good approximation. An isospin
analysis [3] still allows a theoretically clean determination
of � if the B0 ! �0�0 and �B0 ! �0�0 rates are precisely
measured. Since this requires very large data samples,
several strategies have been proposed to extract � from
�eff relying on theoretical inputs.

In the last few years the theory of B! �� decays has
advanced considerably. Using the heavy quark limit, facto-
rization theorems have been proven for the decay ampli-
tudes at leading order in �=mb. The amplitudes in Eq. (5)
arise from the matrix element of the effective Hamiltonian,
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Heff � �
4GF���

2
p

�
�u

�
C1Ou

1 � C2Ou
2 �

X
i	3

CciOi

�

� �c

�
C1O

c
1 � C2O

c
2 �

X
i	3

CciOi

�
� �t

X
i	3

CtiOi

�
;

(4)

where CKM-unitarity was not used, and i � 3; . . . ; 6; 8. (In
the usual notation one has Ci � Cci � C

t
i.) Its �B! ��

matrix element can be parametrized as

�A� �B0 ! ����� � ��u�T � Pu� � �cPc � �tPt

� e�i�T�� � e
i�P��;���

2
p

�A� �B0 ! �0�0� � �u��C� Pu� � �cPc � �tPt

� e�i�C�� � e
i�P��;���

2
p

�A�B� ! ���0� � ��u�T � C� � e�i�T�0;

(5)

where �q � VqbV
qd. (We neglect isospin breaking [4] and
the contributions of electroweak penguins, the dominant
part of which can be included model independently [5].) In
Eq. (5) T � Pu and C� Pu are the B! ���� and B!
�0�0 matrix elements of the terms in the first line in
Eq. (4), while Pc and Pt are the matrix elements of the
second and third lines, respectively. This implies that each
of the T � Pu, C� Pu, Pc and Pt terms are separately
renormalization group invariant.

There is an ambiguity in Eq. (5) related to the freedom in
choosing the weak phase �, in terms of which the ampli-
tudes are written. There are two widely used conventions
corresponding to eliminating either �t or �c using unitarity
(some aspects of this were discussed in Refs. [6]). In the t-
convention one eliminates �t from Eq. (5), while in the c-
convention one eliminates �c. Table I shows the expres-
-1 © 2005 The American Physical Society
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sions for the amplitudes and � in these conventions. Once
a choice is made, T��, C��, P��, and T�0 can be extracted
from the data, while further theoretical input is needed to
determine T, C and Pu;c;t.

The amplitudes in Eq. (5) (and their CP conjugates)
satisfy the isospin relation

1���
2
p �A� �B0!������ �A� �B0!�0�0�� �A�B�!���0�:

(6)

The ‘‘tree’’ amplitudes also satisfy the relation

T�� � C�� � T�0; (7)

which will play an important role in this paper, and we
refer to it as the ‘‘tree triangle’’ (TT).

Expanding the amplitudes in soft-collinear effective
theory (SCET) [7], one can define the leading (in �=mb)
parts of T,C, and Pu separately in terms of matrix elements
of distinct SCET operators [8], which we denote with �0�
superscripts. The relative strong phase of T�0� and C�0� is
suppressed by �s [9,10], and therefore

�T � arg
�
T�0� � P�0�u
T � C

�
� O��s�mb�;�QCD=mb�: (8)

The numerator includes P�0�u so that �T is scale indepen-
dent. The denominator could be defined to contain T�0� �
C�0�, and our choice is for later convenience. Neither of
these affect the right-hand side of Eq. (8) [recall:
P�0�u =T�0� � O��s�]. We define T0�0� � T�0� � P�0�u and T �
Pu � T0�0� � P0u, and in the rest of this paper the primes
will be dropped. Thus, hereafter, Pu contains the power
suppressed corrections to T � Pu (including weak
annihilation).

The implications of Eq. (8) for the determination of �
are obscured by the fact that T and C are not directly
observable. The amplitudes T�� and C�� in Eq. (5) that
can be extracted from the data include contributions from
Pu;c;t. The heavy quark limit also determines the power
counting for the penguin amplitudes, however, the conver-
gence of the expansion for the penguins is less clear than it
is for the trees. At leading order in �=mb the calculable
parts of Pu;c;t are suppressed by �s or the small Wilson
coefficients C3;4. At subleading order, the QCD factoriza-
tion (QCDF) formula for Pt contains sizeable ‘‘chirally
TABLE I. The B! �� amplitudes and the phase of the
penguin amplitude in the c- and t-conventions (Pij � Pi � Pj).

amplitude t-convention c-convention

T�� j�uj��T � Put� j�uj��T � Puc�
C�� j�uj��C� Put� j�uj��C� Puc�
P�� �j�cjPct j�tjPct

� � �

094033
enhanced’’ corrections, comparable to the leading order
term [10]. The possible size of nonperturbative contribu-
tions to Pc has also been the subject of debate [9,11]. A
large Pc amplitude was found in fits using the leading order
factorization results in SCET [9], or adding a free parame-
ter to the leading order QCDF result [12]. In QCDF Pc is
claimed to be computable at leading order without non-
perturbative inputs, while Pt receives sizable ‘‘chirally
enhanced’’ O��=mb� corrections. Equation (8) and allow-
ing for large long distance contribution to Pc was used in
Ref. [13] to determine �without using the measurement of
C00 (the direct CP asymmetry in B! �0�0).

The penguin amplitudes Pc and Pt introduce a differ-
ence between the TTs in the two conventions. The Pu
amplitude is common to T�� in the t- and c-conventions,
but Pc enters T�� in the c-convention and Pt enters T�� in
the t-convention. Understanding the relative hierarchy of
the three penguin amplitudes, Pu;c;t, is important if one is to
use Eq. (8) for the determination of �. In addition, it may
also shed light on the �=mb power counting for the pen-
guin amplitudes. In this paper we show that by comparing
the shapes of the TT in the c and t-conventions we can gain
empirical knowledge about the relative sizes of Pu, Pc and
Pt.
II. ISOSPIN ANALYSIS AND TREE TRIANGLE

The isospin relation in Eq. (6) holds for both the �B and B
decay amplitudes, denoted by �A and A, respectively. It is
convenient to define ~Aij � e2i� �Aij, so that A0� � ~A0�.
Figure 1 shows the resulting two isospin triangles, WZX
andWZY, where the tree triangle, WZV, is also drawn. We
follow the notation of Ref. [14], but normalize A�B� !
�0��� � WZ � 1.

To determine the TT from the data, recall that the WZX
and WZY isospin triangles can be obtained from the direct
CP asymmetries C�� and C00, and the ratios of branching
fractions

R�� �
B�B0 ! �����

2B�B� ! ���0�

�B�

�B0

� 0:44�0:07
�0:06;

R00 �
B�B0 ! �0�0�

B�B� ! ���0�

�B�

�B0

� 0:29�0:07
�0:06;

(9)

where we used the experimental inputs from [2,15]. Taking
the ratios eliminates an arbitrary overall normalization
parameter. To determine the coordinates of V, however,
the measurement of S�� is also needed.

It is convenient to define the coordinates ofX and Y to be
��‘; 0�, with

‘2 �
1

2
R��

�
1�

�������������������
1� C2

��

q
cos2��

�
; (10)

where �� � �� �eff and �eff is defined in Eq. (3). The
four coordinates ofW and Z and the phase �� are given by
the solutions of the five equations [14]
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FIG. 1. Isospin triangles for �B and B decay, WZY and WZX.
WVZ is the tree triangle (TT), Eq. (7), with WV � T�� and
ZV � C��. The dashed lines show the P�� amplitudes.
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1 � �xZ � xW�
2 � �yZ � yW�

2;

R00 � x2
Z � y

2
Z � ‘

2;

R�� � x2
W � y

2
W � ‘

2;

R��C�� � �2‘xW;

R00C00 � �2‘xZ:

(11)

The XVY angle is 2��� ��, so that the y coordinate of
V�0; yV� is

yV �
�
�‘ cot�; in the t-convention;
‘ cot�; in the c-convention:

(12)

Eqs. (11) can be solved for �� and the coordinates of W
and Z. Because of the relative orientation of the amplitudes
A�� and ~A�� adopted in Fig. 1, the solution must also
satisfy sgn���� � sgn�yW�.

Some important properties of the solutions are apparent.
First, xW � 0 if and only if C�� � 0 (similarly, xZ � 0 if
and only if C00 � 0). Second, the sign of xW (xZ) is
opposite of that of C�� (C00). Thus, WZ crosses the y
axis if and only if the direct CP asymmetries in the charged
and neutral modes have opposite signs.

In the rest of this section, we treat the simplified case
whereC00 is not known. The first four equations in (11) can
be used to solve for the coordinates ofW and Z as functions
of ��. For any given value of ��,W and Z are determined
up to a two-fold ambiguity, corresponding to the reflection
of Z about the WO line. These equations also place bounds
094033
on ‘ and �� [14,16]

‘2 � R��R00 �
�1� R�� � R00�

2

4
;

cos�2��� 	
�1� R�� � R00�

2 � 2R��

2R��
�������������������
1� C2

��

q :
(13)

We refer to these inequalities as the isospin bound, and
define�bound � �eff ���max, which can be obtained from
Eqs. (3) and (13), and �bound � �� �� �bound. (Here,
and in what follows � is treated as known.) The coordi-
nates of W and Z at the isospin bound satisfy

xZ
xW

��������bound
�
yZ
yW

��������bound
� �

1� R00 � R��
1� R00 � R��

: (14)

This means that at the isospin bound W, Z, and O are on
one line and that at the bound

C00

��������bound
� �

R��
R00

1� R00 � R��
1� R00 � R��

C��

��������bound
: (15)

The present data gives at the isospin boundC00 � ��1:1�
0:1�C��, which is almost 2	 from the measurements of
C�� in Eq. (2) and C00 � �0:28�0:39

�0:40 [2,17].
In general, and even at the isospin bound, the V vertex of

the TT depends on S�� via Eq. (12). Thus, the shape of the
TT at the bound is not fixed, but depends on the experi-
mental results. This dependence enters through �eff � ��
and implies that if one uses a constraint on the shape of the
TT to extract �, then (i) the solution is not invariant under
��$ ���, and (ii) the allowed values of �� are not the
same for each discrete ambiguity of �eff . Both of these
points are different from the well-known symmetry prop-
erties of the usual isospin analysis.

The theory prediction of a small strong phase in Eq. (8)
implies that the TT should be nearly flat, up to penguin
contributions, small �s and unknown �=mb corrections.
While the penguin contamination makes the definition of
the TT itself convention dependent, it is interesting to
consider under what conditions the TT can be flat, and its
relation to the isospin bound. Since at the isospin boundW,
Z, and O are on a line, unless yV � 0, the TT is flat at the
isospin bound if and only if xW � xZ � 0. This implies
that if any two of the following statements hold, then the
other three follow:

1: The t-convention TT is flat for generic �;
2: The c-convention TT is flat for generic �;
3: � is the isospin bound;
4: C�� � 0;
5: C00 � 0:

(16)

Equivalently, when one of the statements in (16) holds, the
other four are either all true or all false. This shows that
whether the TT is flat near the isospin bound or not depends
on the value of �; i.e., the TT being flat and � (or �) being
close to the isospin bound are in principle unrelated.
-3
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FIG. 2 (color online). The solid curves are yV vs �� from
Eq. (19): the darker (blue) curve corresponds to the t-convention
and �eff ’ 106�, while the lighter (red) curves to the c-
convention (the upper one for �eff ’ 106�, the lower one for
�eff ’ 164�). The dashed curve shows the solution of Eq. (18)
for � � 0, and the dotted curves are � � �10� (lower) and � �
�10� (upper).
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III. CONSTRAINTS ON �

In Ref. [13], the predicted smallness of �T and Put was
used to imply that the TT in the t-convention is (near) flat,
which, in turn, was used to extract � without the insuffi-
ciently known C00. In this section we discuss the implica-
tions of knowing an angle in the TT for the determination
of �, using a method which makes transparent the depen-
dence of the constraints on � on the data.

For given R��, R00, and C��, the first four equations in
(11) together with (10) determine the coordinates ofW and
Z as functions of ��. If, in addition, an angle in the TT is
also known, then the position of the point V is determined.
We find it simplest to discuss the constraints in terms of the
(convention dependent) observable phase,

��q� � arg
�
T�q���
T�0

�
� arg

�
1�

Puq
T�0�

�
��T; (17)

where q � c or t. The TT is near flat in either convention if
j�j 
 1. Note that if the penguin amplitudes vanished,
then ��t� � ��c� � �T . We can determine the coordinates
of V as a function of �� in two ways: from the value of �
and the coordinates of W and Z

yV���� � yW � xW
yZ � yW � �xZ � xW� tan�
xZ � xW � �yZ � yW� tan�

; (18)

and from Eq. (12) if �, S�� and C�� are measured

yV���� �
�
‘ cot��� �eff � ���; t-convention;
‘ cot��eff � ���; c-convention:

(19)

The expression in (19) is convention dependent, because so
is the definition of � that enters in (18). These two equa-
tions form an implicit equation for ��.

Figure 2 illustrates this method for the central values of
the data. The solid curves show the solution for yV���� vs
�� from Eq. (19): the darker (blue) curve corresponds to
the t-convention and �eff ’ 106�, while the lighter (red)
curves correspond to the c-convention (the upper one for
�eff ’ 106�, the lower one for its mirror solution �eff ’
164�). The dashed curve shows yV vs �� from Eq. (18) for
� � 0, and its intersections with the solid curves determine
the value of ��, which together with �eff gives �. For the
purpose of illustration the dotted curves show � � �10�

(lower curve) and �10� (up-most curve).
The � � 0 curve goes to yV � 0 at the isospin bound

(see Fig. 2), in accordance with our result in Sec. II that if
�� is at the isospin bound and the TT is flat, then yV � 0.
The right-hand side of Eq. (19) is small in this region of
��, since the argument of the cotangent is close to 90� (the
central values of the �� data give �eff ’ 106�, so that at
the smallest value of �� ’ �28�, �� �eff ��� ’ 102�

and �eff � �� ’ 79�). These two facts imply that there is
a solution for �� near the isospin bound with a flat TT;
however, this is a coincidence and not a necessity.
094033
In Ref. [13] it was found that for small ��t� the solution
for �� was close to the isospin bound. This can be easily
seen from Fig. 2. The dashed and dotted curves are steep
near the bound for negative ��, so changing � hardly
changes the solution for ��. However, for the other solu-
tion (corresponding to positive ��, and a value of �
disfavored by the global CKM fit [18]), the error is sig-
nificantly larger, since the dependence of �� on � is
stronger. The allowed region of �� is particularly sensitive
to R00;, for example, for R00 � 0:2 (which is a bit more
than 1	 lower than its present central value) the j�j< 10�

constraint would include almost all values of �� that are
allowed by the isospin analysis. Note that with the current
data the error of � extracted using the constraint of a small
� increases with decreasing R00, contrary to the isospin
analysis.

The confidence level (CL) of � obtained by imposing a
constraint on � is shown in Fig. 3 using the CKMfitter
package [18]. In the top plot the curves show (see the
labels) the CL of � imposing � � 0 in both the t- and c-
conventions without using the C00 measurement in the fit.
For comparison, we also show the result of the usual
isospin analysis with and without using C00. The plot on
the right-hand side shows the CL of � imposing � � 0 in
the t-convention with and without using C00, and the con-
straint in the t-convention imposing j�j< 5�, 10�, and 20�.
The restriction on � from a constraint j�j< �0 becomes
quite weak as �0 increases in the range 10� < �0 < 20�.
We can compare our results with those of [13], which use
as theory input an upper bound on 
 � jIm�C�t���=T

�t�
���j.

Assuming f�; j arg�P��=T���jg< 90�, we find sin��t� <



����������
R��
p

, i.e., ��t� < 15:5��7:8�� for the bounds considered
in [13], 
 < 0:4�0:2�.
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FIG. 3 (color online). Top plot: confidence level for � impos-
ing � � 0 in the t- (solid line) and c-conventions (dashed line)
without using C00 in the fit. The t-convention curve uses � as an
input. Also shown are the results of the traditional isospin
analysis [3,18] with (dark shaded region) and without (light
shaded region) using C00. The dot with 1	 error bar shows the
predicton from the global CKM fit (not including the direct
measurement of �) [18]. Bottom plot: confidence level for �
imposing � � 0 in the t-convention with (dotted line) and
without (solid line) using the C00 result in the fit. Also shown
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Imposing � � 0 gives only two solutions with �2 � 0
with the current data, around �� 78� and 132�. The first
one, which is consistent with the Standard Model (SM)
CKM fit, is disfavored by the measurement of C00. While
the two solutions have comparable errors for � � 0, allow-
ing a finite range of � to account for subleading effects
increases the error of the �� 132� solution more rapidly.
094033
Imposing a bound on jIm�C=T�j [13] allows, in addition to
� being near 0, that � is near � (mod 2�); however, the
theory disfavors the latter possibility. It is constraining j�j
modulo 2� and not � that makes some of the CL curves
not periodic with a period of �.

These results for � should not be taken at face value,
because in the next Section we find that extracting � using
the SM CKM fit as an input gives significantly larger
values of j�j than considered here. The implications of
this are discussed below.

IV. THE PENGUIN HIERARCHY PROBLEM

If the penguin amplitudes were small then the statements
in (16) would all hold to a good precision, and � could be
extracted simply from S��. This is known not to be the
case, so the question is to determine which penguins are
large or small. This is complicated by the fact that, as
explained in Sec. II, the amplitudes T, C, Puc, and Put
are not separately observable from the B! �� data alone.
They can be disentangled using SU�3� flavor symmetry
and data on B! K�, K �K, etc.

In this section we propose to use the theory expectation
for �T in Eq. (8) to test the magnitude of the penguins.
(Another test of corrections to factorization in B! ��
was proposed in [19].) We assume �T � 0, although we
may learn from other data that power corrections to tree
amplitudes are sizable. For example, a power suppressed
strong phase around 30� is observed in B! D� decays
[20].

In the t-convention Put (recall, Pij � Pi � Pj) contrib-
utes to the TT in Eq. (7), while in the c-convention it is Puc.
(We choose, for convenience, the pure tree amplitude T�0

to be real.) Thus, comparing the TT in the two conventions
teaches us about the relative size of Put and Puc. (The same
information can in principle be obtained from the fit in any
one convention; this comparison makes the results more
transparent.) We use the SM global fit to the CKM matrix
that determines the weak phase � � �59:0�6:4

�4:9�
� [18]. This

allows the construction of the tree triangles in both con-
ventions, as explained in Sec. II. Comparing how flat they
are, i.e., how small the angle � of the TT is, the following
outcomes are possible:
(i) j
-5
��t�j 
 j��c�j. This would imply Im�Put� 

Im�Puc�, and the likely explanation would be
jPcj � jPuj � jPtj.
(ii) j
��t�j � j��c�j. This would imply Im�Put� �
Im�Puc�, and the likely explanation would be
jPtj � jPuj � jPcj.
(iii) j
��t�j � j��c�j 
 1. This would imply that both
Im�Put=T

�0�� and Im�Puc=T
�0�� are small. In this

case the likely explanation would be that Pq=T�0�

is small for each of the penguin amplitudes.

(iv) j
��t�j � j��c�j � O�1� and j��t� � ��c�j 
 1. This

would imply that Im�Put=T�0�� and Im�Puc=T�0��
are both much larger than Im�Pct=T�0��. There ap-
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pears to be no single plausible explanation for such
a case. It may indicate that Pu (that includes weak
annihilation) is large, while Pc and Pt are small or
have small phases. Another, fine tuned, possibility
is that both Pc and Pt have large but nearly equal
phases. Last, it might be that �T � O�1�, indicat-
ing large corrections to the heavy quark limit.
0.6 –
 

(v) j
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��t�j � j��c�j � O�1� and j��t� � ��c�j � O�1�. This
would imply that Im�Put=T

�0��, Im�Puc=T
�0��, and

Im�Pct=T
�0�� are all large. In this case the likely

explanation would be that all penguins are large
and comparable to T�0�.
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FIG. 4 (color online). Confidence level plots for � �
arg�T��=T�0� in the t- and c-conventions in �B! �� (top),
and for �B! �� (bottom).
Note that the ��t� � ��c� difference is related to the
penguin-to-tree ratio,

��t� � ��c� � � arg
�
1�
j�uj
j�cj

P�t���

T�t���

�
; (20)

and can be determined with better precision than ��t;c�

separately.

A. B! ��

Using the experimental data we can determine � in the t-
and c-conventions. The results for the confidence levels of
��t;c� are shown in the top plot in Fig. 4. At the one sigma
level only one solution is allowed (because C00 disfavors
one of the solutions at a near 2	 level). IncludingC00 in the
fit drives j�j to larger values

� �
�
�36�6
�8�
�; t-convention;

�30�6
�8�
�; c-convention:

(21)

Note that the central values indicate rather large values for
� in both conventions. Their difference is more accurately
determined by Eq. (20), where the fit gives

��t� � ��c� � �5:7�2:0
�1:7�

�: (22)

Eqs. (21) and (22) favor scenario (iv). While this may have
several reasons as explained above, the least fine-tuned
one, i.e., a large Pu (including weak annihilation) and
smaller Pc;t penguins (or that the �T 
 1 prediction re-
ceives large corrections), would be puzzling for any ap-
proach to factorization. At present, this is not a very firm
conclusion yet. (Note that a similar enhancement of the
u-penguin amplitude is observed in �B! K� and b!
�s�s�s decays, if the apparent anomalies therein are inter-
preted within the SM.)

B. B! ��

Since B! �� decays are dominantly longitudinally
polarized, the determination of � from this mode is very
similar to that from B! ��, except that at the few percent
level an I � 1 amplitude may be present [21]. Using
dynamical input to reduce the uncertainty of � from B!
�� has received little attention so far, because the isospin
bound puts tight constraints on �� �eff . However, this
094033
bound may become worse in the future, since the strong
present bound is a consequence of the fact that the isospin
triangles do not close with the central values of the current
world averages. This is a consequence of both the branch-
ing ratios, whose central values in units of 10�3 are������������������������������
B�B! ���0�

p
� 5:14,

�������������������������������������
B�B! �����=2

p
� 3:87, and�����������������������������

B�B! �0�0�
p

< 1:05 (90% CL), and the smallness of
C���� � �0:03� 0:20 [2,22]. Therefore, although at
present imposing j�j< 10� does not improve the con-
straint on �� �eff in this mode, such a dynamical input
may become useful in the future.

In this case, the � values in the two conventions differ by
less than a degree as shown in the bottom plot in Fig. 4,
giving � � �0� 12��. This may tend towards the above
scenario (iii). If in the future the measured value of the
B! ���0 branching ratio decreases (or that of �0�0
-6
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increases) then the pure isospin bound will become worse,
and the fit results for � will also change. If that fit still
favors j��t�j 
 j��c�j or j��t�j � j��c�j 
 1 [cases (i) or (iii)]
then we would feel comfortable imposing a constraint on
the magnitude of ��t� to improve the determination of the
CKM angle �.

V. CONCLUSIONS

The tree amplitudes in B! �� decays can be com-
puted in an expansion of �QCD=mb using factorization. In
the heavy quark limit the strong phase between the tree
amplitudes is suppressed, which may help to improve the
determination of the weak phase �. Using this theory input
as an additional constraint in the fit for �, requires some
understanding of the power corrections and penguin
amplitudes.

While the present measurement of C00 does not provide
a significant determination of � from the B! �� isospin
analysis, it provides useful information about the hadronic
amplitudes. The determination of � using the central val-
ues of the present data with C00 replaced by the assumption
of a flat TT gives a solution near the isospin bound. While a
j��t�j< 5� or 10� theoretical bound is quite powerful to
constrain �, allowing for larger deviations from the heavy
quark limit �j��t�j< 20�� reduces significantly the predic-
tive power of the constraint on �. The present C00 result,
however, disfavors being at the isospin bound at about the
2	 level. This observation is exhibited by the like-sign
C�� and C00 measurements, whereas the opposite signs of
the P�� terms in the ���� and �0�0 amplitudes would
imply opposite signs for C�� and C00 if the tree triangle
was flat.
094033
We proposed a comparison of fits that can give infor-
mation about the relative size of the penguins, using only
�� data and the global fit for �. While the present data is
not yet precise enough to give firm conclusions, its most
likely implication is that not only the charm (nor the top)
penguins in B! �� are large, but so are the up penguins
(including terms proportional to Vub that are power sup-
pressed in the heavy quark limit), thus one may not be able
to use theory instead of C00. On the other hand, for B!
�� decay, it may well be the case that the data will
continue to favor j��t�j � j��c�j 
 1 or j��t�j 
 j��c�j, in
which case the theory can be useful to reduce the error on�
without a measurement of C00.
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