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Chiral-odd generalized parton distributions in constituent quark models
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We derive the overlap representation of chiral-odd generalized parton distributions using the Fock-state
decomposition in the transverse-spin basis. This formalism is applied to the case of light-cone wave
functions in a constituent quark model. Numerical results for the four chiral-odd generalized parton
distributions at the hadronic scale are shown in different kinematics. In the forward limit we derive the
transversity distribution, the tensor charge and the angular momentum sum rule for quarks with transverse
polarization in an unpolarized nucleon.
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I. INTRODUCTION

The study of the hadron structure in terms of quarks and
gluons, the fundamental degrees of freedom in quantum
chromodynamics (QCD), still rises open and interesting
questions. In high-energy processes the quark-gluon struc-
ture of the nucleon is described by a set of parton distri-
butions. At the level of leading twist a complete quark-
parton model of the nucleon requires three quark distribu-
tions, f1, g1, and h1. The quark density, or unpolarized
distribution, f1�x� is the probability of finding a quark with
a fraction x of the longitudinal momentum of the parent
nucleon, regardless of its spin orientation. The longitudinal
polarization, or helicity, distribution g1�x�measures the net
helicity of a quark in a longitudinally polarized nucleon. In
a transversely polarized nucleon, the transverse-
polarization, or transversity, distribution h1�x� is the num-
ber density of quarks with polarization parallel to that of
the nucleon, minus the number density of quarks with
antiparallel polarization. The first two distributions are
well known quantities and can be extracted from inclusive
deep-inelastic scattering (DIS) data. The last one is totally
unknown because, being a chiral-odd quantity, does not
contribute to inclusive DIS and is only accessible experi-
mentally when coupled to another chiral-odd partner in the
cross section. Several ways have been suggested to mea-
sure h1 [1,2]. These include the transversely polarized
Drell-Yan process [3–7], the single-spin asymmetry in
semi-inclusive DIS [8] and pp scattering [9], and the
semi-inclusive reaction with two-meson interference frag-
mentation [10–12].

More recently, generalized parton distributions (GPDs)
have been defined [13–15] as nondiagonal hadronic matrix
elements of bilocal products of the light-front quark and
gluon field operators. They depend on the momentum
transferred to the parton, as well as on the average longi-
tudinal momentum, and contain a wealth of information
about the internal structure of hadrons, interpolating be-
tween the inclusive physics of parton distributions and the
exclusive limit of electroweak form factors (for recent
reviews, see e.g. [16–19]). A complete set of quark
GPDs at leading twist include four helicity conserving,
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usually labeled H, E, ~H, ~E, and four helicity flipping
(chiral-odd) GPDs, labeled HT , ET , ~HT , ~ET [20,21]. In
the forward limit, as the momentum transfer vanish, H, ~H
andHT reduce to f1, g1 and h1, respectively. Deeply virtual
Compton scattering and hard exclusive meson production
can give information about the helicity conserving GPDs,
and the first experiments have been planned [22,23] and/or
performed [24,25]. At present there is only one proposal to
give access to the chiral-odd GPDs in diffractive double
meson production [26], since it has been probed that trans-
versity distributions do not contribute to hard exclusive
electroproduction of mesons at all orders of perturbation
theory [27,28]. Although it is not obvious how the chiral-
odd GPDs can be directly measured in an experiment, they
provide valuable information about the correlation be-
tween angular momentum and spin of quarks inside the
nucleon [29,30].

Starting from first principles as in lattice QCD one can
calculate the Mellin moments of GPDs, and first results for
the chiral-odd ones have been presented [31,32]. A variety
of model calculations is available for the helicity conserv-
ing GPDs [16–19]. Less attention has been paid up to now
to the chiral-odd case. In a simple version of the MIT bag
model assuming SU(6) wave functions for the valence
quarks in the proton [33], only the generalized transversity
distribution HT was found to be nonvanishing.

In the present paper the chiral-odd GPDs are studied in
the overlap representation of light-cone wave functions
(LCWFs) that was originally proposed in Refs. [34,35]
within the framework of light-cone quantization. In a fully
covariant approach the connection between the overlap
representation of GPDs and the nondiagonal one-body
density matrix in momentum space has further been ex-
plored in Ref. [36] making use of the correct transforma-
tion of the wave functions from the (canonical) instant-
form to the (light-cone) front-form description. In this way
the lowest-order Fock-space components of LCWFs with
three valence quarks are directly linked to wave functions
derived in constituent quark models (CQMs). Results for
the four helicity conserving GPDs have been obtained
[36,37], automatically fulfilling the support condition and
-1 © 2005 The American Physical Society
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the particle number and momentum sum rules. Important
dynamical effects are introduced by the correct relativistic
treatment; as a consequence, e.g., a nonzero anomalous
magnetic moment of the nucleon is obtained even when all
the valence quarks are accommodated in the s-wave. An
effective angular momentum, as required by the arguments
of Refs. [38,39], is introduced by the boost from the rest
frame to the light-front frame producing a nonvanishing
unpolarized nonsinglet (helicity-flip) quark distribution.

The paper is organized as follows. In Sec. II the relevant
definitions are summarized and the derivation of the over-
lap representation for the chiral-odd GPDs is presented. In
Sec. III we limit ourselves to discuss the valence-quark
contribution obtained with LCWFs in a CQM showing the
corresponding results for the four chiral-odd GPDs. The
forward limit is discussed in the next Section focusing on
the transversity distribution, the tensor charge and the
angular momentum sum rule for quarks with transverse
polarization in an unpolarized nucleon. Concluding re-
marks are given in the final Section. In an Appendix we
give some technical details useful for the explicit calcula-
tion with light-front CQM.

II. CHIRAL-ODD GENERALIZED PARTON
DISTRIBUTIONS

The chiral-odd GPDs are defined as nonforward matrix
elements of lightlike correlation functions of the tensor
current
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2
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ei �xP

�z�hp0; �0j � ��z=2���i�5 �z=2�jp; �ijz��0; ~z?�0

�
1

2P�
�u�p0; �0�

�
Hq
T�
�i�5 � ~Hq

T

��i����P�
M2

� EqT
��i������

2M
� ~EqT

��i��P���
M

�
u�p; ��; (1)

where i � 1; 2 is a transverse index, and p �p0� and � ��0�
are the momentum and the helicity of the initial (final)
proton, respectively. In the definition (1) we adopted the
conventions of Ref. [21], i.e. the average momentum trans-
fer is given by P� � 1

2 �p� p
0��, the momentum transfer

is �� � p0� � p�, the invariant momentum square is t �
�2 and the skewness parameter is 	 � ���=2P�. We
also use the notation v� � �v�; v�; ~v?� for any four-
vector v� with light-cone components v� � �v0 �

v3�=
���
2
p

and ~v? � �v1; v2�. The link operator normally
needed to make the definition (1) gauge invariant does
not appear because we choose the gauge A� � 0 and
assume that one can ignore the recently discussed trans-
verse components of the gauge field [40,41].

The chiral-odd GPDs are off-diagonal in the parton
helicity basis. They become diagonal if one changes basis
from eigenstates of helicity to eigenstates of transversity.
As the transversity basis turns out to be rather convenient
to derive the overlap representation of the chiral-odd GPDs
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in terms of LCWFs, it is worthwhile to show explicitly how
the matrix elements which enter into the definition of the
chiral-odd GPDs transform from the helicity basis into the
tranversity basis.

According to Ref. [21], the GPDs with helicity flip can
be related to the following matrix elements

A�0�;�� �
Z dz�

2�
ei �xP

�z�hp0; �0jO�;��z�jp; �ijz��0; ~z?�0;

A�0�;�� �
Z dz�

2�
ei �xP

�z�hp0; �0jO�;��z�jp; �ijz��0; ~z?�0;

(2)

with the operators O�;� and O�;� defined by

O�;� �
i
4

� ��1�1� �5� ;

O�;� � �
i
4

� ��1�1� �5� :
(3)

By using the definitions in Eqs. (1) and (2) and working
in the reference frame where the momenta ~p and ~p0 lie in
the x� z plane, one can derive the following relations [21]
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��������������
1� 	2
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~Hq
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(4)

where one has used the relation A��0�;��� �
��1��

0��A�0�;�� due to parity invariance. In Eqs. (4),
�t0 � 4m2	2=�1� 	2� is the minimum value of �t for
given 	, and � � sgn�D1�, whereD1 is the x-component of
D� � P��� � ��P�.

In the framework of light-cone quantization, the inde-
pendent dynamical fields are the so-called ‘‘good’’ LC
components of the fields, namely 
 � P� with the pro-
jector P� �

1
2�
���. By introducing the helicity basis

given by the right-handed (R) and left-handed (L) projec-
tions of the field
, namely
R � PR
 �

1
2 �1� �5�
 and


L � PL
 �
1
2 �1� �5�
; it is easy to see that

O�;� �
1���
2
p 
yR
L; O�;� �

1���
2
p 
yL
R: (5)

This last equation explicitly shows the chirally odd nature
of the distributions Hq

T , ~Hq
T , EqT , ~EqT .

Alternatively, one can work in the transversity basis
given by the eigenstates of the transverse-x spin-projection
operators, Q� �

1
2 �1� �

1�5� [42],
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Q�
 	 
"; (6)

Q�
 	 
#; (7)

where " ( # ) is directed along (opposite to) the transverse
direction x̂. In this basis, it is convenient to consider the
following operators

N T � O�;� �O�;� � �
i
2

� ��1�5 �
1���
2
p 
y�1�5


�
1���
2
p �
y" 
" �


y
# 
#�; (8)

F T � O�;� �O�;� �
i
2

� ��1 � �
1���
2
p 
y�1


�
1���
2
p �
y# 
" �


y
" 
#�: (9)

We note that the operator N T is given by difference of the
density operators for " and # projections of the transverse
polarization, while the off-diagonal matrix elements of the
density matrix of the spin in the transverse x̂ direction
appear in the operator F T .1 We now introduce the trans-
versity basis for the nucleon spin states, i.e.

jp; "i �
1���
2
p �jp;�i � jp;�i�;

jp; #i �
1���
2
p �jp;�i � jp;�i�;

(10)

and define the following matrix elements

Tq�0t�t�hp
0;�0tj

Z dz�
2�

ei �xP
�z� � ��z=2����1�5 �z=2�jp;�ti;

(11)

~T q
�0t�t
�hp0;�0tj

Z dz�
2�

ei �xP
�z� i

2
� ��z=2���1 �z=2�jp;�ti;

(12)

where �t (�0t) labels the transverse polarization of the
initial (final) nucleon in the " or # direction. Because of
parity invariance these matrix elements obey the following
relations

Tq"" � �T
q
##; Tq"# � Tq#";

~Tq"" � ~Tq##; ~Tq"# � � ~Tq#";
(13)

and are related to the matrix elements in the helicity basis
1Analogously, by working in the basis of eigenstates of the
spin-projection operators in the transverse ŷ direction, one finds
that N T is related to the off-diagonal matrix elements of the
spin matrix in the transverse ŷ direction, while F T is given in
terms of the density operators for polarization in the positive and
negative ŷ direction.
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by

Tq"" � A��;�� � A��;��; Tq"# � A��;�� � A��;��;

~Tq"" � A��;�� � A��;��; ~Tq#" � A��;�� � A��;��:

(14)

Finally, the chiral-odd GPDs are obtained from the
transverse matrix elements through the relations
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4M2	
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��������������
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p
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� ~Tq#" � T
q
""�:

(15)

A. The overlap representation

In the following we will restrict our discussion to the
region 	 
 �x 
 1 of plus-momentum fractions, where the
generalized quark distributions describe the emission of a
quark with plus-momentum � �x� 	�P� and its reabsorp-
tion with plus-momentum � �x� 	�P�.

The derivation of the overlap representation of the T�t�0t
and ~T�t�0t matrix elements goes along the line described in
Ref. [34] for the case of the matrix elements defining the
GPDs in the chiral-even sector. Here we report the essential
steps of the derivation.

At the light-cone time z� � 0, the Fourier components
of 
" are the annihilation operator for an on-shell quark
with transverse polarization " (b") and the creation operator
for an on-shell antiquark with transverse polarization #
(dy# ), i.e.


"�z
�; ~z?� �

Z dk�d2 ~k?
k�16�3 ��k��fb"�k

�; ~k?�u��k; "�

� exp��ik�z� � i ~k? � ~z?�

� dy" �k
�; ~k?�v��k; "�

� exp��ik�z� � i ~k? � ~z?�g; (16)

where u��k; "� � P�u�k; "� and v��k; "� � P�v�k; "� are
the projections into the ‘‘good components’’ of the quark
and antiquark spinor. The Fourier decomposition of the
field 
# is simply obtained from Eq. (16) with the replace-
ment "$# . The Fock-space in the transversity basis can be
-3



B. PASQUINI, M. PINCETTI, AND S. BOFFI PHYSICAL REVIEW D 72, 094029 (2005)
constructed by successive applications to the vacuum state
of the dy

"�#�
and by

"�#�
operators. In this space, the representa-

tion of the nucleon state reads

jp; �ti �
X
N;�

Z
�dx�N�d2 ~k?�N��t;N;��r�jN;�; k1; . . . ; kNi;

(17)

where ��t;N;� is the momentum LCWF of the N-parton
Fock state jN;�; k1; . . . ; kNi. The integration measures in
Eq. (17) are defined as

�dx�N �
YN
i�1

dxi�
�
1�

XN
i�1

xi

�
;

�d2 ~k?�N �
1

�16�3�N�1

YN
i�1

�2

�XN
i�1

~k?;i � ~p?

�
:

(18)

The argument r of the LC wave function represents the set
of kinematical variables of the N partons, while the index
� labels the parton composition and the transverse spin of
each parton. Finally, replacing Eqs. (16) and (17) in the
expressions (11) and (12) for the matrix elements T�t�0t and
~T�t�0t ; one finds

Tq�0t�t �
X

N;���0
�
������������
1� 	

p
�2�N�

������������
1� 	

p
�2�N

�
XN
j�1

sign��t
j��sjq

Z
�d �x�N�d

2 ~k?�N

� �� �x� �xj��

�0t;N;�

0 �r̂0���t;N;��~r�; (19)

~T q
�0t�t
�

X
�;�0;N

�
������������
1� 	

p
�2�N�

������������
1� 	

p
�2�N

�
XN
j�1

��t0
j��

t
j
��t0

i �
t
i
sign��t

j��sjq
Z
�d �x�N

��d2 ~k?�N�� �x� �xj���0t;N;�0 �r̂
0���t;N;��~r�; (20)

where sj labels the quantum numbers of the jth active
parton, with transverse initial (final) spin polarization �t

j

(�t0
j ), and �t

i��
t0
i � are the transverse spin of the spectator

initial (final) quarks. The set of kinematical variables r; r0

are defined as follows: for the final struck quark,

y0j �
xj � 	

1� 	
; ~�0?j �

~k?j �
1

2

1� xj
1� 	

~�?; (21)

for the final N � 1 spectators (i � j),

y0i �
xi

1� 	
; ~�0?i �

~k?i �
1

2

xi
1� 	

~�?; (22)

and for the initial struck quark
094029
yj �
xj � 	

1� 	
; ~�?j � ~k?j �

1

2

1� xj
1� 	

~�?; (23)

for the initial N � 1 spectators (i � j),

yi �
xi

1� 	
; ~�?i � ~k?i �

1

2

xi
1� 	

~�?: (24)
III. THE VALENCE-QUARK CONTRIBUTION

In this section we specialize the results for the chiral-odd
GPDs obtained above to the case of N � 3; which corre-
sponds to truncate the Fock expansion of the nucleon state
to the parton configuration given by three-valence quarks.
In this framework, Eqs. (19) and (20) become

Tq�0t�t�
1�������������

1�	2
p X

�t
ii

X3

j�1

sign��t
j��jq

Z
�dx�3�d ~k?�3

���x�xj��
�f�
�0t
�r0;f�t

ig;fig�

���f��t �r;f�
t
ig;fig���xj�; (25)

~Tq�0t�t �
1��������������

1� 	2
p X

�t
i�
0t
i i

X3

j�1

sign��t
j��jq��t0

j��
t
j
��t0

i �
t
i

�
Z
�dx�3�d ~k?�3��x� xj��

�f�
�0t
�r0; f�t

ig; fig�

���f��t �r; f�
t0
i g; fig���xj�; (26)

where ��f��t �r; f�
t
ig; fig� is the eigenfunction of the light-

front Hamiltonian of the nucleon, described as a system of
three interacting quarks. It is here obtained from the cor-
responding solution ��c��t �f ~�ig; f�

t
ig; fig� of the eigenvalue

equation in the instant-form as described in Ref. [36].
Separating the spin-isospin component from the space
part of the wave function,

��c��t �f ~�ig; f�
t
ig; fig�

�  � ~�1; ~�2; ~�3���t��
t
1; �

t
2; �

t
3; 1; 2; 3�; (27)

we have

��f��t �r; f�
t
ig; fig� � 2�2��3

�
1

M0

!1!2!3

y1y2y3

�
1=2
 � ~�1; ~�2; ~�3�

�
X

�t
1�

t
2�

t
3

D1=2
�t

1�
t
1
�Rcf��1��

�D1=2
�t

2�
t
2
�Rcf��2��D

1=2
�t

3�
t
3
�Rcf��3��

���t��
t
1; �

t
2; �

t
3; 1; 2; 3�; (28)

whereM0 is the mass of the noninteracting 3-quark system,
!i � ���i � �

�
i �=

���
2
p

, and the matrix D1=2
�t�t
�Rcf�k�� are

given by the representation of the Melosh rotation Rcf in
the transverse-spin space
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FIG. 2. The same as in Fig. 1 but for fixed t � �0:2 �GeV�2

and different values of 	: 	 � 0 (solid curves), 	 � 0:1 (dashed
curves), 	 � 0:2 (dotted curves).
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D1=2
�t�t
�Rcf�k�� � h�tjRcf�xM0; ~k?�j�ti

� h�tj
m� xM0 � i ~� � � ~̂z� ~k?��������������������������������������

�m� xM0�
2 � ~k2

?

q j�ti:

(29)

By assuming a SU(6) symmetric model for the spin-isospin
component of the wave function, the summation over the
spin and isospin variables in Eqs. (25) and (26) can be cast
into a rather compact analytical expression. The final
results with some technical details for the derivation are
reported in Appendix A.

A. Results

As an application of the general formalism developed in
the previous sections we consider the valence-quark con-
tribution to the chiral-odd GPDs calculated starting from
an instant-form wave function of the proton derived in the
relativistic hypercentral quark model of Ref. [43]. This
CQM is able to reproduce the basic features of the low-
lying nucleon spectrum and was already adopted in pre-
vious studies on the helicity conserving GPDs [36,37]. The
structure of the nucleon wave function in this model is
SU(6) symmetric for the spin-isospin components and is
given by Eq. (27). Therefore we can use the analytical
expressions reported in Appendix A for the summation
over spin and isospin variables, whereas the integrations
over momenta are performed numerically.

The four calculated chiral-odd GPDs, Hq
T , EqT , ~Hq

T , ~EqT ,
are shown in Figs. 1–3 for up quarks (q � u) and in
Figs. 4–6 for down quarks (q � d). They are plotted as a
function of �x at different values of t and 	.

In Figs. 1 and 4 the t dependence at 	 � 0 is given for up
and down quarks, respectively, forHq

T , EqT , ~Hq
T . There is no

~EqT because it vanishes identically being an odd function of
	 as a consequence of time-reversal invariance [21]. Hu

T

0

1

2
HT

u

-3

-2

-1

0
H
~ u

T

0

10

0 0.25 0.5 0.75 1
x̄

ET
u

FIG. 1. The chiral-odd generalized parton distributions calcu-
lated in the hypercentral CQM for the flavour u, at 	 � 0 and
different values of t: t � 0 (solid curves), t � �0:2 �GeV�2

(dashed curves), t � �0:5 �GeV�2 (dotted curves).
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and ~Hu
T have opposite sign with respect toHd

T and ~Hd
T , with

Hu
T � �

1
4H

d
T at t � 0 as expected from SU(6) symmetry.

A comparison with results derived within the MIT bag
model [6] is possible considering the forward limit t � 0
of Hq

T , where Hq
T reduces to the transversity hq1 (see below

Eq. (30)). The solid lines in Figs. 1 and 4, suitably scaled
by the isospin factors 4=3 and �1=3 for up and down
quarks, respectively, almost overlap the result plotted in
Fig. 2 of Ref. [6] for h1 in the allowed region 0 
 �x 
 1. A
much weaker t dependence of Hq

T than predicted in the
MIT bag model of Ref. [33] is found here. In contrast, the t
dependence affects the low- �x region and is more pro-
nounced in the cases of EqT and ~Hq

T . For large �x values
the decay of all the distributions towards zero at the
boundary �x � 1 is almost independent of t. One can also
notice that the combination EqT � 2 ~Hq

T , more fundamental
than EqT itself when discussing spin densities in the trans-
verse plane [29], is less sizable for down quarks than for up
quarks also due to the oscillatory behavior of EdT .
0
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FIG. 3. The same as in Fig. 1 but for fixed t � �0:5 �GeV�2

and different values of 	: 	 � 0 (solid curves), 	 � 0:1 (dashed
curves), 	 � 0:2 (dotted curves).
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FIG. 6. The same as in Fig. 4 but for fixed t � �0:5 �GeV�2

and different values of 	: 	 � 0 (solid curves), 	 � 0:1 (dashed
curves), 	 � 0:2 (dotted curves).
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FIG. 5. The same as in Fig. 4 but for fixed t � �0:2 �GeV�2

and different values of 	: 	 � 0 (solid curves), 	 � 0:1 (dashed
curves), 	 � 0:2 (dotted curves).
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FIG. 4. The chiral-odd generalized parton distributions calcu-
lated in the hypercentral CQM for the flavour d, at 	 � 0 and
different values of t: t � 0 (solid curves), t � �0:2 �GeV�2

(dashed curves), t � �0:5 �GeV�2 (dotted curves).
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The 	 dependence for two values of t � 0 is given in
Figs. 2 and 3 for up quarks and in Figs. 5 and 6 for down
quarks. In all cases the GPDs vanish at �x � 	 since in our
approach they include the contribution of valence quarks
only and we cannot populate the so-called ERBL region
with j �xj 
 	 where quark-antiquark pairs and gluons are
important. Therefore, at low �x this gives a strong 	 depen-
dence of the peak position of the distribution, but for large
�x the 	 dependence turns out to be rather weak.
IV. THE FORWARD LIMIT AND THE TENSOR
CHARGE

In the forward limit �� ! 0 ( �x! x, with x being the
usual Bjorken variable), we immediately see from Eq. (4)
that only the quark GPDs Hq

T can be measured. There they
become equal to the quark transversity distributions hq1�x�.
Although the quark GPDs EqT and ~Hq

T do not contribute to
the scattering amplitude, they remain finite in the forward
limit, whereas ~EqT vanishes identically being an odd func-
tion of 	 as already noticed [21].

As it is evident from Eqs. (15) and (25), the LCWF
overlap representation of Hq

T�x; 0; 0� for the valence-quark
contribution is given by

Hq
T�x; 0; 0� � hq1�x�

�
X
�t
ii

X3

j�1

�jqsign��t
j�
Z
�dx�3�d ~k?�3

� ��x� xj�j�
�f�
" �fxig; f

~k?;ig;�
t
i; ig�j

2: (30)

This expression exhibits the well known probabilistic con-
tent of hq1 ; being the probability to find a quark with spin
polarized along the transverse spin of a polarized nucleon
minus the probability to find it polarized oppositely. Indeed
hq1 is the counterpart in the transverse-polarization space of
the helicity parton distribution gq1 which measures the
helicity asymmetry. As it was stressed by Jaffe and Ji [4],
in nonrelativistic situations where rotational and boost
operations commute, one has gq1 � hq1 . Therefore the dif-
ference between hq1 and gq1 is a measure of the relativistic
nature of the quarks inside the nucleon. In light-cone
CQMs these relativistic effects are encoded in the
Melosh rotations. With the help of Eqs. (A1)–(A3) and
Eqs. (A.1), (A.3)-(A.4) of Ref. [37], we find

hq1�x� �
�
4

3
�q1=2 �

1

3
�q�1=2

�Z
�dx�3�d ~k?�3

� ��x� x3�j ~ "�fxig; f ~k?;igj
2MT; (31)

gq1�x� �
�
4

3
�q1=2 �

1

3
�q�1=2

�Z
�dx�3�d ~k?�3

� ��x� x3�j ~ "�fxig; f ~k?;igj
2M; (32)

where
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M T �
�m� x3M0�

2

�m� x3M0�
2 � ~k2

?;3

; (33)

M �
�m� x3M0�

2 � ~k2
?;3

�m� x3M0�
2 � ~k2

?;3

: (34)

We note that in deriving the expression (33) for MT we
used the fact that the average squared momentum of the
quarks in the x̂ and ŷ directions are the same. A similar
result was already obtained in the relativistic CQM calcu-
lation of Ref. [44].

In Fig. 7 the helicity and transversity distributions, g1

and h1, obtained as a forward limit of the corresponding
GPDs calculated with the hypercentral CQM are compared
and plotted together with the nonrelativistic result when
Melosh rotations reduce to identity. The large difference
between g1 and h1 shows how big is the effect of relativity.
Comparable results have been found in the chiral quark-
soliton model of the nucleon [45].

Recalling the expression for the unpolarized parton
distribution fq1 obtained in Ref. [36], it is easy to see that
the following relations hold

2hu1�x� � gu1�x� �
2
3f
u
1 �x�; 2hd1�x� � gd1�x� �

1
3f
d
1 �x�;

(35)

which are compatible with the Soffer inequality [46]. In the
nonrelativistic limit, corresponding to ~k? � 0; and MT �
M � 1, one obtains hu1 � gu1 � 2=3fu1 and hd1 � gd1 �
�1=3fd1 : We note that the relations (35) generalize to the
case of parton distributions the results obtained in
Refs. [47,48] for the axial (�q) and tensor (�q) charges,
defined as

�q �
Z 1

�1
dxgq1�x�; (36)
0

1

2

0 0.25 0.5 0.75 1
x

g 1u ,
 h

1u

-0.6

-0.4

-0.2

0

0 0.25 0.5 0.75 1
x

g 1d ,
 h

1d

FIG. 7. Helicity and transversity distributions for the u (left
panel) and d (right panel) quark. The solid lines correspond to
hq1 , the dashed lines show gq1 , and the dotted lines are the
nonrelativistic results when Melosh rotations reduce to the
identity (hq1 � gq1).
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�q �
Z 1

�1
dxhq1�x�; (37)

respectively. As a matter of fact, by calculating the first
moment of the parton distributions in Eq. (35), one recov-
ers the following relations obtained in Refs. [47,48]

2�q � �q� �qNR; 2hMTi � hMi � 1; (38)

where �qNR is the axial charge in the nonrelativistic limit,
i.e.

�qNR � �
4
3�q1=2 �

1
3�q�1=2�: (39)

The nucleon tensor charge (37) measures the net number
of transversely polarized valence quarks in a transversely
polarized nucleon [4,49]. Because of a nontrivial dynami-
cal dependence of the rotation operators, it differs from the
axial charge probed in high-energy processes and related to
the net number of longitudinally polarized valence quarks
in a longitudinally polarized nucleon. In the MIT bag
model and demanding that �u� �d � 1:257, the tensor
charge was fixed at �u � 1:17 and �d � �0:29 [49].
These are remarkably the same numbers obtained in
Ref. [47] with a simple harmonic oscillator wave function
of the nucleon leading to its axial charge gA � 1:25.
Furthermore, in contrast to the axial charge in the bag
they are rather close to the nonrelativistic quark model
result (see Eq. (39) and Table I) indicating less suscepti-
bility to relativistic effects in the model. A detailed analy-
sis of QCD sum rules in the presence of an external tensor
field [50] gives �u � 1:33� 0:53 and �d � 0:04� 0:02
at the scale of the nucleon mass. This means that the up
quarks dominate the contribution in a transversely polar-
ized proton. In addition, the corresponding isovector (gvT �
�u� �d) and isoscalar (gsT � �u� �d) tensor charges
have similar size, gvT � 1:29� 0:51 and gsT � 1:37�
0:55, and gvT is comparable in magnitude to the isovector
axial charge gA. In the large-Nc limit gvT is leading relative
to gsT , with gvT � 1:06 and gsT � 0:63 at the low normal-
ization point of O�600� MeV [45]. The same trend of a
dominating up-quark contribution is found also here in
Table I with the LCWFs derived from the hypercentral
CQM and can be understood by looking at our results in
Figs. 1 and 4. However, the obtained numbers are closer to
those derived in the nonrelativistic approach or the MIT
TABLE I. Valence contributions to the axial and tensor charge
calculated within different SU(6)-symmetric quark models: the
nonrelativistic quark model (NR), the harmonic oscillator model
(HO) of Ref. [47], and the hypercentral (HYP) model.

NR HO HYP

�u 4=3 1:0 0:61
�d �1=3 �0:25 �0:15
�u 4=3 1:17 0:97
�d �1=3 �0:29 �0:24
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bag than those predicted by QCD sum rules, with a non-
negligible negative contribution of the down quark.
Although renormalization-scale dependent, the tensor
charge is not affected by gluons. Therefore any discrep-
ancy from what one could expect from QCD sum rules can
be ascribed to the adopted LCWF that is here SU(6)
symmetric. When evolved in leading-order QCD from
the intrinsic scale of the model (Q2

0 � 0:079 GeV2) to
Q2 � 10 GeV2 the tensor charges become �u � 0:70
and �d � �0:17 in the hypercentral CQM, within the
range of values calculated in the different models consid-
ered in Ref. [1] and in fair agreement with lattice QCD
calculations [51].

Another quantity related to the forward limit of chiral-
odd GPDs is the angular momentum Jx carried by quarks
with transverse polarization in the x̂ direction in an unpo-
larized nucleon at rest. This quantity has recently been
shown [30] to be one half of the expectation value of the
transversity asymmetry

h�xJxqi � hJ
x
q;�x̂ � J

x
q;�x̂i

� 1
2�AT20 � 2 ~AT20�0� � BT20�0��; (40)

where the invariant form factors AT20, ~AT20 and BT20 are
the second moments of the chiral-odd GPDs [29,30]:

AT20�t� �
Z 1

�1
dxxHT�x; 	; t�;

~AT20�t� �
Z 1

�1
dxx ~HT�x; 	; t�;

BT20�t� �
Z 1

�1
dxxET�x; 	; t�:

(41)

Using LCWFs derived from the hypercentral CQM we
obtain

h�xJxui � 0:39; h�xJxdi � 0:10; �HYP� (42)

while using the simple harmonic oscillator wave function
of the nucleon as in Ref. [47], we obtain much larger
values:

h�xJxui � 0:68; h�xJxdi � 0:28: �HO� (43)

The same also occurs for the forward matrix element of
2 ~HT � ET , i.e.

�qT 	
Z
dx�2 ~Hq

T�x; 0; 0� � E
q
T�x; 0; 0��: (44)

The quantity �qT describes how far and in which direction
the average position of quarks with spin in the x̂ direction is
shifted in the ŷ direction for an unpolarized nucleon [30].
Thus �qT governs the transverse spin-flavor dipole moment
in an unpolarized nucleon and plays a role similar to the
anomalous magnetic moment �q for the unpolarized quark
distributions in a transversely polarized nucleon. As a
matter of fact, we obtain
094029
�uT � 1:98; �dT � 1:17; �HYP�

�uT � 3:60; �dT � 2:36: �HO�
(45)

Apart from their magnitude, the same sign of �qT is pre-
dicted in both models. This may have an impact on the
Boer-Mulders function h?q1 describing the asymmetry of
the transverse momentum of quarks perpendicular to the
quark spin in an unpolarized nucleon [52]. Since for �T >
0 we expect that quarks polarized in the ŷ direction should
preferentially be deflected in the x̂ direction, in accordance
with the Trento convention [53] �qT > 0 would imply
h?q1 < 0 [30]. Furthermore, keeping in mind that the mag-
nitude of the quark anomalous magnetic moments �q

derived within the same approach are of the order of unity
[36], the average Boer-Mulders function is predicted here
larger than the average Sivers function f?q1T ���

q de-
scribing the transverse momentum asymmetry of quarks
in a transversely polarized target.
V. CONCLUSIONS

We have presented the general framework to calculate
the overlap representation of chiral-odd generalized parton
distributions using the Fock-state decomposition in the
transverse-spin basis. The formalism has been applied to
the case of light-cone wave functions obtained by consid-
ering only valence quarks in a constituent quark model.
This limits the average longitudinal momentum fraction �x
to lie in the range between the skewness parameter 	 and 1.
The inclusion of quark-antiquark contributions is in prin-
ciple possible following, e.g., the lines of Ref. [54].

For large �x a weak dependence on 	 and t is found with
opposite sign of Hq

T and ~Hq
T for up and down quarks.

Different helicity and transversity distributions have been
derived in the forward limit in agreement with the relativ-
istic requirements and the Soffer inequality. A first esti-
mate of the axial and tensor charges is also obtained
confirming the different size and sign of the up and down
quarks predicted within SU(6)-symmetric quark models.
Furthermore, an analysis of the angular momentum carried
by quarks with transverse polarization in an unpolarized
nucleon leads to the prediction that the Boer-Mulders
function describing the asymmetry of the transverse mo-
mentum of quarks perpendicular to the quark spin in an
unpolarized nucleon could be larger than the average
Sivers function describing the transverse momentum
asymmetry of quarks in a transversely polarized target.
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APPENDIX A

In this appendix we work out the summation over the
spin and isospin variables appearing in the definition of the
amplitudes. In the case of SU(6)-symmetric CQM wave
functions, the summation over isospin variables gives
�T120�31=2 � �T121��31=2 � 2�3�1=2�=3 for the proton
and �T120�3�1=2 � �T121�2�31=2 � �3�1=2�=3 for the neu-
tron. The summation over the spin variables is carried out
in a similar way as in Ref. [37] for the case of polarized
GPDs, by using the explicit expressions of the Melosh-
rotation matrices appearing in the initial and final light-
cone wave function. As a result, one finds

Tq�0��
3

2

1�������������
1�	2

p 1

�16�3�2

Z Y3

1�1

dxi�
�
1�

X3

i�1

xi

�
��x�x3�

�
Z Y3

i�1

d2 ~k?;i�
�X3

i�1

~k?;i

�
~ �fy0ig;f ~�

0
?;ig�

� ~ �fyig;f ~�?;ig��q3
fX00

�0�� ~�
0; ~���31=2

�
1

3
X11
�0�� ~�

0; ~����31=2�2�3�1=2�g; (A1)

where

~ �fyig; f ~�?;ig� �
�

1

M0

!1!2!3

y1y2y3

�
 � ~�1; ~�2; ~�3�: (A2)

For the functions X in Eq. (A1) we give only the expres-
sions for the real part, since the contribution from the
imaginary parts to Tq�0� is vanishing in the reference frame
we are working with, where the momenta of the initial and
final nucleon lie in the x� z plane. As a result we have

Re�X00
��� ~�

0; ~��� � �Re�X00
��� ~�0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

� ��A1A2 � ~B1 � ~B2�A3�; (A3)
Re�X11
��� ~�

0; ~�����Re�X11
��� ~�

0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

1

3
���A1A2� ~B1 � ~B2

�4B1;xB2;x�A3�2�A1B2;x�A2B1;x�B3;x

�2�B1;xB2;z�B1;zB2;x�B3;y

�2�B1;xB2;y�B1;yB2;x�B3;z�; (A4)
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Re�X00
��� ~�

0; ~��� � Re�X00
��� ~�

0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

� ��A1A2 � ~B1 � ~B2�B3;y�; (A5)

Re�X11
��� ~�

0; ~����Re�X11
��� ~�

0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

1

3
���A1A2� ~B1 � ~B2

�4B1;zB2;z�B3;y�2�A1B2;z�A2B1;z�B3;x

�2�B1;xB2;z�B1;zB2;x�A3

�2�B1;yB2;z�B1;zB2;y�B3;z�; (A6)

In the above equations, N� ~��, Ai and ~Bi; with i � 1; 2;
are defined as in Ref. [36] and reported here for conve-
nience

N� ~�� � ��m� yM0�
2 � ~�2

?�
1=2: (A8)

Ai � �m� y
0
iM
0
0��m� yiM0� � �

0
i;y�i;y � �

0
i;x�i;x;

i � 1; 2
(A9)

Bi;x � ��m� y0iM
0
0��i;y � �m� yiM0��0i;y; i � 1; 2;

(A10)

Bi;y � �m� y
0
iM
0
0��i;x � �m� yiM0��

0
i;x; i � 1; 2;

(A11)

Bi;z � �0i;x�i;y � �
0
i;y�i;x; i � 1; 2; (A12)

while A3 and ~B3 are given by

A3 � �m� y03M
0
0��m� y3M0� � �03;y�3;y � �03;x�3;x;

(A13)

B3;x � �m� y03M
0
0��3;y � �m� y3M0��03;y; (A14)

B3;y � ��m� y
0
3M
0
0��3;x � �m� y3M0��

0
3;x; (A15)

B3;z � ��
0
3;x�3;y � �

0
3;y�3;x: (A16)

Analogously, the chiral-odd GPDs with flip of the trans-
verse polarization of the active quark are obtained from the
different matrix elements of the amplitude ~T given explic-
itly by
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~Tq�0��
3

2

1�������������
1�	2

p 1

�16�3�2

Z Y3

1�1

dxi�
�
1�

X3

i�1

xi

�
��x�x3�

�
Z Y3

i�1

d2 ~k?;i�
�X3

i�1

~k?;i

�
~ �fy0ig;f ~�

0
?;ig�

� ~ �fyig;f ~�?;ig��q3
f ~X00

�0�� ~�
0; ~���31=2

�
1

3
~X11
�0�� ~�

0; ~����31=2�2�3�1=2�g; (A17)

where

Re� ~X00
��� ~�

0; ~��� � Re� ~X00
��� ~�0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

� ��A1A2 � ~B1 � ~B2�� ~A3; (A18)

Re� ~X11
��� ~�

0; ~����Re� ~X11
��� ~�0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

1

3
��3A1A2� ~B1 � ~B2� ~A3

�2�A1B2;x�A2B1;x� ~B3;x

�2�A1B2;y�A2B1;y� ~B3;y

�2�A1B2;z�A2B1;z� ~B3;z�; (A19)

Re� ~X00
��� ~�

0; ~��� � �Re� ~X00
��� ~�

0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

� ��A1A2 � ~B1 � ~B2� ~B3;y�; (A20)
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Re� ~X11
��� ~�

0; ~�����Re� ~X11
��� ~�

0; ~���

�
Y3

i�1

N�1� ~�0i�N
�1� ~�i�

1

3
���A1A2� ~B1 � ~B2

�4B1;yB2;y� ~B3;y�2�B1;xB2;y

�B2;xB1;y� ~B3;x�2�A1B2;y�A2B1;y� ~A3

�2�B1;yB2;z�B1;zB2;y� ~B3;z�; (A21)
where

~A 3 � �03;x�m� y3M0� � �3;x�m� y03M
0
0�; (A22)
~B 3;x � ��
0
3;x�3;y � �

0
3;y�3;x; (A23)
~B 3;y � �m� y
0
3M
0
0��m� y3M0� � �

0
3;y�3;y � �

0
3;x�3;x;

(A24)
~B 3;z � ��m� y
0
3M
0
0��3;y � �m� y3M0��

0
3;y: (A25)
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