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Model-independent properties of the B-meson distribution amplitude
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The operator product expansion is used to obtain model-independent predictions for the first two
moments of the renormalized B-meson light-cone distribution amplitude �B

��!;��, defined with a cutoff
! � �UV. The leading hadronic power corrections are given in terms of the parameter �� � mB �mb.
From the cutoff dependence of the zeroth moment an analytical expression for the asymptotic behavior of
the distribution amplitude is derived, which exhibits a negative radiation tail for !� �. By solving the
evolution equation for the distribution amplitude, an integral representation for �B

��!;�� is obtained in
terms an initial function �B

��!;�0� defined at a lower renormalization scale. A realistic model of the
B-meson light-cone distribution amplitude is proposed, which satisfies the moment relations and has the
correct asymptotic behavior. This model provides an estimate for the first inverse moment and the
associated parameter �B.
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I. INTRODUCTION

Exclusive decays of B mesons such as B! �l� and
B! ��;�K are important tools to search for physics
beyond the Standard Model as well as to measure funda-
mental parameters in the flavor sector. In processes where
large momentum is transferred to the soft spectator quark
via hard gluon exchange, the B-meson light-cone distribu-
tion amplitude (LCDA) enters in the parameterization of
hadronic matrix elements of bilocal current operators [1].
The past few years have seen a lot of progress in the
theoretical framework for the analysis of exclusive
B-meson decays, mainly based on QCD factorization the-
orems [2–5] and perturbative QCD methods [6–9].
However, in many cases the extraction of important phys-
ics from experimental data is still limited by theoretical
uncertainties, often due to our ignorance of the functional
form of the B-meson LCDA and other hadronic matrix
elements. For example, using the soft-collinear effective
theory [10–14], the large-recoil heavy-to-light form fac-
tors relevant to weak B decays have been studied at leading
order in a 1=E expansion [15–17]. The analysis of spin-
symmetry violating contributions to these form factors, in
particular, relies on knowledge about the B-meson LCDA
[18–21].

In spite of the importance of the B-meson LCDA, so far
most studies of its properties have been limited to model-
dependent analyses based on QCD sum rules [1,22,23]. In
the present work, we employ the operator product expan-
sion (OPE) to explore some model-independent properties
of the LCDA. We calculate the first two moments of the
distribution amplitude, derive its asymptotic behavior, and
study its properties under renormalization-group evolution,
thereby obtaining strong constraints on model building.
Using the results of this analysis, we propose a realistic
model of the B-meson LCDA and use it to estimate the
important hadronic parameter �B [2], which enters in many
analyses based on QCD factorization.
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II. MOMENT ANALYSIS

The leading-twist, two-particle LCDA �B
� of the

B-meson is defined in terms of the B-meson matrix ele-
ment of a renormalized bilocal heavy-quark effective the-
ory (HQET) operator relative to the matrix element of the
corresponding local operator. The bilocal operator is made
up of a soft spectator quark qs and a heavy quark h at
lightlike separation z, connected by a straight soft Wilson
line Sn�z; 0�. Specifically, one defines [1]

~�B
���;�� �

h0j �qs�z�Sn�z; 0�n6 �h�0�j �B�v�i

h0j �qs�0�n6 �h�0�j �B�v�i
; (1)

where � � v � z� i�. Our notation is such that z is pro-
portional to a lightlike vector n, v is the B-meson velocity,
and for convenience we choose n � v � 1. The object �
represents an arbitrary Dirac matrix chosen such that the
operators have nonzero overlap with the B meson. The
momentum-space LCDA is given by the Fourier transform

�B
��!;�� �

1

2�

Z
d�ei!� ~�B

���;��: (2)

The analytic properties of the function ~�B
���;�� in the

complex � plane imply that �B
��!;�� � 0 if !< 0.

We start by defining regularized moments of the
B-meson LCDA as (for integer N 	 0)

MN��UV; �� �
Z �UV

0
d!!N�B

��!;��: (3)

A hard cutoff �UV is imposed on the integral so as to avoid
singularities from the region of large ! values, which are
not regularized by renormalizing the bilocal operator in (1)
[1]. The reason is that the position-space LCDA ~��B ��;��
and its derivatives are singular at � � 0. Only cut moments
of the renormalized LCDA are UV finite. For a sufficiently
large value of �UV the moments MN��UV; �� can be
expanded in a series of B-meson matrix elements of local
-1 © 2005 The American Physical Society
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FIG. 1. One-loop diagrams contributing to the partonic matrix
elements of bilocal and local operators in HQET. A crossed
circle denotes an operator insertion. Double lines represent
effective heavy-quark fields.
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HQET operators. The basic idea is the same as that used in
previous work on cut moments of the B-meson shape
function entering the analysis of inclusive decays [24,25].
From the structure of the bilocal HQET operator in (1) and
the Feynman rules of HQET it follows that the resulting
local operators have Dirac structure

�q s��� . . .��n6 �h; (4)

where the number of Dirac matrices inside the parenthesis
is even if light quarks are treated as massless. By using the
equations of motion iD6 qs � 0 and iv �Dh � 0, it is
straightforward to find the corresponding operators of a
given dimension D. For D � 3, the only possibility is the
operator

Q0 � �qsn6 �h; (5)

which appears in the denominator in (1). For D � 4, there
are naively four subleading operators with one derivative,
namely

Q1a � �qsiv �D
 

n6 �h; Q1c � �qsin �Dn6 �h;

Q1b � �qsin �D
 

n6 �h; Q1d � �qsiv6 D6 n6 �h:
(6)

However, the Wilson coefficients of the operators Q1c and
Q1d are zero, because the residual momentum k of the
external heavy-quark field only appears as v � k in HQET
diagrams. Hence, these operators can be ignored. For D 	
5, the situation becomes more complicated, since operators
containing the gluon fieldG�� need to be included. For our
current analysis, we restrict the discussion to operators of
dimension less than 5.

The resulting expansion of the moments to subleading
power in 1=�UV takes the form

MN��UV;����N
UV

�
K�N�0 ��UV;���

X
i�a;b

K�N�1i ��UV;��
�UV



h0jQ1ij �B�v�i

h0jQ0j �B�v�i
� . . .

�
; (7)

where the ellipses denote terms of order ��QCD=�UV�
2 and

higher. The short-distance coefficients K�N�n ��UV; �� can
be calculated using on-shell external quark states and
employing partonic expressions for the LCDA and for
the matrix elements of the local operators Qn to evaluate
both sides of the matching relation (7). The relevant one-
loop diagrams are shown in Fig. 1. Wave-function renor-
malization contributions cancel in the matching and thus
can be omitted. We assign incoming residual momentum k
to the heavy quark and incoming momentum p to the light
quark, subject to the on-shell conditions v � k � 0 and
p2 � 0. The Feynman amplitude is expanded to linear
order in p before loop integrations are performed. This
ensures that loop corrections to the matrix elements of the
local operators vanish in dimensional regularization, be-
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cause all integrals are scaleless. We thus obtain

h0jQ1aj �B�v�iparton � v � p h0jQ0j �B�v�iparton;

h0jQ1bj �B�v�iparton � n � p h0jQ0j �B�v�iparton:
(8)

The result for the one-loop matrix element of the bilocal
HQET operator is nontrivial. According to (1), it provides
us with a partonic expression for the LCDA. After MS
subtractions, we obtain at one-loop order

�B
��!;��parton�	�!�

�
1�

CF
s
4�

�2

12

�

�
CF
s

4�

�
�4

�ln!�
!

�
���


�2

�
1

!

�
���



�

�	0�!�
�
�n �p

�
1�

CF
s
4�

�
1�

�2

12

��

�v �p
CF
s

4�

�
�
CF
s

4�

�
�4n �p

�ln!�
!2

�
���



��5n �p�4v �p�
�

1

!2

�
���



�
; (9)

where 
s � 
s��� throughout, unless indicated otherwise.
We have retained terms of linear order in p, which will be
sufficient to extract the matching coefficientsK�N�0 andK�N�1i
in (7). The star distributions are generalized plus distribu-
tions defined as

Z �

0
d!F!

�
1

!

�
���


�
Z �

0
d!

F!�F0

!
�F0 ln

�

�
;

Z �

0
d!F!

�ln!�
!

�
���


�
Z �

0
d!

F!�F0

!
ln
!
�
�
F0

2
ln2 �

�
;

Z �

0
d!F!

�
1

!2

�
���


�
Z �

0
d!

F!�F0�!F00
!2 �

F0

�

�F00 ln
�

�
;

Z �

0
d!F!

�ln!�
!2

�
���


�
Z �

0
d!

F!�F0�!F00
!2 ln

!
�

�
F0

�

�
ln

�

�
�1

�
�
F00
2

ln2 �

�
; (10)
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where F�!� is a smooth test function, and we use the short-
hand notation F! � F�!� and F0! � F0�!�.

Given the results (8) and (9), it is straightforward to
derive expressions for both sides of the matching relation
(7) in the parton model, and to extract the desired expres-
sions for the Wilson coefficients. At one-loop order, we
find

K�0�0 � 1�
CF
s

4�

�
�2 ln2 �UV

�
� 2 ln

�UV

�
�
�2

12

�
;

K�0�1a �
CF
s

4�
��4�; K�0�1b �

CF
s
4�

�
4 ln

�UV

�
� 1

� (11)

for the zeroth moment, and

K�1�0 �
CF
s

4�

�
�4 ln

�UV

�
� 6

�
;

K�1�1a �
CF
s

4�

�
4 ln

�UV

�
� 1

�
;

K�1�1b � 1�
CF
s

4�

�
�2 ln2 �UV

�
� 5 ln

�UV

�
� 1�

�2

12

�
(12)

for the first moment.
We have repeated the entire calculation outlined above

in a different regularization scheme, where the dependence
of the Feynman amplitudes on the component n � p of the
light-quark momentum is kept exactly, whereas we linea-
rize in the remaining components of p. In this scheme the
loop corrections to the matrix elements of the local opera-
tors in (8) no longer vanish, and the result for the LCDA is
far more complicated than that displayed in (9).
Nevertheless, we obtain the same expressions for the
Wilson coefficients K�0�n and K�1�n as given above. This is
a highly nontrivial check, which gives us confidence in the
correctness of our results.

The Wilson coefficients describe the short-distance
physics associated with the large cutoff scale �UV, and
hence it was legitimate to obtain them using a partonic
calculation. Long-distance effects, on the other hand, re-
side in the hadronic matrix elements of the local operators
Qn, which cannot be calculated reliably using perturbation
theory. However, these matrix elements are constrained by
heavy-quark symmetry and can be parameterized in terms
of universal form factors [26]. The results are particularly
simple in the case of the operators Q1i. Using relations
derived in [27], we find that

h0jQ1aj �B�v�i

h0jQ0j �B�v�i
� ��;

h0jQ1bj �B�v�i

h0jQ0j �B�v�i
�

4 ��

3
; (13)

where the quantity �� � mB �mb is the only hadronic
parameter needed at this order. The first-order power cor-
rections to the momentsMN can now be expressed in terms
of ��. At one-loop order, and to subleading order in the
power expansion in 1=�UV, the results are
094028
M0 � 1�
CF
s

4�

�
�2 ln2 �UV

�
� 2 ln

�UV

�
�
�2

12

�

�
16 ��

3�UV

CF
s
4�

�
ln

�UV

�
� 1

�
;

M1 � �UV
CF
s

4�

�
�4 ln

�UV

�
� 6

�
�

4 ��

3

�
1�

CF
s
4�




�
�2 ln2 �UV

�
� 8 ln

�UV

�
�

7

4
�
�2

12

��
: (14)

These are our final expressions for the first two moments of
the renormalized B-meson LCDA. As long as �UV �

�QCD, they are model-independent predictions of QCD,
valid up to higher-order terms in 
s and 1=�UV. The fixed-
order perturbative expressions derived here are applicable
if the two scales �UV and � are of the same order, so that
the logarithms in the matching coefficients are not para-
metrically large.

Taking the derivative of the zeroth moment M0 in (14)
with respect to the cutoff, we can obtain a model-
independent description of the asymptotic behavior of the
B-meson LCDA [24], i.e.

�B
��!;�� �

dM0��UV; ��
d�UV

���������UV�!
: (15)

At one-loop order, the result reads

�B
��!;�� �

CF
s
�!

��
1

2
� ln

!
�

�
�

4 ��

3!

�
2� ln

!
�

�
� . . .

�
:

(16)

This relation holds for!� �QCD, up to power corrections
of order �2

QCD=!
3. We observe that the radiation tail of the

B-meson LCDA becomes negative at ! �
���
e
p
� for a

sufficiently large value of �. This model-independent pre-
diction for the asymptotic behavior of �B

��!;�� agrees
qualitatively with the findings of the QCD sum-rule analy-
sis in [23].
III. ELIMINATION OF THE POLE MASS

Our calculations so far have been performed in the on-
shell (pole) scheme, where �� � mB �m

pole
b is defined in

terms of the b-quark pole mass. However, it is well known
that the pole mass suffers from infrared renormalon ambi-
guities [28,29]. Hence, it is desirable to eliminate the pole-
scheme parameter �� in favor of a new, short-distance
parameter ��RS defined in some renormalization scheme.
For our purposes it is most convenient to employ a so-
called ‘‘low-scale subtracted’’ heavy-quark mass defined
with the help of a hard subtraction scale �f. Examples are
the ‘‘kinetic mass’’ [30], the ‘‘potential-subtracted mass’’
[31], the ‘‘1S mass’’ [32], and the ‘‘shape-function mass’’
[24,33]. Using the last definition as an example, we would
use the relation
-3
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�� � ��SF��f;�� ��f
CF
s

4�

�
8 ln

�f

�
� 4

�
� . . . (17)

to eliminate the pole-scheme parameter �� in the moment
relations (14), identifying the subtraction scale �f with the
cutoff �UV. As always, 
s � 
s���.

Alternatively, the moment relations themselves can be
used to define a new subtraction scheme. Guided by the
tree-level relations M1 � 4 ��=3 and M0 � 1, we are led to
define a running parameter (the subscript ‘‘DA’’ stands for
‘‘distribution amplitude’’)

�� DA��f;�� �
3M1��f;��

4M0��f;��
(18)

to all orders in perturbation theory. From (14), it follows
that

�� � ��DA��f;��
�

1�
CF
s

4�

�
6 ln

�f

�
�

7

4

��

��f
CF
s

4�

�
3 ln

�f

�
�

9

2

�
� . . . : (19)

By taking the ratio of M1 and M0 in (18) the double-
logarithmic radiative corrections are eliminated. Like the
other short-distance mass definitions mentioned above, the
parameter ��DA can be regarded as a ‘‘physical’’ quantity in
the sense that it is free of renormalon ambiguities.
Perturbative relations can be used to transform from our
new scheme to any other mass-definition scheme. For
example, from (17) and (19) it follows that at one-loop
order the parameter ��DA is related to the parameter ��SF in
the shape-function scheme through

��DA��f;�� � ��SF��; ��
�

1�
CF
s

4�

�
6 ln

�f

�
�

7

4

��

��f
CF
s

4�

�
3 ln

�f

�
�

9

2
�

4�
�f

�
: (20)

A rather precise value for ��SF has been extracted from
moment analyses of various spectra in the inclusive decays
B! Xs� and B! Xul�, yielding ��SF��; �� �
�0:65� 0:06� GeV at � � 1:5 GeV (and at leading order
in 1=mb) [33,34]. This value will be used as an input when
we compute the running parameter ��DA��f;�� from the
above relation.
IV. RENORMALIZATION-GROUP EVOLUTION

In Sec. II we have derived model-independent predic-
tions for moments of the B-meson LCDA and for its
asymptotic behavior for large !. The renormalization
group can be used to obtain a model-independent descrip-
tion of how �B

��!;�� changes under variation of the scale
�. The integro-differential evolution equation obeyed by
the LCDA was derived in [35], where an analytic solution
was presented in the form of a double integral. One finds
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that the distribution amplitude at a scale � can be ex-
pressed in terms of that at a lower scale �0 <� by

�B
��!;�� �

1

2�

Z 1
�1

dt’0�t�f�!;�;�0; it�; (21)

where

’0�t� �
Z 1

0

d!0

!0
�B
��!

0; �0�

�
!0

�0

�
�it

(22)

denotes the Fourier transform with respect to ln! of the
function�B

��!;�0� at the initial scale�0. At leading order
in perturbation theory, the kernel f takes the form

f�!;�;�0; it� � eV��;�0�

�
!
�0

�
it�g


 e�2�Eg
��1� it� g���1� it�
��1� it� g���1� it�

; (23)

where

V��;�0���
Z 
s���


s��0�

d

��
�

�
�cusp�
�

Z 



s��0�

d
0

��
0�
���
�

�
;

(24)

and

g � g��;�0� �
Z 
s���


s��0�
d


�cusp�
�

��
�
�

2CF
�0

ln

s��0�


s���
:

(25)

In these expressions� � d
s=d ln� is the �-function, and
�cusp � CF
s=�� . . . , � � �CF
s=2�� . . . are anom-
alous dimensions. The perturbative expansion of V��;�0�
at next-to-leading order can be found in [36].

Here we take a step further and simplify the solution
obtained in [35] by performing the integration over t in
(21) analytically. Substituting the expression for f from
(23), we observe that the integrand has poles situated on
the imaginary axis in the complex t plane. The poles on the
negative imaginary axis are located at t � �i�n� g� with
n 	 1 an integer (we assume 0< g< 1, which is satisfied
for all reasonable values of scales), while those on the
positive imaginary axis are located at t � in with n 	 1
an integer. Using the theorem of residues, we obtain

�B
��!;�� � eV��;�0�e�2�Eg

��2� g�
��g�

Z 1
0

d!0

!0
�B
��!

0; �0�




�
!>

�0

�
g !<

!>
2F1

�
1� g; 2� g; 2;

!<

!>

�
;

(26)

where !< � min�!;!0� and !> � max�!;!0�. The hy-
pergeometric function 2F1�a; b; c; z� has the series expan-
sion

2F1�a; b; c; z� �
X1
n�0

�a�n�b�n
�c�n

zn

n!
(27)
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with �a�n � ��a� n�=��a�. In the limit �! �0 we
have V��;�0� ! 0, g! 0, and 2F1�1� g; 2� g; 2; x� !
�1� x�2g�1. Then the right-hand side in (26) reduces to the
left-hand one.

Equation (26) provides the most compact expression
possible for calculating the evolution of the LCDA under
changes of the renormalization scale. It is tempting to
conjecture that this is the exact solution to the evolution
equation for the LCDA, valid to all orders in perturbation
theory. An analogous statement is indeed true for the
B-meson shape function [37]. In the present case, to prove
this assertion one would need to show that the exact
evolution equation for the LCDA is given by�

d
d ln�

� �cusp�
s� ln
�
!
� ��
s�

�
�B
��!;��

� �cusp�
s�
Z 1

0
d!0

!
!>

�B
��!

0; �� ��B
��!;��

j!0 �!j
; (28)

where �cusp is the universal cusp anomalous dimension of
Wilson loops with lightlike segments [38,39], and � is
some other anomalous dimension. In [35], the above rela-
tion was confirmed at one-loop order.
TABLE I. Parameters of the model function (29) for different
values of the renormalization scale

� [GeV] ��DA [GeV] !t [GeV] N !0 [GeV]

1.0 0.519 2.33 0.963 0.438
1.5 0.635 3.35 0.974 0.509
2.0 0.709 4.32 0.978 0.557
2.5 0.770 5.26 0.981 0.596
V. PHENOMENOLOGICAL MODEL

The model-independent properties of the B-meson dis-
tribution amplitude derived in this work provide useful
constraints on model building. In this section we suggest
a realistic form for �B

��!;��, which satisfies these con-
straints. For phenomenological purposes such a model is

needed at a renormalization scale of order ��
������������������
mb�QCD

q
,

as this is the characteristic ‘‘hard-collinear’’ scale for hard
spectator scattering in exclusive B decays [14,36]. Our
model consists of the two-component ansatz

�B
��!;�� � N

!

!2
0

e�!=!0 � ��!�!t�
CF
s
�!




��
1

2
� ln

!
�

�
�

4 ��DA

3!

�
2� ln

!
�

��
; (29)

where ��DA �
��DA��;�� is defined in our new scheme

(19), and we set �f � � for simplicity. The first term on
the right-hand side is based on the exponential form pro-
posed in [1], while the second piece is a radiation tail added
so as to ensure the correct asymptotic behavior as shown in
(16). The tail is ‘‘glued’’ onto the exponential at a position
!t chosen such that the resulting function is continuous.
This yields

!t �
���
e
p
�
�
1�

2 ��DA���
e
p
�
�

14 ��2
DA

3e�2 � . . .
�
: (30)

The normalization constant N and the parameter !0 can be
fixed by matching the expressions for the first two mo-
ments in (14) with the corresponding results obtained by
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substituting the model function (29) into (3), neglecting
exponentially small terms�e��UV=!0 . All remaining terms
involving the cutoff �UV are reproduced by construction,
so that the results for N and !0 are independent of the
cutoff, as they must be. At first order in 
s, we obtain

N � 1�
CF
s

4�

�
�2 ln2 !t

�
� 2 ln

!t

�
�
�2

12

�
16 ��DA

3!t

�
ln
!t

�
� 1

��

� 1�
CF
s

4�

�
1

2
�
�2

12
�

8 ��DA

3
���
e
p
�
� . . .

�
; (31)

and

!0 �
2 ��DA

3

�
1�

CF
s
4�

�
6 ln

!t

�
�

16 ��DA

3!t

�
ln
!t

�
� 1

���

�
CF
s

4�

�
!t

�
2 ln

!t

�
� 3

�
� 3�

�

�
2 ��DA

3

�
1� 3

CF
s
4�

�
� �2

���
e
p
� 3��

CF
s
4�

� . . . :

(32)

The expanded expressions for!t,N, and!0 are given only
for the purpose of illustration. The exact expressions will
be used in our numerical analysis.

The model ansatz (29) has the attractive feature that it is
to a good approximation invariant under renormalization-
group evolution. Table I collects the parameters entering
this function for different values of �, obtained using the
central value ��SF��; �� � 0:65 GeV in (20). For
� � 1 GeV and 2.5 GeV the corresponding functions are
shown in Fig. 2. For comparison, we also show the result at
� � 2:5 GeV obtained by applying the evolution formula
(26) to the model function at � � 1 GeV. Both curves are
very similar, indicating that the functional form (29) is
approximately preserved under evolution.

We have mentioned earlier that a QCD sum-rule analysis
of the B-meson LCDA at next-leading order in 
s per-
formed by Braun et al. [23] has exhibited an asymptotic
behavior similar to that of our perturbative QCD analysis.
These authors have proposed the model form
-5
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FIG. 2. Model ansatz for the B-meson LCDA at � � 1 GeV
(narrow solid curve) and 2.5 GeV (wide solid curve). The dashed
curve shows the result at 2.5 GeV obtained by evolving the
distribution amplitude from 1 to 2.5 GeV.
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FIG. 3. Two different models for the B-meson LCDA at
� � 1 GeV, constrained to have the same normalization and
first moment. The solid curve corresponds to (29), the dashed
one to (33).
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FIG. 4. Comparison of model results (black) and OPE pre-
dictions (gray) for the first two moments of the LCDA, evaluated
at � � 1 GeV and for different values of the cutoff. The solid
black curves are obtained in our model (29), the dashed ones in
the model (33) of [23].
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�B
��!;�� �

4��1
B

�
k

k2 � 1

�
1

k2 � 1
�

2�B � 1�

�2 lnk
�

(33)

at � � 1 GeV, where k � !=1 GeV. The two parameters
entering this functions are defined in terms of the integrals

��1
B �

Z 1
0
d!

�B
��!;��
!

;

B�
�1
B � �

Z 1
0
d!

�B
��!;��
!

ln
!
�
:

(34)

The parameter ranges obtained from the sum-rule analysis
are ��1

B � �2:15� 0:50� GeV�1 and B � 1:4� 0:4 at
� � 1 GeV. On the other hand, if we require that the
function (33) obey the moment constraints (14) at a large
value of the cutoff, say �UV � 3 GeV, then we find ��1

B �
�1:79� 0:06� GeV�1 andB � 1:57� 0:27. These values
are consistent with the findings of [23]. It is interesting
that, once the moment constraints are imposed, the two
models in (29) and (33) are nearly indistinguishable, in
spite of the rather different functional forms (exponential
vs powerlike fall-off). This fact is illustrated in Fig. 3.

We are now in a position to investigate how moments of
the LCDA computed using the model functions (29) and
(33) compare with the model-independent predictions (14)
of the OPE, which are valid for �UV � �QCD. In Fig. 4,
we show in black the model results for the moments M0

and M1 at � � 1 GeV as a function of the cutoff �UV. For
comparison, the gray curves show the predictions of the
OPE. We observe that our model curves quickly converge
toward the OPE predictions for �UV > 2:5 GeV. For large
cutoff values the agreement is perfect, since by construc-
tion our function has the correct asymptotic behavior. The
model of Braun et al. agrees qualitatively with the OPE for
large �UV, but exact agreement can only be enforced at a
094028
single value of the cutoff (3 GeV in our case). Note that for
small values of �UV there are significant deviations be-
tween the OPE predictions and the model results. This is
-6
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FIG. 5. Model estimates of the inverse moments ��1
B and B

for different values of the renormalization scale. The dark bands
reflect the uncertainty in the value of ��, whereas the light bands
represent an estimate of the total theoretical error. The data
points show the results obtained from the QCD sum-rule analysis
of [23].
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expected, given that the OPE is only valid for �UV �

�QCD. For �UV � 2 GeV, for example, we expect un-
known corrections of order � ��=�UV�

2 � 0:1 to M0, and
of order ��2=�UV � 0:2 GeV to M1. This is consistent with
the deviations seen in the figure.

VI. ESTIMATES FOR INVERSE MOMENTS

The ‘‘inverse moments’’ defined in (34) play an impor-
tant role in the analysis of many exclusive B-meson de-
cays. They control the strength of the leading-power
spectator interactions in leptonic decays such as B!
�l�, semileptonic decays such as B! �l�, and hadronic
decays such as B! ��. The quantity B enters these
analyses as soon as one goes beyond the tree approxima-
tion. Given that we have constructed highly constrained
models for the distribution amplitude which satisfy the
QCD predictions for moments and have the correct asymp-
totic behavior, it is interesting to ask what estimates we can
obtain for the parameters �B and B.

In Table II we collect the results for the two inverse
moments obtained using the model ansatz (29). The error
bars reflect the variation of the results with the input
parameter ��SF � �0:65� 0:06� GeV. In addition, there
are other theoretical uncertainties related to the neglect
of higher-order terms in the OPE and, more importantly,
to nonperturbative hadronic uncertainties in the precise
shape of the LCDA for small values of !. For instance,
comparing the results in the table with those obtained using
the model (33) at� � 1 GeV, we observe shifts in ��1

B and
B by 0:3 GeV�1 and 0.04, respectively. We believe that
the true theoretical uncertainties are about twice as large as
the errors shown in the table. A graphical representation of
the results is shown in Fig. 5, where the light gray bands are
an estimate of the total theoretical uncertainty.

Our findings are in good agreement with the QCD sum-
rule estimates at next-to-leading order in 
s obtained by
Braun et al. [23], indicated by the data points in the figure.
We may also compare with earlier estimates of ��1

B derived
from lowest-order QCD sum rules, where the scale depen-
dence is not controlled. Grozin et al. [1] found ��1

B �

3=�2 ��� � 2:2 GeV�1 (for a typical value
mb � 4:6 GeV), while Ball et al. [22] obtained
��1
B � 1:7 GeV. Both are consistent with our findings.
TABLE II. Inverse moments ��1
B and B calculated using the

model function (29)

� [GeV] ��1
B �GeV�1� B

1.0 2:09� 0:24 1:61� 0:09
1.5 1:86� 0:17 1:79� 0:08
2.0 1:72� 0:14 1:95� 0:07
2.5 1:62� 0:12 2:09� 0:07

094028
VII. CONCLUSIONS

Using rigorous methods based on the operator product
expansion, we have studied some model-independent prop-
erties of the B-meson light-cone distribution amplitude
�B
��!;��. We have derived explicit expressions for the

first two moments of the distribution amplitude as a func-
tion of the renormalization scale � and a hard Wilsonian
cutoff �UV applied to integrals over!. The ratioM1=M0 of
the first two moments can be used to define a physical
subtraction scheme for the parameter �� � mB �mb of
heavy-quark effective theory. This links the only nonper-
turbative hadronic parameter entering the moment predic-
tions at next-to-leading power in 1=�UV in a calculable
way to the b-quark mass. From the cutoff dependence of
the moment M0 we have derived an analytic expression for
the asymptotic behavior of the distribution amplitude for
large !� �QCD, valid at first order in 
s and at next-to-
leading order in 1=!. Finally, we have presented a new,
compact evolution formula that expresses the distribution
amplitude at some scale� in terms the function�B

��!;�0�
at a lower scale �0.
-7
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Based on our analysis we have proposed a realistic
model of the B-meson distribution amplitude, which is
consistent with the moment relations. With the help of
this function we have obtained estimates for the inverse-
moment parameters �B and B, which play an important
role in many phenomenological applications of the QCD
factorization approach to exclusive B decays. We find
��1
B � �2:1� 0:5� GeV�1 and B � 1:6� 0:2 at
� � 1 GeV with conservative errors.

We hope that our analysis will not only supply a guide-
line for understanding the B-meson distribution amplitude
without relying on a specific model, but also open a new
094028
strategy for further, more detailed studies of �B
��!;��

using a systematic short-distance approach. Ultimately,
this may help to reduce the theoretical uncertainties in
predictions for exclusive B-meson decays.
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