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Impact parameter dependent parton distributions are transversely distorted when one considers trans-
versely polarized nucleons and/or quarks. This provides a physical mechanism for the T-odd Sivers effect
in semi-inclusive deep-inelastic scattering. The transverse distortion can also be connected with Ji’s quark
angular momentum relation. The distortion of chirally odd impact parameter dependent parton distribu-
tions is related to chirally odd generalized parton distributions (GPDs). This result is used to provide a
decomposition of the quark angular momentum with respect to (w.r.t.) quarks of definite transversity.
Chirally odd GPDs can thus be used to determine the correlation between quark spin and quark angular
momentum in unpolarized nucleons. Based on the transverse distortion, we also suggest a qualitative
connection between chirally odd GPDs and the Boer-Mulders effect.
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I. INTRODUCTION

During the last few years, important breakthroughs have
been made in our understanding of T-odd single-spin
asymmetries (SSA) in semi-inclusive deep-inelastic scat-
tering (SIDIS) [1,2]. In a seminal, paper Brodsky, Hwang,
and Schmidt [3], provided a simple model calculation in
which the interference of final state interaction (FSI)
phases between different partial waves gave rise to a non-
trivial Sivers effect [4]. This calculation clearly demon-
strated that T-odd distributions can also survive in the
Bjorken limit in QCD. Following this work, the connection
between these FSI phases and the Wilson line gauge links
in gauge invariantly defined unintegrated parton densities
was recognized [5,6]. This also led to the prediction that,
up to a sign, the Sivers functions in SIDIS and polarized
Drell-Yan are the same [5]. Soon after, an intuitive con-
nection between the sign of the Sivers effect and the
transverse distortion of impact parameter dependent parton
distributions in transversely polarized targets was proposed
[7]. This connection also explained the similarity between
the light-cone overlap integrals relevant for the Sivers
effect and for the anomalous magnetic moment [8].

Generalized parton distributions (GPDs) provide a de-
composition of form factors at a given value of t, with
respect to (w.r.t.) the average momentum fraction x � 1

2 �

�xi � xf� of the active quark

Z
dxHq�x; �; t� � Fq1 �t�;

Z
dx ~Hq�x; �; t� � Gq

A�t�;Z
dxEq�x; �; t� � Fq2�t�;

Z
dx ~Eq�x; �; t� � Gq

P�t�;

(1)

where xi and xf are the momentum fractions of the quark
before and after the momentum transfer. 2� � xf � xi
represents their difference. For recent reviews, with more
precise definitions and a detailed discussion of their early
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history, the reader is referred to Refs. [9–12]. Fq1 �t�, F
q
2 �t�,

Gq
A�t�, and Gq

P�t� are the Dirac, Pauli, axial, and pseudo-
scalar formfactors, respectively. Note that the measure-
ment of the quark momentum fraction x singles out one
space direction (the direction of the momentum). There-
fore, it makes a difference whether the momentum transfer
is parallel, or perpendicular to this momentum. The GPDs
must therefore depend on an additional variable which
characterizes the direction of the momentum transfer rela-
tive to the momentum of the active quark. Usually, one
parameterizes this dependence through the dimensionless
variable �. Throughout this work we will focus on
the limiting case � � 0, where GPDs can be interpreted
as the Fourier transform of the distribution of partons in
the transverse plane (see Refs. [13–17] and references
therein).

The impact parameter dependent distributions are de-
fined as follows. First one introduces nucleon states which
are localized in transverse position space at R? (they are
eigenstates of the transverse center of momentum with
eigenvalue R?)

jp�;R?; �i �N
Z d2p?
�2��2

e�ip?R?jp�;p?; �i; (2)

where N is some normalization factor. In these localized
states, the impact parameter dependent distributions are
then defined as the familiar light-cone correlations. For
further details, see Refs. [14,16].

For example, for the impact parameter dependent distri-
bution q�x;b?� of unpolarized quarks in an unpolarized
target one finds for the distribution of quarks with momen-
tum fraction x

q�x;b?� �H �x;b?� �
Z d2�?
�2��2

e�ib?�?H�x; 0;��2
?�;

(3)

where b? is the transverse distance from the active quark
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to the transverse center of momentum

R? �
X
i

xir?;i: (4)

and �? � p0? � p?. The transverse center of momentum
is the analog of the nonrelativistic center of mass and the
sum in Eq. (4) extends over both quarks and gluons. The xi
are the momentum fractions of each parton which play the
same role that the mass fraction plays in nonrelativistic
physics. One of the remarkable features of Eq. (3) is that
there are no relativistic corrections to the interpretation of
GPDs (at � � 0) as Fourier transforms of parton distribu-
tions in impact parameter space [7]. This is due to the
presence of a Galilean subgroup of transverse boosts in the
light-front formulation of relativistic dynamics [18].
Another remarkable feature is that the impact parameter
dependent parton distributions obtained via Eq. (3) have a
probabilistic interpretation and satisfy corresponding pos-
itivity constraints [19].

For the distribution qX�x;b?� of unpolarized quarks in a
nucleon state that is a superposition of positive and nega-
tive (light-cone) helicity states

jXi �
1���
2
p �jp�;R?;�i � jp�;R?;�i	; (5)

one finds (for details see Ref. [14], where a detailed
definition of these distributions is provided)

qX�x;b?� �H �x;b?� �
1

2m
@
@by

E�x;b?�; (6)

where

E �x;b?� �
Z d2�?
�2��2

e�ib?�?Eq�x; 0;��2
?�: (7)

Up to relativistic corrections, due to the transverse local-
ization of the wave packet (these corrections will be dis-
cussed below in connection with the angular momentum
relation), this state can be interpreted as a transversely
polarized target and Eq. (7) predicts that the impact pa-
rameter dependent parton distributions give rise to a trans-
verse flavor dipole moment in a transverse polarized target.
The average magnitude of this distortion is normalized to
the anomalous magnetic moment contribution from that
quark flavor [14]. The physical origin of this distortion is
the fact that the virtual photon in DIS couples only to the
j� � j0 � j3 component of the quark density in the
Bjorken limit. For quarks with nonvanishing orbital angu-
lar momentum, the j3 component of the quark current has a
left-right asymmetry due to the orbital motion [20].

The transverse distortion of the parton distributions
exhibited in Eq. (6), in combination with an attractive final
state interaction, has been suggested as a simple explana-
tion for the Sivers effect in QCD [21,22]. Since the sign of
Eq can be related to the contribution from quark flavor q to
the anomalous magnetic moment of nucleons, Eq. (6) has
094020
been the basis for a prediction of the signs of the Sivers
effect for u and d quarks [21,22], which have been con-
firmed by the HERMES Collaboration [23].

In this work we will first discuss the connection between
the transverse distortion of GPDs and Ji’s quark angular
momentum relation [24]. This will allow us to draw a link
between chirally odd GPDs and the correlation between
the angular momentum and spin of the quarks. We also
propose a simple explanation for the Boer-Mulders effect
[25], where the asymmetry arises from the transverse dis-
tortion of chirally odd GPDs.
II. TRANSVERSE COMPONENT OF THE
ANGULAR MOMENTUM

In this section, we discuss the connection between the
transverse distortion of quark distribution in impact pa-
rameter space and Ji’s quark angular momentum relation

Ji �
1

2
"ijk

Z
d3xM0jk: (8)

The angular momentum density M��� � T��x� � T��x�

is expressed in terms of the energy momentum tensor T��.
Since the angular momentum operator is expressed in

terms of the position space moments of the energy mo-
mentum tensor, it is possible to relate Jq to the form factor
of the energy momentum tensor [24]

hp0jT��q jpi � �u�p0�
�
Aq��

2��� �p� � Bq��
2�
i���

2M
�p���

� Cq��2�
����� � g���2�

M

� �Cq��2�g��M
�
u�p�; (9)

where symmetrization of the indices � and � is implicit
and 2 �p� � p� � p0�. The label q distinguishes the form
factors of the different quark flavors or the glue. The
angular momentum relation obtained from Eqs. (8) and
(9) reads [24]

hJiqi � Si�Aq�0� � Bq�0�	; (10)

where Si is the nucleon spin. Further details can be found in
Ref. [24].

For the relation between the transverse deformation of
impact parameter dependent parton distributions and the
angular momentum, we now concentrate on the form factor
of the ‘‘good’’ component of the energy momentum tensor

hp0jT��q �0�jpi � �u�p0�
�
Aq���2

?��
�p�

� Bq���2
?�p

� i�
�i�i

2M

�
u�p�: (11)

In this work, we are mainly interested in the spin compo-
nent perpendicular to the light-cone direction, which is
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sensitive to longitudinal boosts. It is thus important to
specify the frame. Here and in the following we only
consider the special case p� � p0� � M, i.e. our results
apply to the rest frame of the target.

Application of Eq. (11) to a delocalized wave packet j i
of a transversely polarized nucleon with transverse spin Sj

yields �
 
��������Z d2b?biT��q �b?�

�������� 
�

�N "ijS
jp��Aq�0� � Bq�0�	; (12)

where N is a normalization factor depending on the wave
packet. Ideally, we would like to take the expectation value
in Eq. (12) in plane wave state with ~p � 0, but this leads to
ill defined expressions when b! 1. In order to regularize
these expressions, we thus use j i �

R
d3k � ~k�j ~k; ~Si,

where j ~k; ~Si are spin eigenstates and imagine taking the
limit where  � ~k� is nonzero only for ~k � 0 in the end of the
calculation. In the light-cone analysis, we have in mind
taking the limit kz � 0 immediately and choosing a depen-
dence on k? that is axially symmetric (depends only on
jk?j2). For the discussion in a general frame,  � ~k� �
 � ~k2
�. the actual shape of the wave functions entering these

wave packets is irrelevant after the limit ~k! 0 has been
taken. A comparison between Eq. (12) and (24) shows that
the expectation value of the angular momentum of the
quarks hJiqi in a transversely polarized delocalized state
can be related to the transverse center of momentum of the
quarks in the same state. This observation provides a
physical explanation for Ji’s result linking Jq and the
GPDs Hq�x; 0; 0� and Eq�x; 0; 0�.

Moreover, in light-cone gauge A� � 0, T�� contains no
interactions between the fields and it is natural to decom-
pose

T�� � T��q � T��g � iqy�@
�q� � Tr�@� ~A2

?�; (13)

where q� �
1
2�
���q is the good component. This pro-

vides a parton model interpretation for Ji’s quark angular
momentum relation. Upon switching to a mixed represen-
tation (momentum/ position space representation for the
longitudinal/transverse coordinate, respectively) and ex-
press the transverse shift of the center of momentum for
a particular quark flavor in terms of the impact parameter
dependent parton distributions, yielding

h jJiqj i � "ijM
Z
dx
Z
d2b?q �x;b?�xbj; (14)

where q �x;b?� is the impact parameter dependent parton
distribution evaluated in the state  .

We should emphasize that it is crucial for this argument
that we work with a delocalized state which is centered
around the origin. As a counter example, as an application
of Eq. (14), we now insert qX�x;b?� for the ‘‘transversely
094020
polarized’’ state above (6), yielding

hXjJxqjXi �
1

2

Z
dxEq�x; 0; 0�x; (15)

which is obviously only part of Eq. (10). In order to better
understand the connection between impact parameter de-
pendent parton distribution function (PDFs) and the angu-
lar momentum of the quarks, we now investigate the origin
of this discrepancy further. For this purpose we note that
the state jXi (5) is localized in impact parameter space, and
its momentum space wave packet contains an integral over
transverse momentum. However, for states with a nonzero
transverse momentum, the light-front helicity eigenstates
and the rest frame spin eigenstates are not the same.
Indeed, already for jk?j 
 M one finds [26]

jk;�iI � jk;�iF �
kR
2M
jk;�iF; (16)

jk;�iI � jk;�iF �
kL
2M
jk;�iF; (17)

where kR � k1 � ik2 and kL � k1 � ik2. The subscripts
‘‘I’’ and ‘‘F’’ refer to the spin eigenstates in the instant
as well as front form of dynamics respectively [18].
Explicit representations for instant and front form spinors
and the transformation relating them can also be found in
the appendix of Ref. [10]. As a consequence of this
‘‘Melosh rotation,’’ one should only identify the state jXi
with a state that is transversely polarized in its rest frame
up to relativistic corrections.

This well-known result has important consequences if
we consider a delocalized state that is polarized in the �x̂
direction in the rest frame

j �x̂I i �
Z
d2k? �x̂I �k?�jk?;�x̂iI (18)

�
Z
d2k?� �x̂F �k?�jk?;�x̂iF �  

�x̂
F �k?�jk?;�x̂iF	

(19)

with

 �x̂F �k?� �
�
1� i

k2

2m

�
 �x̂I �k?�;

 �x̂F �k?� �
k1

2M
 �x̂I �k?�:

(20)

For the wave packet  �x̂I �k?� in the rest frame we have in
mind an axially symmetric function that describes a state
that is delocalized in transverse position space, but cen-
tered around the origin. The longitudinal momentum k� �
k0 � k3 � M is kept fixed.

It is fallacious to believe that this effect is negligible in
the limiting case of a delocalized wave packet. Indeed, to
leading order in 1

M (higher orders in 1
M involve additional

powers of the size R of the wave packet in the denominator
-3
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and are suppressed for a large wave packet), the factor �1�
i k2

2M� implies that the corresponding position space wave
packet in the front form is shifted sideways by half a
Compton wavelength

~ �x̂F �b?� � ~ �x̂I

�
b? �

1

2M
ŷ
�
: (21)

To leading order in 1
M there is no significant effect from

 �x̂F , since all contributions to the center of momentum are
proportional to j ~ �x̂F �b?�j

2 � 1
M2 , i.e. for dimensional rea-

sons they must also be or order 1
R . The sideways shift

implies that a large axially symmetric wave packet for a
spin 1

2 particle, polarized in the �x̂ direction, that is cen-
tered around the origin in the rest frame corresponds again
to a particle polarized in the�x̂ direction in the front form,
but now the wave packet is centered around b? � � 1

2M ŷ.
For a particle that is polarized in the �x̂ direction the shift
is in the opposite direction.

This phenomenon has a number of applications. First it
explains how an elementary Dirac particle, for which

qX�x;b?� � 	�x� 1�	�b?� (22)

can yield a nontrivial result for its total angular momentum
from Eq. (14): For a state that is polarized in the �x̂
direction, and which in the instant form is described by a
wave packet ~ �x̂�b?�, the corresponding front form wave
packet is centered around b? � � 1

2M ŷ. In general, the
distribution of partons in a wave packet q �x;b?� is ob-
tained by convoluting the intrinsic distribution q�x;b?�
(relative to the center of momentum) with the distribution
j �b?�j2 resulting from the wave packet. For our example
of an elementary Dirac particle, this implies

q �x;b?� �
Z
d2r?j ~ 

�x̂
F �r?�j

2q�x;b? � r?�

� 	�x� 1�j ~ �x̂F �b?�j
2

� 	�x� 1�

�������� ~ �x̂I

�
b? �

1

2M
ŷ
���������2

(23)

plus corrections that are negligible for a large wave packet.
upon integrating over b?, one easily finds

M
Z
d2b?q �x;b?�b? �

1

2
	�x� 1�; (24)

and therefore

hJxqi � M
Z
dx
Z
d2b?q �x;b?�by �

1

2
: (25)

From the derivation it should be clear that the sideways
shift by by � 1

2M is essential for this result.
094020
The second application is to a spin 1
2 particle polarized in

the �x̂ direction with a nontrivial intrinsic distribution
qX�x;b?� �H �x;b?� � 1

2M
@
@by

E�x;b?�. In this case

q �x;b?� �
Z
d2r?j ~ 

�x̂
F �r?�j

2q�x;b? � r?� (26)

and the resulting transverse flavor dipole moment receives
contributions both from the wave packet as well as from
the intrinsic distortion. After an appropriate shift of varia-
bles one easily finds

Z
d2b?q �x;b?�b? �

Z
d2b?q�x;b?�

�
Z
d2r?j ~ 

�x̂
F �r?�j

2r?

�
Z
d2r?j ~ 

�x̂
F �r?�j

2

�
Z
d2b?q�x;b?�b?

�
1

2M
�H�x; 0; 0� � E�x; 0; 0�	: (27)

From the point of view of impact parameter dependent
PDFs, the H�x; 0; 0� contribution in Ji’s relation is thus due
to the sideways shift of the wave packet in the transition
from the instant form to the front form description

hJxqi � M
Z
dx
Z
d2b?q �x;b?�b?

�
1

2

Z
dx�H�x; 0; 0� � E�x; 0; 0�	x: (28)

Although, due to rotational invariance, the final result
holds for any component of ~Jq, in the context of impact
parameter dependent parton distributions the Ji relation
naturally emerges as a relation for J?q . In particular it
appears natural to identify the integrand of Eq. (28) 1

2 �

�H�x; 0; 0� � E�x; 0; 0�	xwith a momentum decomposition
of the transverse component of the quark angular momen-
tum in a transverse polarized target. The term containing
E�x; 0; 0� arises from the transverse deformation of GPDs
in the center of momentum frame, while the term contain-
ing H�x; 0; 0� in Ji’s relation arises from an overall trans-
verse shift when going from transverse polarized nucleons
in the instant form (rest frame) to the front form (infinite
momentum frame).
III. CHIRALLY ODD GPDS

Similar to the chirally even case, chirally odd GPDs are
defined as nonforward matrix elements of lightlike corre-
lation functions of the tensor charge
-4
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p�
Z dz�

2�
eixp

�z�hp0j �q
�
�
z
2

�
��j�5q

�
z
2

�
jpi

� HT�x; �; t� �u��j�5u� ~HT�x; �; t�"�j�
 �u
��p

M2 u

� ET�x; �; t�"
�j�
 �u

���

2M

u

� ~ET�x; �; t�"
�j�
 �u

p��

M

u: (29)

The connection between GPDs at � � 0 and parton distri-
butions in impact parameter space has recently been ex-
tended to the chirally odd sector [27]. Quarks q�x;b?; s�
with transverse polarization s � �cos�; sin�� are projected
out by the operator 1

2 �q��� � sji��j�5	q. Even for an
unpolarized target, the transversity density 	iq�x;b?�, ob-
tained from

si	
iq�x;b?� � q�x;b?; s� � q�x;b?;�s�; (30)

can be nonzero. Indeed, in Ref. [27] it is shown that

	iq�x;b?� � �
"ij

2M
@
@bj
�2 ~H T�x;b?� � ET�x;b?�	;

(31)

and

~H T�x;b?� �
Z d2�?
�2��2

e�ib?�? ~HT�x; 0;��2
?�;

ET�x;b?� �
Z d2�?
�2��2

e�ib?�?ET�x; 0;��2
?�:

(32)
FIG. 1. Distribution of transversity in impact parameter space
for a simple model (34).
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Equation (31) exhibits a nontrivial flavor dipole moment
perpendicular to the quark spinZ

d2b?	iq�x;b?�bj �
"ij

2M
�2 ~HT�x; 0; 0� � ET�x; 0; 0�	:

(33)

The resulting effect is best illustrated in a simple model
(Fig. 1)

2 ~H T�x;b?� � ET�x;b?� / exp��b2
?�: (34)

Physically, the nonvanishing transversity density in an
unpolarized target is due to spin-orbit correlations in the
quark wave functions: if the quarks have orbital angular
momentum then their ��-density is enhanced on one side,
i.e. their distribution appears shifted sideways [14,20]. For
unpolarized nucleons all orientations of the orbital angular
momentum are equally likely and therefore the unpolar-
ized quark distribution is axially symmetric. However, if
there is a correlation between the orientation of the quark
spin and the angular momentum then quarks of a certain
orientation will be shifted towards one side, while those
with a different orientation will be shifted towards a differ-
ent side.

IV. TRANSVERSITY DECOMPOSITION OF THE
ANGULAR MOMENTUM

In the discussion about the physical origin of the trans-
versity distribution in an unpolarized target, we hinted
already at a connection between the linear combination
2 ~HT � ET of chirally odd GPDs on the one hand and the
correlation of quark spin and angular momentum on the
other hand. In order to quantify this phenomenon, we are
now considering a decomposition of the quark angular
momentum with respect to quark transversity. Such a
decomposition is possible since T��q , whose form factors
enter Ji’s quark angular momentum relation [24] does not
mix quark transversity states. Indeed, if we denote positive
and negative helicity states with q! and q respectively,
one finds

T��q � i �q��D�
$
q � i �q!�

�D�
$
q! � i �q �

�D�
$
q 

�
i
2
� �q! � �q ���D�

$
�q! � q ���

1

2
� �q! � �q �

� ��D�
$
�q! � q �

� T��q;�x̂ � T
��
q;�x̂: (35)

For an arbitrary transverse spin direction the decomposi-
tion reads

T��q � i �q��D�
$
q �

X
s

i
2

�q��� � sji��j�5	D
�
$
q

�
1

2

X
s
�T��q � sj	jT��q 	 �

X
s
T��q;s ; (36)
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where the summation is over s � ��cos�; sin��, and

	jT��q � �q��j�5D
�
$
q (37)

represents the transversity asymmetry of the momentum
density. We will first present a heuristic argument for the
transversity decomposition of the angular momentum
based on the shift of parton distributions in impact parame-
ter space. However, for the sake of completeness, the
heuristic derivation is followed by a more formal deriva-
tion that parallels the approach chosen in Ji’s original paper
[24].

In the previous section we discussed that the total angu-
lar momentum carried by quarks of flavor q can be asso-
ciated with the transverse shift of the center of momentum
of those quarks in a target state that is described by a
delocalized wave packet with transverse polarization in
the rest frame. Since T��q does not mix quark transversity,
we can thus use this result to provide a decomposition of
the quark angular momentum into transversity eigenstates.

For an unpolarized target, one might naively suspect that
there is no effect from the overall sideways shift of the
transverse center of momentum discussed in Sec. II.
However, when one considers the transversity asymmetry
of the angular momentum, the contributions from the two
polarizations add up. As a result, the transversity asymme-
try in a delocalized target at rest contains a term 1

4 �R
dxHT�x; 0; 0�x. The parton model interpretation of this

term is the same as the term involving H�x; 0; 0� in Ji’s
relation and it results from an overall transverse displace-
ment of the center of light-cone momentum in a state that is
discribed by a delocalized wavepacket centered around the
origin in the rest frame.

In addition, there is the shift of the transverse center of
momentum arising from the deformation in the center of
momentum frame (31). Upon inserting Eq. (31) into (14),
and adding the effect from the overall shift, we find for the
angular momentum carried by quarks with transverse spin
in the s direction in an unpolarized target

hJiq�s�i �
1

2
hJiq � s

j	jJiqi �
sj

2
h	jJiqi

�
si

4

Z
dx�HT�x; 0; 0� � 2 ~HT�x; 0; 0�

� ET�x; 0; 0�	x: (38)

The same GPDs that describe the distribution of trans-
versity in impact parameter space also characterize the
correlation between quark spin and angular momentum
in an unpolarized target.

So far we have put special emphasis on drawing a
connection between the transverse distortion of impact
parameter dependent PDFs and the angular momentum
of the quarks. In the following we present an alternative
derivation of Eq. (38) which follows more the approach in
Ref. [24]. For this purpose we consider the form factor of
094020
the transversity density with one derivative [27,28]

hp0j �q����5iD
�$ qjpi � �u����5u �p�AT20�t�

�
"���
�� �p
 �p�

M2 �uu ~AT20�t�

�
"���
�� �p�

2M
�u�
uBT20�t�

�
"���
 �p���

M
�u�
u ~BT21�t�;

(39)

where antisymmetrization in � and � and symmetrization
in � and � is implied. The invariant form factors in
Eq. (39) are the second moments of the chirally odd GPDs

AT20�t� �
Z 1

�1
dxxHT�x; �; t�; (40)

~AT20�t� �
Z 1

�1
dxx ~HT�x; �; t�;

BT20�t� �
Z 1

�1
dxxET�x; �; t�;

�2� ~BT21�t� �
Z 1

�1
dxx ~ET�x; �; t�:

(41)

The projection operator on transverse spin (transversity)
eigenstates P�x̂ �

1
2 �1� �

x�5� commutes with both �0,
�y, and �z. Hence neither T0y

q nor T0z
q mix between trans-

versity (in the x̂ direction) and it is possible to decompose

T0y
q � T0y

q;�x̂ � T
0y
q;�x̂ (42)

w.r.t. transversity, where

T0y
q;�x̂ �

i
2

�q��0Dy � �yD0	P�x̂q �
1

2
�T0y
q � 	xT

0y
q �;

(43)

where

	xT0y
q �

i
2

�q��0Dy$ � �yD0
$
��x�5q

� �
1

2
�q��x0Dy$ � �xyD0

$
�q: (44)

The same kind of decomposition can be made for T0z
q .

Evidently, these observations allow a similar decomposi-
tion for

Jxq �
Z
d3x�yT0z � zT0y� � Jxq;�x̂ � J

x
q;�x̂: (45)

The dependence of Jxq on the transversity of the quarks is
given by

Jxq;�x̂ �
1

2
�Jxq � 	xJxq� (46)

where
-6
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	xJxq �
Z
d3x�	xT0zy� 	xT0yz�

�
1

2

Z
d3x �q����x0Dz$ � �xzD0

$
�y

� ��x0Dy$ � �xyD0
$
�z	q: (47)
The operators appearing in Eq. (47) correspond to the
operator appearing on the l.h.s. of Eq. (39) with � � x,
� � 0, � � z, and � � x, � � 0, � � y respectively. For
the expectation value of the transversity asymmetry
	xJxq � Jxq;�x̂ � J

x
q;�x̂, Eq. (39) thus implies in an unpolar-

ized target at rest
h	xJxqi �
1

2
�AT20 � 2 ~AT20�0� � BT20�0�	; (48)
which is the analogue of Ji’s result hJiqi � Si�A20�0� �
B20�0�	. The angular momentum Jx carried by quarks
with transverse polarization (transversity) in the �x̂ direc-
tion in an unpolarized target is one half of Eq. (48).
Together with (40) Eq. (48) provides an independent con-
firmation of the main result of this paper (38). While the
alternate derivation presented here is less intuitive than the
light-cone approach, it serves to illustrate that the result
obtained in Sec. II is gauge invariant and independent of
the light-cone framework.

While there exist several proposals to measure trans-
versity 	q�x� � HT�x; 0; 0�, it is not obvious how the other
chirally odd GPDs which enter our relation (38) can be
directly measured in an experiment. However, it should be
straightforward to determine these quantities in lattice
QCD calculations [29], which would provide valuable
information about the correlation between angular momen-
tum and spin of the quarks in an unpolarized target. In
addition, as we will discuss in the next section, the Boer-
Mulders effect may provide valuable information about the
form factor entering Eq. (48). Although this effect will not
allow for a quantitative experimental determination of the
relevant moments of chirally odd GPDs, it could provide
useful information on the sign and rough scale of these
observables. With this combined information it should be
possible to add another important piece of information to
our understanding of the spin structure of the nucleon.
V. BOER-MULDERS EFFECT

In analogy to the Sivers effect, where quarks in a trans-
versely polarized target have a transverse momentum
asymmetry which is perpendicular to the nucleon spin S,
it has been suggested that there could also be an asymmetry
of the transverse momentum of the quarks perpendicular to
the quark spin s in an unpolarized target [25]
094020
Sivers :

fq=p" �x;k?� � fq1 �x;k
2
?� � f

?q
1T �x;k

2
?�
�P̂� k?�  S

M
;

(49)

Boers-Mulders:

fq"=p�x;k?� �
1

2

�
fq1�x;k

2
?� � h

?q
1 �x;k

2
?�

�
�P̂� k?�  s

M

�
:

(50)

Here f?q1T �x;k
2
?� and h?q1 �x;k

2
?� are referred to as the

Sivers and Boer-Mulders function, respectively. Both the
Sivers as well as the Boer-Mulders function require a
nontrivial FSI. In Refs. [21] it has been suggested that
the transverse distortion of impact parameter dependent
(unpolarized) quark distributions in a transversely polar-
ized target can give rise to a Sivers effect. If the quarks
before they are being knocked out of the nucleon in SIDIS
have a preferential direction in position space then the FSI
can translate this position space asymmetry into a momen-
tum space asymmetry. Since the FSI is expected to be
attractive on average, this means that a transverse distor-
tion in the �x̂ direction would translate into a momentum
asymmetry in the �x̂ direction.

The distortion in impact parameter space for quarks with
flavor q can be related to �q, i.e. the contribution to the
anomalous magnetic moment (with the electric charge of
the quarks factored out) from the same quark flavor [14].
Within the heuristic mechanism for the Sivers effect de-
veloped in Refs. [21,22] one thus finds that the average
Sivers effect for flavor q and �q should have opposite signs

f?q1T ���
q: (51)

The signs for the predicted Sivers effect for u and d quarks
in a proton have recently been confirmed by the HERMES
Collaboration [23]. Furthermore, the correlation above
(51) has been observed in a number of toy model calcu-
lations as well [30].

As far as the transverse distortion of transverse polarized
quark distributions is concerned, the forward matrix ele-
ment of 2 ~HT � ET , i.e.

�qT �
Z
dx�2 ~HT�x; 0; 0� � ET�x; 0; 0�	 (52)

plays a role similar to the anomalous magnetic moment �q

for the unpolarized quark distributions on a transverse
polarized target. Indeed, �qT governs the transverse spin-
flavor dipole moment in an unpolarized target (33). Indeed,
�qT tells us, in units of 1

2M , how far and in which direction
the average position of quarks with spin in the x̂ direction,
is shifted in the ŷ direction for an unpolarized target
relative to the transverse center of momentum.
-7
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Encouraged by the success of the impact parameter
distortion based mechanism for the Sivers effect, we pro-
pose a similar semiclassical mechanism for the Boer-
Mulders effect: if �T > 0, then the distribution for quarks
polarized in the �ŷ direction is shifted towards the �x̂
direction (Fig. 1). The FSI is expected to have a qualita-
tively similar effect on deflecting this distorted position
space into the opposite direction, i.e. for �T > 0 we expect
that quarks polarized in the �ŷ direction should be pref-
erentially deflected in the�x̂ direction. In accordance with
the Trento convention (49) [31] this implies that h?q1 < 0.
More generally, we expect that on average the Boer-
Mulders function for flavor q and �qT should have opposite
signs

h?q1 ���qT: (53)

In Appendix B some of the arguments from Ref. [22] are
repeated for the case of h?q1 . For a more detailed discussion
the reader is refered to Refs. [21,22].

Furthermore, up to a rescaling by the factor �qT=�
q, we

expect the average Boer-Mulders function to be of roughly
the same scale as the Sivers function.

In the case of the transverse distortion of chirally even
impact parameter dependent parton distributions, the quan-
tity that determines the magnitude of the distortion, i.e. the
anomalous magnetic moment �q, is known experimentally
(up to uncertainties from the contribution of s quarks). In
the chirally odd case essentially nothing is known about the
corresponding quantity 2 ~HT�x; 0; 0� � ET�x; 0; 0� from ex-
periment, although the long distance tail of chirally odd
GPDs might be accessible in diffractive electroproduction
of vector meson pairs [32]. Therefore it would be very
useful to determine this quantity in lattcie QCD, so that at
least a rough estimate can be made for sign and magnitude
of the Boer-Mulders function.
VI. SUMMARY

We have studied the light-cone momentum density of a
delocalized, but axially symmetric wave packet describing
a transversely polarized particle that is at rest. Two effects
lead to deviations from axial symmetry in the resulting
momentum density. For a particle with a nontrivial internal
structure (e.g. if it has an anomalous magnetic moment)
there is an intrinsic asymmetry, relative to the particle’s
center of momentum, that is described by the GPD
E�x; 0; 0�. In addition, the center of momentum of the
whole wave packet is shifted sideways relative to the center
of instant form wave packet by half a Compton wave-
length. This sideways shift is responsible for the term
proportional to xH�x; 0; 0� in Ji’s relation.

The T�� component of the energy momentum tensor
that appears in the angular momentum relation does not
mix transversity and it is therefore possible to decompose
the angular momentum into transversity components. The
094020
information to be gained by performing this decomposition
is the correlation between the transverse spin and the
transverse angular momentum carried by the quarks. We
find that the correlation between transverse spin and angu-
lar momentum of the quarks in an unpolarized target is
described by a linear combination of chirally odd GPDs
HT�x; 0; 0� � 2 ~HT�x; 0; 0� � ET�x; 0; 0�.

The same linear combination of GPDs (2 ~HT�x; 0; 0� �
ET�x; 0; 0�) that appears in the correlation between trans-
verse spin and angular momentum of the quarks in an
unpolarized target also describes the transverse displace-
ment of quarks with a given transversity in an unpolarized
target relative to the center of momentum. We suggest that
the resulting angular dependence of the chirality density, in
combination with the final state interaction, gives rise to
the T-odd Boer-Mulders effect and we make a prediction
for the sign of the Boer-Mulders effect in terms of those
GPDs. Lattice determinations of chirally odd GPDs can
thus be used to predict the sign of the Boer-Mulders
function. Likewise, an experimental measurement of the
Boer-Mulders function could be used to learn about the
correlation between transverse spin and angular momen-
tum of the quarks in an unpolarized target.
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APPENDIX A: ANGULAR MOMENTUM AND
LIGHT-CONE MOMENTUM DENSITY

The ansatz for the form factor of the energy momentum
tensor (9) implicitly uses of Lorentz invariance. In this
appendix, we will demonstrate how these symmetries enter
the derivation of the representation of the angular momen-
tum in terms of the impact parameter dependent light-cone
momentum density T��.

We start from the expectation value of Jxq � T0z
q y� T

0y
q z

taken in a delocalized wave packet at rest. We will fur-
thermore consider the specific example where the target is
an eigenstate of the total angular momentum in the x̂
direction, i.e. up to a phase, it is invariant under rotations
about the x̂ axis. Upon performing a 90� rotation around
the x̂ axis one thus findsZ

d3rhT0y
q �r�iz � �

Z
d3rhT0z

q �r�iy (A1)

and therefore

hJxqi � 2
Z
d3rhT0z

q �r�iy: �
Z
d3rh�T0z

q �r� � Tz0q �r�	iy:

(A2)
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Likewise, performing a 180� rotation around the x̂ axis
yieldsZ

d3rhT00
q �r�iy � �

Z
d3rhT00

q �r�iy � 0;

Z
d3rhTzzq �r�iy � �

Z
d3rhTzzq �r�iy � 0

(A3)

and therefore T0z
q � Tz0q in Eq. (A2) can be replaced by

2T��q � T0z
q � T

z0
q � T

00
q � T

zz
q yielding

hJxqi � 2
Z
d3rhT��q �r�iy: (A4)

Finally, for a delocalized wave packet describing a state
with zero momentum, T��q �r is time-independent. It is thus
possible to replace

���
2
p R

dz 			! R
dx� in these integrals,

yielding a light-cone representation of the angular momen-
tum in terms of twist-2 operators

hJxqi �
���
2
p Z

dx�
Z
d2r?hT��q �r�iy (A5)

in agreement with Eqs. (12) and (14).

APPENDIX B: QUARK CORRELATIONS AND THE
BOER-MULDERS FUNCTION

In this appendix, we will follow the approach in
Ref. [22] and relate the Boer-Mulders (BM) function to
094020
color density-density correlations in the transverse plane.
The gauge invariant operator definition of the unintegrated
transversity density relevant for the BM function in SIDIS
reads

	iq�x;k?� �
Z dy�d2y?

16�3 e�ixp
�y��ik?y?hpj �qU�y�

�U�1�;y?;1�;0?	�
�i�5qU�0�jpi; (B1)

with

qU�0� � U�1�;0?;0�;0?	q�0� (B2)

�q U�y� � �q�y�U�y�;y?;1�;y?	: (B3)

The U’s are Wilson line gauge link, for example

U�0;�	 � P exp
�
ig
Z 1

0
ds��A��x��

�
(B4)

connecting the points 0 and �. The choice of paths in
Eq. (B1) is not arbitrary, but reflects the final state inter-
actions, as the ejected quark travels along the light-cone.
The gauge link segment at light-cone infinity is formally
necessary to render Eq. (B1) gauge invariant, but plays an
important role only in the light-cone gauge A� � 0, where
the segments along the light-cone do not contribute.

Following Ref. [22], we evaluate (B1) in the light-cone
gauge, yielding for the average transverse momentum
Z
d2k?	iq�x;k?�k? � �g

Z dy�

4�
e�ixp

�y�
�
p
�������� �q�y�; 0?�

�a

2
��i�5qAa

?�1
�; 0?�

��������p
�
; (B5)

where �a are the Gell-Mann matrices. In Ref. [22], a constraint condition on the gauge field at y� � 1 were derived.
Solving those to lowest order and inserting the result back into Eq. (B5) yields

Z
d2k?	iq�x;k?�k

j
? � �

g
2

Z dy�

4�
e�ixp

�y�
Z d2x?

2�
hpj �q�y�; 0?�

�a

2
��i�5q�0�

a�x?�jpi
xj

x2
?

; (B6)
where

a�x?� � g
Z
dx�

"
�gfabcAbi @�A

c
i �

X
q

�q��
�a

2
q

#

(65)

is the color charge density at position x? integrated over all
x�. The average transverse momentum can thus be related
to the transverse color density-density dipole-correlations
between the transversity density and the spin averaged
density of all partons.

Equation (B6) is equivalent to treating the FSI in first
order perturbation theory, and can, to this order, be used to
justify our intuitive picture developed above. If we study
the asymmetry at a relatively low Q2 scale and/or large x,
the correlation in Eq. (B6) should be dominated by the
valence quarks where the Gell-Mann matrices can effec-
tively be replaced by an overall color factor, which is
negative due to the attractive nature of the QCD potential
in a color singlet nucleon. Therefore, we can relate the
average transverse momentum to the color neutral density-
density correlation. If the chirally odd GPDs exhibit a large
transverse dipole moment (�T large) it almost impossible
not to get a significant density-density dipole-correlations
between the transversity density and the spin averaged
density of all partons. This is true even though we do not
expect the density-density correlation to factorize. The rest
of the argument is the same as in Ref. [22].
Nonperturbatively, both for f?1T [22] as well as for h?1 ,
we are guided more by intuition in order to arrive at
Eqs. (51) and (53).

However, there is one important difference between f?1T
and h?1 : in the case of f?1T we were able to show that the net
Sivers effect, summed over all flavors and the glue and
integrated over all momenta must vanish [33]. No such
statement can be made for h?1 .
-9
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