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The factorization properties of the radiative decays B! V� are analyzed at leading order in 1=mb
using the soft-collinear effective theory. It is shown that the decay amplitudes can be expressed in terms of
a B! V form factor evaluated at q2 � 0, light-cone distribution amplitudes of the B and V mesons, and
calculable hard-scattering kernels. The renormalization-group equations in the effective theory are solved
to resum perturbative logarithms of the different scales in the decay process. Phenomenological
implications for the B! K�� branching ratio, isospin asymmetry, and CP asymmetries are discussed,
with particular emphasis on possible effects from physics beyond the standard model.
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I. INTRODUCTION

In the standard model, the radiative b! s� transition is
suppressed and it is therefore a sensitive probe for the
effects of new physics. The total B! Xs� decay rate can
be calculated in an expansion about the heavy-quark limit
using the operator product expansion (OPE). At leading
order in the heavy-quark expansion, the total rate can be
calculated in perturbation theory and it is therefore known
rather precisely.

However, the OPE is only valid for sufficiently inclusive
observables. It cannot be used if the photon energy in the
inclusive process is restricted to the end-point region, much
less to analyze the exclusive decay B! K��. Restricted to
the region of large photon energy, the b! s transition
involves nonperturbative strong-interaction physics, even
in the heavy-quark limit. The factorization analysis retains
predictive power by organizing these nonperturbative con-
tributions in a universal and process-independent manner.
An efficient way to study these decays in the heavy-quark
expansion is to use soft-collinear effective theory (SCET)
[1–6]. In this approach, the relevant momentum regions in
the pertinent Feynman diagrams are represented by fields
in the effective theory, and the expansion of the diagrams in
momentum space translates into a derivative expansion of
the effective Lagrangian. The use of a Lagrangian makes
the structure of the interactions and the resulting factoriza-
tion properties of the amplitudes more transparent and
allows identification of the remaining nonperturbative
parts of a given process at the operator level. It provides
a simple way to resum large perturbative logarithms asso-
ciated with the different scales in the problem, by solving
the renormalization-group (RG) equations obeyed by the
effective-theory operators. For inclusive decay distribu-
tions in the end-point region, SCET has been used to obtain
a factorization theorem for the decay at next-to-leading
order in the heavy-quark expansion [7–9], an analysis
which seems prohibitively difficult on a purely diagram-
matic level.
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In the present paper, we use SCET to analyze the ex-
clusive decay B! K��, or more generally B! V�,
where V is a light vector meson. We demonstrate that, at
leading order in 1=mb and to all orders in �s, the matrix
elements of the operators Qi in the effective weak
Hamiltonian governing the decay obey the generalized
factorization formula

hV�jQijBi�T
I
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B!V?
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II
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The quantities TI and TII are perturbatively calculable
functions, appearing as Wilson coefficients of effective-
theory operators. FB!V? is a form factor evaluated at
maximum recoil (q2 � 0), and �B, �V? are light-cone
distribution amplitudes (LCDAs) for the heavy and light
mesons, respectively.

As is manifest from the factorization theorem (1), the
B! V form factors at large recoil energy are an important
ingredient in the analysis of rare exclusive B! V� de-
cays. These form factors have been analyzed in the effec-
tive theory in [10–12]. It was found that the form factors in
this energy regime contain a nonfactorizable piece, which
however is independent of the Dirac structure of the current
in the heavy-quark limit. A single function �V?�E� then
suffices to describe all B! V? form factors up to factor-
izable corrections [13,14]. The proof of the factorization
theorem (1) is achieved after showing that the nonfactor-
izable piece of the B! V� decay amplitude is given by
the same function. We will show that diagrams in which the
photon is emitted from one of the current quarks have the
same structure as those encountered in the study of heavy-
to-light form factors. Using the SCET formalism and the
results from the form-factor analysis, it is then straightfor-
ward to establish (1) for these contributions. Photon emis-
sion from the B-meson spectator quark has a more
complicated structure. Diagrams of this type develop sin-
gularities for momentum configurations where some of the
-1 © 2005 The American Physical Society
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quarks and gluons are collinear to the photon (instead of
being collinear to the meson V). Such configurations do not
appear in the form-factor analysis, and to describe them it
is necessary to include additional collinear fields in the
effective theory. We introduce a counting scheme to sys-
tematically list all operators that may contribute at a given
order in the power counting, and show that at leading
power the operator matrix elements obey (1). The match-
ing of QCD onto the effective theory is performed in two
steps: at the hard scale ��mb the operators are matched
onto an intermediate theory, SCETI. The matching of
SCETI onto the final effective theory, SCETII, is then
performed at the hard-collinear scale ��

����������
�mb

p
, where

� is a typical hadronic scale. The two-step matching
procedure makes it simpler to identify the operators ap-
pearing in SCETII and to separate the part proportional to
the form factor from the remainder. Such a two-step match-
ing is also required in order to resum large logarithms in
perturbative expansions involving both the hard and the
hard-collinear scales. The term TI in (1) involves only the
hard scale, so that large logarithms are avoided by taking
the scale ��mb. The term TII however involves both the
hard and hard-collinear scales. In this case no scale choice
is possible that avoids all large logarithms, and we perform
the necessary resummation for this term.

Operators describing spectator emission in radiative B
decays appear at leading power in the effective theory, but
in the standard model, the corresponding matrix elements
between pseudoscalar Bmesons and transversely polarized
vector mesons vanish. Such operators would contribute at
leading power to the radiative decay B� ! P� of B� into
light pseudoscalar mesons. While this decay mode is not of
phenomenological importance, it is interesting to note that,
as we will show, formula (1) extends without essential
modification to the general case of radiative B or B� decay
to a flavor-nonsinglet light meson M:

hM�jQijB���i�TIi F
B!M

�
Z 1

0

d!
!
�B�!�

Z 1

0
du�M�u�T

II
i �!;u�:

(2)

Note that the form factors and heavy-quark LCDAs for the
B and B� mesons are related in the heavy-quark limit. In
the presence of new-physics operators with a chirality
structure different from those of the standard model, the
B! V� decay amplitude receives leading-power contri-
butions associated with spectator photon emission [15],
with both left- and right-circular photon polarization. We
consider a general class of such operators and show that
they also obey the factorization formula (1). Even at lead-
ing power in 1=mb, these operators break isospin symme-
try, and they can give rise to a nonvanishing time-
dependent CP asymmetry. Measurements of these asym-
metries in exclusive radiative B decays can thus provide
094017
useful constraints on the Wilson coefficients of the asso-
ciated new-physics effective operators. For completeness,
we consider also the case of flavor-singlet final-state me-
sons. Here we find new classes of operators not appearing
in the form-factor analysis. These operators have vanishing
matrix elements between pseudoscalar B mesons and
transversely polarized final-state vector mesons, but would
in principle contribute to radiative B� decays to pseudo-
scalar final states. One class of new operators is nonfactor-
izable. Since these contributions cannot be related to form
factors, we conclude that a factorization formula such as
(2) does not hold for flavor-singlet B� ! P� decays.

For the case of B! K��, we assess the impact of
strange-quark mass effects on the predictions of the facto-
rization theorem (1). We first demonstrate the theorem for
the massless case, and then consider the perturbation
caused by a small but finite strange-quark mass, ms. We
argue that the leading corrections, linear in ms=�, simply
contribute to the universal LCDA�K�

?
and nonfactorizable

form factor �K�
?

, breaking the SU(3) flavor symmetry that
one obtains for the purely massless case. Possible correc-
tions to the form of the factorization formula (1) itself
could only appear starting at quadratic order, �ms=��2.

Factorization for the B! V� decay process has re-
ceived considerable attention in the literature. Extending
the QCD factorization formalism [16] to the case of ex-
clusive radiative decays, the formula (1) was proposed in
[17,18], where TI and TII were calculated through O��s�.
Diagrams contributing one-loop matching corrections to
TII were studied in [19], and (1) was shown to hold for
such spectator interactions through one-loop order. Other
studies include [20], and recent updates in [21–23]. Such
explicit demonstrations give important insight into the
structure of the decay process. However, an all-orders
proof of the validity of (1) is still lacking, an issue we
address in this paper using the language of SCET. In
addition to this formal aspect of establishing factorization,
the effective field-theory language has the advantage of
systematically separating higher-order perturbative correc-
tions that contribute to TI or TII. SCET achieves this
simplification by identifying the separate contributions
on the operator level, a feature which also allows the
resummation of large logarithms appearing in the pertur-
bative kernels. A previous analysis of radiative B! V�
decay using SCET [24] identified the SCETI operators
corresponding to the contributions calculated in [17,18].
However, to establish factorization one needs to construct a
complete basis of effective-theory operators that can con-
tribute to the process under consideration in the heavy-
quark limit, an issue that was not addressed in [24].
Furthermore, this analysis suffers from an incomplete
treatment of the low-energy theory, SCETII. As we will
emphasize, a demonstration of factorization must deal with
the soft-collinear messenger modes that can potentially
spoil factorization [25]. In particular, the decoupling of
-2
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soft gluons from hard-collinear fields in SCETI is not
sufficient to ensure factorization; for example, the matrix
element of the operator TF0 in [10,24] is ‘‘factorizable’’ in
this sense, but it cannot be written as a convergent con-
volution of a perturbative kernel with meson LCDAs [12].

The paper is organized as follows. In Sec. II, we discuss
the diagrammatic analysis of the decay. After identifying
the necessary momentum regions, we introduce the corre-
sponding fields and set up the effective Lagrangian. In
Sec. III, we then find the SCET operators needed to analyze
the decay at leading power. This point needs special con-
sideration, since the matching of SCETI onto SCETII in-
volves inverse derivatives counting as negative powers of
the expansion parameter. The most general operator at a
given power is determined by dimensional analysis and
longitudinal boost invariance. Aside from the contribution
of messenger modes, which communicate between the soft
and collinear sectors, this issue was addressed by Beneke
and Feldmann in their analysis of heavy-to-light form
factors [11]. We will extend their discussion to cover the
more complicated case of photon emission from the spec-
tator quark, involving two different types of collinear fields
defined with respect to opposite light-cone directions.
Using the same power-counting arguments, we analyze
the infrared messenger modes that can potentially spoil
factorization in the matrix elements defining the second
term of (1). In Sec. IV, we match the effective weak
Hamiltonian onto the list of operators derived in Sec. III.
The resulting B! V� matrix elements can be written in
the form of the factorization theorem (1). We show that the
infrared messenger modes cannot contribute to the matrix
elements defining the second term of (1), thus demonstrat-
ing that the hard-scattering kernels are free of infrared
divergences to all orders in perturbation theory. In Sec. V
we consider the phenomenological implications of our
analysis by computing the B! K�� branching fraction,
isospin asymmetry and CP asymmetry. We include the first
complete treatment of the hard-scattering terms at leading
order in RG-improved perturbation theory. We discuss the
phenomenological impact of the resummation of the lead-
ing single and double logarithms and of the inclusion of
one-loop matching corrections to the hard-scattering ker-
nel. In Sec. VI we summarize our results and present our
conclusions.
II. PERTURBATIVE ANALYSIS OF B! V�

In the standard model, the effective weak Hamiltonian
mediating flavor-changing neutral current transitions of the
type b! s has the form

H W�
GF���

2
p

X
p�u;c

V�psVpb

�
C1Q

p
1�C2Q

p
2�

X8

i�3

CiQi

�
; (3)

with
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Qp
1 � �s���1��5�p �p���1��5�b;

Qp
2 � �si���1��5�pj �pj���1��5�bi;

Q3� �s���1��5�b
X
q

�q���1��5�q;

Q4� �si���1��5�b
j
X
q

�qj���1��5�q
i;

Q5� �s���1��5�b
X
q

�q���1��5�q;

Q6� �si���1��5�b
j
X
q

�qj���1��5�q
i;

Q7��
e

8�2mb �s����1��5�bF��;

Q8��
g

8�2mb �s����1��5�T
abGa

��:

(4)

Here i and j are color indices. The effective weak
Hamiltonian for b! d transitions is obtained by replacing
s! d in the above expressions. Our sign conventions are
such that the covariant derivative acting on a down-type
quark is iD� � i@� �

1
3 eA� � gT

aAa�.
Our task is to analyze the factorization properties of the

matrix elements involving the above operators. The facto-
rization theorem (1) holds trivially for the operator Q7,
which directly maps onto the QCD tensor current. The goal
of the present paper is to show that the matrix elements of
the remaining operators can also be brought into this form.
To analyze the factorization properties of these matrix
elements, we use the reduction formulaZ
d4x

Z
d4yeipV �x�ipB�yh��p�;	�jTfJ

y
B�x�Qi�0�J

�
V �y�gj0i

�
X
	0

if�J�B
p2
B�m

2
B

if�J�V 

�
	0

p2
V �m

2
V

hV�pV;	0���p�;	�jQi�0�jB�pB�i

� � � � ; (5)

where the currents JB and JV have the quantum numbers of
the B meson and the vector meson, respectively, with
associated decay constants f�J�B and f�J�V . The ellipsis stands
for terms that do not have a pole at p2

V � m2
V with p0

V > 0
and at p2

B � m2
B with p0

B > 0. We then analyze the corre-
lator on the left-hand side perturbatively. In this analysis,
we assume that the external momenta are close to their
mass shell, p2

B �m
2
b �mb� and p2

V ��2, and that the
momentum transfers scale as pB �pV�pB �p��pV �p��
m2
b, where � remains fixed in the heavy-quark limit. The

correlator is then expanded about the heavy-quark limit.
Perturbative factorization relies on the assumption that, if
one finds that the double spectral density of the correlator
in (5) with respect to the variables p2

B and p2
V has certain

factorization properties to a given order in �=mb and to all
orders in perturbation theory, then the same is true of the
amplitude on the right-hand side of the reduction formula.
For operators such as Qc

1;2 containing charm quarks, we
-3
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need to specify how the charm-quark mass is treated in the
heavy-quark limit. We take the limit holding the ratio
mc=mb fixed.

A. Diagrammatic analysis and momentum regions

The correlator in (5) is a function of Lorentz-invariant
scalar products of the external momenta. However, to
obtain its expansion in powers of 1=mb it is advantageous
to introduce reference vectors. We introduce a unit four-
vector v� in the direction of the B meson and a lightlike
vector n� in the direction of the outgoing vector meson,
and define

�n � �
1

n � v

�
2v� �

n�

n � v

�
; (6)

so that n2 � �n2 � 0 and n � �n � 2. We decompose all
momenta into their light-cone components,

p� � n � p
�n�

2
� �n � p

n�

2
� p�? � p�� � p

�
� � p

�
?: (7)

Note that our definition implies v? � 0. Working in di-
mensional regularization, we then employ the strategy of
regions [26,27] to expand diagrams about the heavy-quark
limit. With this technique, the integrands are expanded in a
number of different momentum regions. The expansion of
the full integral is recovered after integrating the expanded
integrands and summing the contributions from the differ-
ent regions.

The momenta in the relevant regions differ by the scal-
ing of their components �p�; p�; p?�. Not surprisingly,
momentum regions in which a loop momentum has the
same scaling as an external momentum give a nonzero
contribution. These regions are

soft: �	; 	; 	�mb;

n-collinear: �	2; 1; 	�mb;

where we introduce a dimensionless expansion parameter
	��=mb. The loop momentum scales like pB �mbv in
the soft region, and in the same way as pV in the
n-collinear region. An �n-collinear region does not appear,
since p2

� � 0 (it would be present for B! K�‘�‘� if q2 �

�2). In addition to these scalings, regions with p2 	 �2

arise:

hard: �1; 1; 1�mb;

n-hard-collinear: �	; 1;
����
	
p
�mb;

�n-hard-collinear: �1; 	;
����
	
p
�mb:

The presence of two large perturbative scales—the hard
scale p2 �m2

b and the hard-collinear scale p2 �mb�—
manifests itself in the factorization formula: the hard-
scattering kernels have the schematic form T � C 
 J,
where C and J include hard and hard-collinear contribu-
tions, respectively, and the symbol ‘‘
’’ denotes a convo-
lution over momentum fractions. The �n-hard-collinear
094017
region arises in diagrams where the photon attaches to
the spectator. Off-shell propagators also appear; for ex-
ample, a momentum scaling �	; 1; 	�mb arises when a soft
and n-collinear momentum flow into the same vertex. This
will be discussed in more detail in Sec. II C. Finally, the
following low-energy region appears in the expansion of
the diagrams [25]:

n-soft-collinear: �	2; 	; 	3=2�mb:

This momentum region appears in interactions with soft
and collinear lines. The scaling of its components is the
largest compatible with both the soft and the collinear
scaling: �ps � psc�2 � p2

s and �pc � psc�2 � p2
c. Note

that �ps � pc�2 � p2
hc so that collinear lines cannot emit

or absorb soft momenta and remain collinear, or vice versa.
Since it is the only low-energy interaction connecting the
soft and collinear sectors, proving factorization to a given
order in 	 amounts to showing that there is no contribution
from the soft-collinear region to this order.

Figure 1 shows three typical contributions to the decom-
position of the correlator (5), for the chromomagnetic
operator Q8. The three rows in the figure illustrate the
soft-overlap (A), hard-scattering (B), and spectator-
emission (C) mechanisms. The two-step matching proce-
dure QCD! SCETI ! SCETII is described in the follow-
ing Secs. II B and II C.

Note that the soft-collinear region has p2 ��3=mb �
�2. It has sometimes been argued that it is ‘‘unphysical’’ to
allow for momentum regions with p2 parametrically below
�2, since nonperturbative effects would modify physics
below this scale, and that it would therefore be more
natural to perform the perturbative factorization analysis
with a hard infrared cutoff in QCD. Since the key point in
factorization proofs is precisely to show that such infrared
regions are either absent or cancel in the sum over dia-
grams, simply ignoring such modes is clearly not an op-
tion. If one chooses to introduce an infrared cutoff in QCD,
the proof of factorization becomes equivalent to the dem-
onstration of insensitivity to this regulator. However, it is
difficult to introduce such a cutoff in a gauge-invariant
way,1 and it is also doubtful whether the diagrammatic
analysis with a cutoff can be reformulated in effective-
theory language. Since the messenger fields do not con-
tribute (by definition) to factorizable quantities, and since
nonfactorizable quantities are categorized as nonperturba-
tive, nothing is gained by removing these fields in favor of
an infrared cutoff. One of the advantages of the effective-
theory approach in dimensional regularization is precisely
that the analysis can be performed without explicit mo-
mentum cutoffs.

While it is easy to see that all of the above regions are
required to obtain the expansion of the correlator diagrams,
-4



QCD
µ2 ∼ m2

b−→ SCETI
µ2 ∼ mbΛ−→ SCETII

Q8

−→ JA −→ JA

Q8

−→

JB

−→

OB

Q8

−→ JC
−→

OC

FIG. 1. Three QCD Feynman diagrams for the contributions ofQ8 and their leading-order representations in the effective theory. The
double line denotes the heavy-quark field. The dashed lines denote hard-collinear fields in SCETI and collinear fields in SCETII. Solid
lines in the effective-theory diagrams denote soft fields and the dotted line denotes a soft-collinear field.
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we do not have a proof that they are sufficient.2 Two-loop
applications in similar kinematic situations [28] suggest
that no additional regions are needed. The above list of
momentum scalings is natural in that it contains all on-
shell modes whose components n � p and �n � p scale with
powers of 	 equal to the scaling of the components of
external momenta.

Finally, let us note that the analysis of regions presented
above assumes exactly massless light quarks. A systematic
inclusion of quark-mass terms presents a challenge, since
the mode structure in the low-energy theory is then dras-
tically altered. For instance, including O��� masses would
eliminate the soft-collinear mode, but the resulting dia-
grams for the soft and collinear regions would no longer be
separately well-defined in dimensional regularization, re-
quiring additional unconventional (e.g., analytic) regula-
tors. We will return to this issue in Sec. IV C and address
the more modest question of the leading corrections for
light-quark masses mq � �. We argue that contributions
linear in the light mass may be absorbed into the hadronic
parameters appearing in the factorization formula, while
any terms that could potentially spoil factorization appear
first at quadratic order.

B. Intermediate effective theory: SCETI

In the construction of the SCET Lagrangian, an
effective-theory field is introduced for each momentum
2The same is true for traditional diagrammatic factorization
proofs. Additional momentum regions could invalidate the
analysis also in these cases.
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region. The integrands of the QCD Feynman diagrams
expanded in the various regions are then reinterpreted as
arising from the Feynman rules of the effective theory.
Furthermore, in order to ensure that the amplitudes are
appropriately expanded in momentum space, a derivative
(‘‘multipole’’) expansion is performed in the effective
action.

Note that if we had chosen the momentum of the vector
meson to be n-hard-collinear, then only the hard, n-hard-
collinear, �n-hard-collinear, and the soft region would ap-
pear in the expansion of (5). It is simpler to first consider
the situation where we count the external momenta in this
way and to introduce fields only for these regions. This is
illustrated by the middle column of Fig. 1. The correspond-
ing effective theory, called SCETI, describes QCD at or
below the hard-collinear scale, and contains the quark and
gluon fields

qs � 	3=2; A�s � �	; 	; 	�; h� 	3=2;

�hc � 	1=2; A�hc � �	; 1;
����
	
p
�;

�hc � 	
1=2; A�

hc
� �1; 	;

����
	
p
�:

(8)

The hard-collinear quarks are described by two-component
spinors satisfying 6n�hc � 6 �n�hc � 0. We have indicated in
(8) the scaling of the field components, which can be
derived from the scaling of the corresponding propagators.
No field is introduced for the hard region, as this contribu-
tion will be absorbed into the Wilson coefficients of op-
erators in the effective theory. As was shown in [5], for
diagrams involving only a single type of hard-collinear
field, in dimensional regularization there is no hard con-
-5



phc

↓
phc + k

phc

↑
phc + k

hc hc

hc hc

FIG. 2. Example of an exceptional momentum configuration
giving rise to an interaction in SCETI involving hc and hc fields.
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tribution in the pure QCD sector, since the corresponding
diagrams are scaleless and vanish. The effective
Lagrangian can then be constructed exactly, to all orders
in perturbation theory. This was done to next-to-next-to-
leading power in [29]. The same may be done in our case
with two types of hard-collinear fields, which we denote
generically as �hc and �hc. In fact, the Lagrangian for this
case is simply

L � Lhc �Lhc �Ls (9)

where Ls is given by the heavy-quark effective theory
Lagrangian for heavy quarks, and by the restriction of
the QCD Lagrangian to soft momentum modes for light
quarks and gluons. Lhc denotes the remainder containing
the hard-collinear fields and their interactions with the soft
fields, and Lhc is obtained from Lhc by interchanging n
and �n.

Note that we did not write down a Lagrangian contain-
ing interactions with both n- and �n-hard-collinear fields.
By the Coleman-Norton theorem [30], pinch singularities
can only occur in momentum configurations that can be
interpreted as classical scattering processes. By momen-
tum conservation, this cannot occur in interactions with
both n-hard-collinear and �n-hard-collinear particles unless
both types of particles are present in the initial and final
states. An example is illustrated in Fig. 2, where the
momentum k is restricted to the region k� �	; 	;

����
	
p
�.

When this skeleton diagram is inserted into loop diagrams,
an integration over k in this region involves denominators
of the form �phc? � k?�

2 � �n � phcn � k and �phc? �
k?�2 � n � phc �n � k. The contour integrals in n � k ( �n � k)
vanish if the external particles all have the same sign of
�n � phc (n � phc), and such exceptional configurations are
therefore not relevant in cases where collinear particles are
present only in the final state. The absence of such excep-
tional momentum configurations is encoded automatically
in the usual strategy of regions applied to the perturbative
expansion of the correlator (5) in dimensional regulariza-
tion. For an N-loop diagram, this strategy assigns on-shell
momentum scaling to N internal lines, with the scaling of
all remaining lines fixed by momentum conservation. The
full amplitude is recovered by performing this assignment
in all possible ways, with an unrestricted integration over
the N on-shell loop momenta. With these rules, an isolated
off-shell line such as in Fig. 2 (with momentum phc �
phc � k) cannot occur.

It is convenient to use the SCETI operators to classify
the different mechanisms through which the decay B!
V� can proceed. In contrast to the Lagrangian interactions,
there are hard matching corrections to the weak-interaction
operators in the effective theory. After performing the
matching of QCD onto SCETI, the remaining problem is
to examine in each case all possible SCETII operators that
can result. We now turn to this problem and discuss the
094017
issues involved in integrating out the hard-collinear com-
ponents of the SCETI fields.

C. Final effective theory: SCETII

Counting the external momenta as collinear, instead of
hard-collinear, the full list of regions in Sec. II A needs to
be considered. The dynamical fields in this case are the
collinear and soft fields

�c � 	; A�c � �	2; 1; 	�;

qs � 	3=2; A�s � �	; 	; 	�; h� 	3=2; (10)

as well as the soft-collinear quark and gluon fields

�� 	2; A�sc � �	2; 	; 	3=2�: (11)

The collinear and soft-collinear fields are again described
by two-component spinors satisfying 6n�c � 6n� � 0. The
small-component projection of the soft-collinear fermion
field, satisfying 6 �n� � 0, is given by

� � �
6 �n
2

1

i �n �Dsc
i 6Dsc?�: (12)

In SCETII, both the hard and hard-collinear contributions
are absorbed into the Wilson coefficients of the operators
built from the above fields. The hard-collinear contribu-
tions appear in the matching step from SCETI onto SCETII.
As in the first matching step, the pure QCD part of the
effective Lagrangian can be obtained exactly. It was con-
structed at next-to-leading power in [25].

In preparation for the discussion of general operator
bases to be considered in Sec. III, we review here the
procedure employed in integrating out the fields at the
hard-collinear scale. We begin by restricting attention to
the sector of the SCETI Lagrangian (9) involving n-hard-
collinear and soft fields. Just as matching QCD to SCETI

involved decomposing the QCD fields into their hard, hard-
collinear, and soft components, so matching onto SCETII

involves the decomposition of SCETI fields. In particular, a
generic hard-collinear field is decomposed as

�hc ! �hc ��c ��oc; (13)

where the hard-collinear, collinear, and off-shell-collinear
momenta scale as �	; 1;

����
	
p
�, �	2; 1; 	�, and �	; 1; 	�, re-

spectively. The latter momentum scaling arises from the
combination of on-shell soft and collinear momenta, see
Fig. 3. The hard-collinear and off-shell-collinear fields are
-6
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FIG. 3. Example of a SCETI diagram relevant for B! V�
decay with an off-shell-collinear gluon. The same contribution is
also depicted in the second line of Fig. 1.
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integrated out in passing from SCETI to SCETII, just as the
hard components of the QCD fields were integrated out in
passing from QCD to SCETI. Similarly, a generic soft field
is decomposed as

�s ! �s ��sc; (14)

where the soft and soft-collinear momenta scale as �	; 	; 	�
and �	2; 	; 	3=2�. In contrast to SCETI, where the soft fields
are defined to contain all modes below the soft scale, the
soft fields in SCETII are defined to contain strictly soft, and
not soft-collinear modes. This interpretation is mandated
by the appearance of a new region in SCETII. If we were to
work with explicit cutoffs, the soft fields would be required
to have n � ps of order 	 (thus excluding modes with n � ps
of order 	2), and collinear fields would be required to have
�n � pc of order unity (excluding modes with �n � pc of order
	). The situation is analogous to the passage from QCD to
SCETI, where the hard-collinear region is defined to con-
tain strictly hard-collinear, and not soft, modes.

We now expand the SCETI Lagrangian (9) using the
decompositions (13) and (14). We split the Lagrangian into
two parts, one containing the ‘‘light’’ degrees of freedom
present in the low-energy theory, and one containing
‘‘heavy’’ modes that are to be integrated out. In the first
part, Llight, we collect all terms that contain only fields that
are part of SCETII: soft, collinear, and soft-collinear fields.
Llight has been derived in [25] and is required through
O�	�:

L light � Ls �Lc �Lsc �Lint
s�sc �Lint

c�sc � � � �

� L�0�light �L�1=2�
light �L�1�light � � � � : (15)

Terms with both soft and collinear fields appear at sub-
leading power in the decomposition of the SCETI

Lagrangian, both directly in Llight, and via induced inter-
actions after integrating out off-shell modes in Lheavy

below, as discussed in [6]. However, such interactions are
not relevant to our analysis, as they do not appear in the
expansion of the correlator (5). More generally, they are
absent in cases where collinear particles are present only in
the final state, by the same reasoning as for the terms with
both n-hard-collinear and �n-hard-collinear fields in the
decomposition of the QCD Lagrangian in Sec. II B.

In the remaining part of the Lagrangian, Lheavy, we
collect all terms that involve at least one hard-collinear
or off-shell-collinear field, which will be integrated out in
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the construction of SCETII. For simplicity, in the discus-
sion of Lagrangian terms involving such heavy modes, we
work in light-cone gauge �n � A � 0 for the fields descend-
ing from Ahc (i.e., hard-collinear, collinear, off-shell-
collinear), and n � A � 0 for the fields descending from
As (i.e., soft and soft-collinear). To fully separate the
different scales, interactions involving fields with different
momentum scaling must be multipole expanded and the
off-shell-collinear fields �oc and Aoc integrated out. The
remaining on-shell fields can be assigned a definite power
counting, and the off-shell fields are expressed in terms of a
series (ordered in 	) giving the possible branchings into
these on-shell fields. For interactions of collinear with
hard-collinear fields we have

�hc�x��c�x� � �hc�x�
�
�c�x�� � x

�
?@��c�x��

�

�
x��@� �

1

2
x�?x

�
?@�@�

�
�c�x�� � � � �

�
:

(16)

Similarly, for soft and hard-collinear fields,�hc�x��s�x� �
�hc�x��s�x��, while for soft and collinear fields,
�s�x��c�x� � �s�x� � x?��c�x� � x?�.

We first expand Lheavy in powers of 	. We begin with the
tree-level case (i.e., neglecting interactions involving on-
shell hard-collinear fields), where we will find that the
solutions for the off-shell fields scale as �oc � 	3=2,
A�oc? � 	

3=2, and n � Aoc � 	2. We will then consider the
inclusion of hard-collinear fields, finding that the solutions
for the off-shell fields in this case start at one power lower
in 	:

�oc � ��
�1=2�
oc � ��1�oc � � �

�3=2�
oc � � � � ;

Aoc? � �A
�1=2�
oc? � A

�1�
oc?� � A

�3=2�
oc? � � � � ;

n � Aoc � �n � A
�1�
oc � n � A

�3=2�
oc � � n � A

�2�
oc � � � � :

(17)

The terms in parentheses only appear when branchings into
hard-collinear fields are included.

The tree-level Lagrangian begins at O�	�, and for a
complete matching at leading power we require terms
through O�	3�. With the inclusion of hard-collinear fields,
the Lagrangian begins at one power lower in 	:

L heavy � �L
�0�
heavy �L�1=2�

heavy� �L�1�heavy � � � � : (18)

Omitting the terms involving hard-collinear fields for the
moment, the leading fermion Lagrangian reads

L�1�heavy �
���3=2�
oc
6 �n
2
in � @��3=2�

oc

� f ���3=2�
oc g 6Ac?qs � ��cg 6A

�3=2�
oc? qs � H:c:g; (19)

and solving the equation of motion yields
-7
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��3=2�
oc �

�1

in � @
6n
2
g 6Ac?qs: (20)

Similarly, from the gluon terms in L�1�heavy we find

A�3=2��
oc? �

g
i �n � @in � @

fTa �qs�
�
?T

a�c � H:c:g;

n � A�2�oc �
2g
i �n � @

Ac?�; A
�
s?�:

(21)

Having found the leading terms, these solutions may be
substituted back into Lheavy, and the process iterated at the
next power in 	. The complete list of SCETII operators at

T. BECHER, R. J. HILL, AND M. NEUBERT
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leading power requires also ��2�oc and ��5=2�
oc ; these terms

themselves involve A�2�oc? and n � A�5=2�
oc . The tree-level ex-

pressions were obtained in [11].3

Beyond tree level, we must consider the branching of
off-shell-collinear fields into two or more on-shell hard-
collinear modes. At each order in 	, we expand in powers
of the coupling constant g. Only factors of g associated
with hard-scale (i.e., hard-collinear and off-shell-collinear)
gluons are included in this expansion. Anticipating that
��1=2�
oc � g and A�1=2�

oc? � g, contributions to Lheavy involving
off-shell-collinear fields begin at O�g2�. For the fermion
Lagrangian,
L�0�heavy � Lhc � ���1=2�
oc
6 �n
2
in � @��1=2�

oc �

�
���1=2�
oc
6 �n
2

�
gn � Ahc � g 6Ahc?

1

i �n � @
i@6 ?

�
�hc � H:c:

�

� ��hc
6 �n
2

�
gn � A�1�oc � i@6 ?

1

i �n � @
g 6A�1=2�

oc? � g 6A
�1=2�
oc?

1

i �n � @
i@6 ?

�
�hc �O�g3�: (22)

Solving the equation of motion yields

��1=2�
oc �

�g
in � @

�
n � Ahc � 6Ahc?

1

i �n � @
i@6 ?

�
�hc �O�g2�: (23)

From the gluon terms in L�0�heavy we find in the same manner

A�1=2��
oc? �

g
i �n � @in � @

�
Ta ��hc

6 �n
2

�
��?T

a 1

i �n � @
i@6 ? � i@6�?

1

i �n � @�
��?T

a
�
�hc �

1

2
A�hc?; i �n � @n � Ahc� � n � Ahc; i �n � @A

�
hc?�

� Ahc?�; i@�?A
�
hc? � i@

�
?A

�
hc?�

�
�O�g2�;

n � A�1�oc �
�4g

�i �n � @�2

�
1

2
A�hc?; i �n � @Ahc?�� � T

a ��hc
6 �n
2
Ta�hc

�
�O�g2�: (24)
3Expressions for our ��3=2�;�2�;�5=2�
oc are given by ��3�;�4�;�5�hc in [11].

In the decomposition of SCETI fields at tree level in this
reference, ‘‘hc’’ refers to what we call ‘‘oc.’’ Explicit expres-
sions are given there for the slightly different quantities
 �3�;�4�;�5�, which include contributions from the soft field qs
and from the small-component hard-collinear field hc in
SCETI. These terms are not part of �oc; in particular, the terms
containing qs from  �3�, �i �n � @��1�iD6 c? � gA6 s?��6 �n=2��c from
 �4� and �i6 �n � @��1gA6 �3=2�

oc? �6 �n=2��c from  �5� should not be in-
cluded in �oc.
Note that the hard-collinear fields appearing on the right-
hand side in (23) and (24) must have total transverse
momentum of order 	, even though the individual fields
have transverse momentum of order 	1=2. This constraint is
automatically enforced by the scaling of external soft and
collinear momenta in the evaluation of diagrams corre-
sponding to these interactions. Having derived ��1=2�

oc ,
A�1=2�
oc? , and n � A�1�oc to the desired order in g, these solutions

can be substituted back into Lheavy, and the procedure
iterated at the next order in 	. This process can be carried
out to any order in the power expansion. For off-shell-
collinear fields branching into hard-collinear fields, the
complete list of SCETII operators at leading power requires
also ��1�oc and ��3=2�

oc , which themselves involve A�1�oc? and
n � A�3=2�

oc . Since further subleading Lagrangian interactions
are required to convert the remaining on-shell hard-
collinear fields into soft and collinear partons, such opera-
tors are required only up to one power in 	 lower than in
the tree-level case.
Substituting the expressions (17) for the off-shell fields
into Lheavy in (18), and inserting appropriate gauge strings
to relate the expressions in light-cone gauge to those valid
in an arbitrary gauge, yields the final result for the decom-
position of the SCETI Lagrangian in the n-hard-collinear
sector. The sector of SCETI involving �n-hard-collinear
modes may be treated similarly. It is convenient to treat
the photon as being an �n-hard-collinear field in the inter-
mediate effective theory and as an �n-collinear field,
-8
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A�em�
�c? � 	, in SCETII. The final results are independent of

any power counting assigned to this field, since we work to
first order in the electromagnetic coupling. As discussed in
Sec. II A, no other �n-collinear fields appear in the B! V�
analysis. The decomposition of the SCETI Lagrangian in
this sector is obtained from (18) simply by replacing n$ �n
and dropping all other �n-collinear fields. The same ma-
nipulations as in the previous case yield the final result for
the explicitly gauge-invariant and multipole-expanded
Lagrangian in the sector involving �n-hard-collinear and
soft fields. The matching of SCETI onto SCETII is com-
pleted by substituting the solutions for the off-shell fields
into external current operators, and integrating out the
remaining on-shell hard-collinear fields. The hard-
collinear modes do not contribute additional renormaliza-
tions to the relevant part of the low-energy QCD
Lagrangian, but result in nontrivial matching conditions
for external currents. This matching is discussed in detail
in Sec. III.

As an illustration of the passage from SCETI to SCETII,
we may consider the representation of operators contrib-
uting to form-factor matrix elements. The leading-power
SCETI current operators are of the schematic form ��hch.
Using the decomposition (13) and enforcing momentum
conservation to drop the term involving a single hard-
collinear (hc) field, the mapping onto SCETII operators
is given by:

��hch! ��ch� ��och: (25)

Expanding the solution of the equation of motion for the
field ��oc as in (17), we then have diagrammatically at tree
level:

¯(3/ 2)
oc h = oc

3

≡
s3

c

¯(2)
oc h = oc

7/ 2

≡
c7/ 2

s

+

s c

c7/ 2

+

s s

c7/ 2

+

s c

s7/ 2

¯(5/ 2)
oc h = oc

4

≡
s c

c4

+

s

s

c

c4

+

s c

c

c4

+ . . . (26)
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The contribution of the leading operator ��ch� 	5=2 re-
ceives an additional suppression when inserted into corre-
lator diagrams (analogous to Fig. 1) for the form factor,
because these diagrams will always involve soft-collinear
quark lines. For example,

¯
ch= c

5/2
→ s c

s c

c
5/2 c

1/ 2 sc

+ s c
s c

c
5/2 c

sc 1/ 2

+ . . . (27)

With the additional 	3=2 suppression from subleading
Lagrangians terms in Llight describing the coupling to
soft-collinear quarks, the contribution ends up being of
order 	4, the same order as the contribution of ���5=2�

oc h.
Another example of this additional suppression relating to
B! V� is illustrated by the first row in Fig. 1, where the
operator ��ch appears in combination with subleading in-
terpolating current operators for the initial- and final-state
mesons that contain soft-collinear quarks. We will discuss
this in more detail in Sec. III.

The operators from ���5=2�
oc h� 	4 and their leading-order

matching coefficients were given in [12]. Additional terms
arise at leading power from ���5=2�

oc h for flavor-singlet final-
state mesons and have not been shown in (26). As dis-
cussed in more detail in Sec. III, these terms contain
collinear gluon fields in place of the collinear fermion
bilinear. For the remaining terms, ���3=2�

oc h� 	3 gives rise
to soft-overlap contributions in the flavor-singlet case,
connected with terms arising from ���5=2�

oc h. Similar to
��ch, the operators in ���2�och� 	7=2 receive an O�	3=2�
end-point suppression, and as a result do not contribute
at leading power.

The subleading SCETI operator ��hc@�?h may be decom-
posed in a similar way:

��hc@�?h! ��c@�?h� ��oc@�?h: (28)

However, in each case the @? derivative gives an additional
O�	� suppression relative to the operators in (25). The
remaining form-factor contributions of leading power arise
from subleading SCETI operators of the form ��hcAhc?h.
The decomposition in this case is

��hcAhc?h! ��hcAhc?h� ��cAoc?h� ��ocAc?h

� ��cAc?h� ��ocAoc?h: (29)

Again, from the expansions (17) we find at tree level:
-9
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¯
c A

( 3 / 2 )

oc⊥ h =

c
4

oc

≡

s c

c
4

¯ ( 3 / 2 )
oc A c⊥ h =

oc
4

c

≡

c c

s
4

¯
c A c⊥ h =

c
7 / 2

c

¯ ( 3 /2 )
oc A

( 3 /2 )

oc⊥ h = ( 9 /2 ) (30)

The operator ��cA
�3=2�
oc? h� 	

4 contributes hard-scattering

contributions of leading power, while ���3=2�
oc Ac?h� 	4

contributes only for flavor-singlet final-state mesons.
Because of an additional 	3=2 end-point suppression,
��cAc?h� 	7=2 cannot contribute at leading power.
Likewise, the contributions of ���3=2�

oc A�3=2�
oc? h� 	

9=2 are
also power suppressed.

This procedure can be extended beyond tree level
by integrating out the (on-shell) hard-collinear modes.
For instance, for the first term on the right-hand side of
(29),

¯
hc Ahc⊥ h =

hc5 /2

hc

→ hc hc
s c

c
5 /2 hc 1 /2

1/ 2 hc 1/ 2

+ . . .

=

s c

c4

(31)

There are also contributions where off-shell-
collinear fields branch into hard-collinear modes. For in-
stance, from the second term on the right-hand side of
(25),
094017
¯(1/ 2)
oc h = →

oc
hc

oc

hc

s c

c
+ . . .

=

hc

hc
s c

c
2

1/21/2 0
+ . . .

=

s c

c
4

(32)

oc
2

In (32) we have displayed a contribution involving the
solution for the off-shell-collinear gluon field A�1=2�

oc? sub-

stituted back into L�0�heavy in (22). While straightforward in
principle, these examples illustrate the nontrivial nature of
the SCETI to SCETII matching. Instead of explicitly inte-
grating out the hard-collinear modes, in Sec. III we will
arrive at the complete SCETII operator basis using only
general properties of the decomposition of SCETI opera-
tors. The general form is required both for explicit compu-
tations, and to demonstrate factorization properties, such as
the decoupling of leading-power soft-collinear interac-
tions. In contrast to SCETI, the power counting for opera-
tors in SCETII cannot be deduced simply by inspection of
the field content. This is illustrated by the third line of (26):
the two operators with an additional gluon field turn out to
be of the same order as the four-quark operator, due to the
nonlocalities introduced by integrating out the hard-
collinear modes, of virtuality p2 �mb�. These nonlocal-
ities manifest themselves as inverse partial derivatives,
counting like 	�1 [6]. The appearance of these derivatives
is manifest in (20) and (21), the solution of the equations of
motion for the off-shell-collinear fields. In order to pro-
ceed, we require a set of rules that can restrict the appear-
ance of such factors and, more generally, allows us to write
down the most general SCETII operators.

III. SCET REPRESENTATION OF THE WEAK
HAMILTONIAN

As discussed in the previous section, the QCD part of the
low-energy effective theory does not receive matching
corrections and can be constructed exactly. This is not
true for the operators in the weak Hamiltonian. For this
case we proceed in the usual way: we write down all
operators with the correct quantum numbers built from
the available fields, and perform perturbative matching to
the desired order. Our goal in this section is twofold: to find
-10
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the SCETII operators that contribute to B! V� decay at
leading power, and to construct the SCETI operators which
match onto these SCETII operators. The utility in identify-
ing the SCETI operators lies in the fact that the soft-overlap
contributions can be isolated already at this stage, before
further decomposition into SCETII fields. The two-step
matching procedure is also required for the resummation
of large perturbative logarithms, which we address in
Sec. V. Using building blocks defined below, it is straight-
forward to write down all SCETI operators that can con-
tribute up to a given order in 	. The situation is more
complicated for the SCETII operators: when integrating
out hard-collinear modes, inverse derivatives n � @ on the
soft fields appear [6], counting as 	�1. Despite the pres-
ence of such derivatives, we will see that only a finite
number of operators can appear to a given order in 	. A
second, practical difficulty is that the leading SCETII op-
erators are of a much higher order in 	 than the leading
SCETI operators. For example, treating the photon field as
a hard-collinear field in SCETI and as a collinear field in
SCETII, the leading operator in the intermediate theory
contributing to B! V� counts as 	5=2, while the leading
operators in the final effective theory count as 	5. Power
counting alone does not strongly constrain the possible
SCETI operators, and would leave us with a very large
number of operators in the intermediate theory, most of
which would turn out to be irrelevant upon matching onto
SCETII. We will find that counting the mass dimension of
the SCETI operators leads to much stronger restrictions.

A. Building blocks

A characteristic feature of SCET is that derivatives of
the (hard-)collinear fields corresponding to large momen-
tum components are unsuppressed, and operators with an
arbitrary number of such derivatives can appear at the same
order in the power counting. To account for this, the
operators are allowed to be nonlocal along a light ray:
for example, the SCETI representation of a QCD
operator at position x can contain the hard-collinear fields
�hc�x� s �n�, �hc�x� rn�. The Wilson coefficients of the
operators are then functions of the light-ray variables (r
and s in our example).
094017
To obtain gauge-invariant operators, the fields at differ-
ent points on the light ray must be connected by lightlike
Wilson lines (deviations of such Wilson lines from the light
cone can be expanded and appear as power-suppressed
operators). Instead of inserting these Wilson lines for
each operator, it is simpler to work with building blocks
[6,31] obtained by multiplying the fields by Wilson lines
which run along the light ray to infinity. These building
blocks will be invariant under hard-collinear gauge trans-
formations in SCETI, and under soft and collinear gauge
transformations in SCETII. We choose to work with build-
ing blocks that have simple transformations, but are not
invariant, under soft and soft-collinear gauge transforma-
tions in SCETI and SCETII, respectively. Purely gauge-
invariant quantities may be obtained by introducing addi-
tional soft or soft-collinear Wilson lines, but this will not
be necessary for our arguments, and would require the
appearance of residual Wilson-line factors in SCET current
operators. The building blocks defined here are also easier
to work with when performing explicit loop calculations.
Thus, for SCETI, we introduce the fields

Xhc�x� �W
y
hc�x��hc�x�;

A�
hc�x� �W

y
hc�x�iD

�
hc�x�Whc�x��

�
�n�

2
Wyhc�x�gn �As�x��Whc�x��gn �As�x���;

(33)

with iD�
hc � i@� � gAhc and Wilson line

Whc�x� � P exp
�
ig
Z 0

�1
ds �n � Ahc�x� s �n�

�
: (34)

Note that �n �A�
hc�x� � 0. The building blocks for the

hard-collinear fields in the opposite direction, �hc�x� and
Ahc�x�, are obtained by interchanging n and �n (and x� !
x�) in the above expressions.

The building blocks of SCETII are defined in an analo-
gous way. In this case the role of the soft fields is played by
the soft-collinear fields, and both the soft and the collinear
fields are supplied with Wilson lines:
Xc�x� � Wyc �x��c�x�; A�
c �x� � Wyc �x�iD

�
c �x�Wc�x�� �

�n�

2
Wyc �x�gn � Asc�x��Wc�x� � gn � Asc�x���;

Qs�x� � Sys �x�qs�x�; H s�x� � Sys �x�h�x�;

A�
s �x� � Sys �x�iD

�
s �x�Ss�x�� �

n�

2
Sys �x�g �n � Asc�x��Ss�x� � g �n � Asc�x���:

(35)
The collinear Wilson lineWc�x� is defined in the same way asWhc�x� in (34), except that it is constructed with the collinear
instead of the hard-collinear gluon field. The soft Wilson line is
-11
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Ss�x� � P exp
�
ig
Z 0

�1
dt n � As�x� tn�

�
: (36)

For a detailed discussion of the gauge transformation
properties of the SCETII fields and the construction of
gauge-invariant building blocks, we refer the reader to
[25]. Similar to the building blocks for the �n-hard-collinear
fields, Xhc�x� and Ahc�x�, we will also need SCETII

building blocks for which n- and �n-directions are inter-
094017
changed. The only collinear field in the �n-direction is the
photon field. However, we will need the associated soft
building blocks with Wilson lines in the �n-direction and
will denote them by Q�s�x�, H �s�x� and A �s�x�.

4

Arbitrary SCET operators are obtained by combining the
above building blocks. In products involving different
momentum modes, a derivative expansion of the fields
has to be performed [5,25]. The expansion for fields in
SCETI is as in (16), and for SCETII we have
�s�x��c�x� ! �s�x� � x?��c�x� � x?� � x� � @s�s�x� � x?��c�x� � x?� ��s�x� � x?�x� � @c�c�x� � x?�

� � � � ; (37)
4A�s�x� contains a soft-collinear gluon field in the opposite
direction. However, since there are no collinear quark or gluon
fields in the �n-direction, and since the messenger fields only
contribute in exchanges between soft and collinear particles, this
region does not contribute in B! V�.
and similarly �s�x��sc�x���s�x��sc�x��, �c�x��sc�x��
�c�x��sc�x��. For our leading-power analysis the deriva-
tive terms can be dropped, and we will suppress the
x-dependence of the various fields in the following.

B. Operators in SCET

We now present a general procedure for matching ge-
neric SCETI operators onto SCETII. The SCETI operators
are products of soft fields and hard-collinear fields in the n-
and �n-directions; schematically we may write

O � “soft”� � “n-hard-collinear”�

� “ �n-hard-collinear”�: (38)

Because the SCETI Lagrangian (9) decomposes into the
two hard-collinear sectors, each of the three brackets can
be treated separately and they match as follows:

“n-hard-collinear”� ! “n-collinear”� � “soft”�

� “soft-collinear”�;

“ �n-hard-collinear”� ! A�em�
�c? � “soft”�

� “soft-collinear”�;

“soft”� ! “soft”� � “soft-collinear”�: (39)

Physically, the reason that the sectors match separately can
be understood by picturing the decay process: at a certain
time, the heavy quark decays into two energetic partons
flying in opposite directions. Each of these two particles
can subsequently emit soft and collinear particles, but the
energetic particles from opposite directions cannot annihi-
late each other. This physical picture is formalized by the
Coleman-Norton theorem. The fact that the soft sector
matches separately follows because the soft fields are not
integrated out in the transition to SCETII. Each soft field in
SCETI is simply replaced by the sum of a soft and a soft-
collinear field in SCETII, see (14).
One complication is that the individual sectors are gen-
erally not invariant under soft gauge transformations, while
our SCETII building blocks are invariant. In most cases we
can avoid matching noninvariant operators by grouping the
‘‘soft’’ bracket together with either the ‘‘n-hard-collinear’’
or ‘‘ �n-hard-collinear’’ bracket. In the general case, we can
introduce soft Wilson lines to make each sector gauge
invariant and remove them after the matching is completed.
We shall come back to this point in Sec. III B 2.

1. Current operators

We first discuss the simplest case, namely SCETI opera-
tors of the form

O � “soft”� � “n-hard-collinear”� � A�em�

hc?
; (40)

where we use the schematic notation of (38) for the special
case where only the photon field appears in the ‘‘ �n-hard-
collinear’’ bracket. These operators arise when the photon
is emitted from one of the current quarks, but our discus-
sion does not depend on this fact. The analysis for this case
is identical to that for the current operators defining heavy-
to-light form factors. The construction of the general
SCETII operator basis relevant at leading power has been
performed in [11,12]. We now rederive these results as a
preparation for the general case, and to introduce our
method. We start by writing out a list of the lowest-
dimension current operators in SCETI. By momentum
conservation, the operators must contain at least one
hard-collinear field. We will see below that it is most
convenient to classify SCETI operators according to mass
dimension, rather than power counting in 	. Up to dimen-
sion five, we find
-12
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d � 3: Xhc�
0h �JA�;

d � 4: XhcAhc?�0h �JB�;

�qsAhc?�00h;

Xhc@hc?�0h;

XhcDs?�0h;

d � 5: XhcAhc?Ahc?�0h;

�qsAhc?Ahc?�00h;

Xhc �n � @hcn �Ahc�
0h;

Xhc
1

�n � @hc

6 �n
2

�0XhcXhc�
0h;

Xhc
1

�n � @hc

6 �n
2

�0Xhc �qs�00h;

�qs �n � @hcn �Ahc�
00h;

�qs �n � @hcAhc?
6n
2

�0h; . . . :

(41)

The symbols in parentheses, JA and JB, anticipate the
notation to be introduced in Sec. IV for the relevant
SCETI operators. We do not display transverse Lorentz
indices or color indices; the former may be contracted with
the metric and epsilon tensor in the transverse plane,

g��? � g�� �
1

2
� �n�n� � n� �n��;


��? �
1

2

���� �n�n�:

(42)

We use the convention 
0123 � �1. In the schematic no-
tation of (41), it is understood that hard-collinear deriva-
tives can act on any of the hard-collinear fields in the
operators, and similarly for soft derivatives. We do indicate
the Dirac structures that can occur in the above expres-
sions, using the following Dirac matrices that are invariant
under the ‘‘boost’’ n� ! �n� and �n� ! ��1 �n�:

�0 � f1; �5; �
�
?g;

�00 � �0 [ f6 �n6n; ��?�5; �
�
?�

�
? � �

�
?�

�
?g:

(43)

The 16 matrices 6n�0, 6 �n�0, and �00 form a Dirac basis. We
only consider boost-invariant operators; such a choice is
always possible and is also natural because the operators
we reproduce with the effective theory are independent of
the reference vectors n� and �n�.5 Operators that are not
5There are additional constraints arising from the indepen-
dence from the reference vectors. Requiring complete repara-
metrization invariance, also under n� ! n� � 
�?, yields
relations linking operators of different orders in the power
counting. Since we are concerned only with the leading order,
such transformations will not be relevant to the present
discussion.
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boost invariant can be eliminated in favor of invariant
operators obtained by multiplying them with an appropri-
ate number of derivatives �n � @hc. The last five operators of
dimension five are examples where such derivatives have
been included. The presence of these derivatives can be
compensated by the Wilson coefficients of the nonlocal
operators, for example,

Z
dsC�s� �n � @hc�hc�x� s �n��s�x�

� �
Z
ds
@C�s�
@s

�hc�x� s �n��s�x�: (44)

We did not allow for operators which explicitly involve
the vector v� in (41) because it can be eliminated in favor
of �n�, cf. (6). Furthermore, we have used the projection
properties of the spinors v6 h � h, 6nXhc � 0 to eliminate
occurrences of 6 �nh. For instance, the third operator for d �
5 is obtained by rearranging an operator with d � 4:

Xhc�
0 6 �n
2
n �Ahch � Xhc�

0

�
v6 �

6n
2n � v

�
1

n � v
n �Ahch

�
1

n � v
Xhc�

0n �Ahch

!Xhci �n � @hcn �Ahc�
0h: (45)

In the last line, we have absorbed a factor �i �n � @n � v��1

into the Wilson coefficient of the operators, as in (44). To
minimize the list of possible SCETI operators appearing
with a given dimension, it is convenient to always make
use of such rearrangements.6

For contributions arising at leading power, the SCETI

operators should not contain soft fields in addition to those
found in the final SCETII operators. Such soft fields would
not participate in the matching, and result in a power
suppression relative to the corresponding operators without
the additional soft fields. Similar arguments apply to
power-suppressed soft or collinear derivatives; an explicit
example of this effect was mentioned in (28) of Sec. II C.
Thus only the first two operators for d � 4 can be relevant
for our leading-power analysis. We have also not listed
operators of any dimension containing additional factors of
�n �Ds= �n � @hc. The ellipsis for d � 5 denotes similarly
irrelevant terms.

In order to construct all SCETII operators up to a given
power, we work with the set of building blocks in Tables I
6Another possibility would be to group the 6 �n appearing on the
left-hand side of (45) together with the heavy-quark field. Since
the heavy quark does not participate in the matching of SCETI
onto SCETII, the general SCETII operator is given by examining
the matching of a boost noninvariant operator containing
n �Ahc. This approach is taken in [11], and using a larger set
of building blocks, such operators can be shown not to contribute
at leading power.
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TABLE II. Boost-invariant building blocks for SCETII opera-
tors containing nonzero fermion number and/or soft-collinear
fields. The Dirac structures �00 are defined in (43). � is the small-
component projection of the soft-collinear fermion, as in (12).

d 	� d 	�

Xc
3
2 1 � 3

2 2
1

�n�@c
6 �n
2 �1 0 � 3

2
5
2

Qs
3
2

3
2 D�

sc? 1 3
2

1
n�@s

6 �n
2 �1 �1 �n � @cn �Dsc 2 2

�00 0 0 n � @s �n �Dsc 2 2

TABLE I. Boost-invariant building blocks for SCETII opera-
tors, with their dimension d and order 	� in the power expan-
sion. Soft derivatives @s can act on any soft field in the operator,
collinear derivatives @c on any collinear field. �0 and �00 are
defined in (43), while g��? and 
��? are defined in (42).
Additional building blocks are obtained by Hermitian conjuga-
tion or by replacing Qs with H s.

d 	� d 	�
1

�n�@c
�Xc
6 �n
2 �0 �Xc 2 2 g��? , 
��? 0 0

1
n�@s

�Qs
6n
2 �0Qs 2 2 @�c?, A�

c?, @�s?, A�
s? 1 1

�Qs�
00Qs 3 3 n � @s �n � @s, n � @s �n �As 2 2

n � @s �Qs
6 �n
2 �0Qs 4 4 �n � @cn � @c, �n � @cn �Ac 2 2

1
�n�@cn�@s

�2 �1
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and II, which are invariant under soft and collinear gauge
transformations. Again, we choose to work with boost-
invariant quantities. We will begin by using Table I to
describe the matching onto SCETII operators correspond-
ing to ‘‘typical’’ momentum configurations in which the
partons in the initial- and final-state mesons all carry O�1�
fractions of the total soft and collinear momenta, respec-
tively. Such configurations are represented by operators
with fermion content Xc�. . .�XcQs�. . .�H s. We will
then consider ‘‘end-point’’ configurations using the gener-
alization in Table II. These configurations occur when the
momentum fraction carried by one of the partons tends to
zero, so that the parton may be absorbed from the initial
into the final state without hard momentum transfer. In
particular, we will find configurations represented by op-
erators with fermion content Xc�. . .�H s. In both cases,
using the counting rules for the building blocks containing
soft-collinear fields described by the second column in
Table II, we will show that the operators representing the
weak current at leading power do not contain soft-collinear
modes. At leading power, soft-collinear modes appear only
in time-ordered products of the weak current with sublead-
ing SCETII Lagrangian interactions, and with subleading
terms in the interpolating currents for the meson states.

The presence of the building block �n � @s �n � @c��1,
which counts as an inverse power of 	, is troubling at first
sight. Naively, one could think that there would be infi-
nitely many operators of a given dimension and order in 	.
However, this is not the case: if an inverse derivative
�n � @s �n � @c�

�1 is added to a given operator, then it is
necessary to also add two other building blocks with d �
1 or one building block with d � 2 at the same time to
obtain an operator of the same dimension. As is evident
from the tables, this inevitably makes the resulting operator
at least one power in 	 higher than the operator without the
inverse derivative. In fact, from Table I we see that for
operators involving only soft and collinear fields, with zero
fermion number in both the soft and collinear sectors, the
difference between the dimension of the SCETI operators
and the order in SCETII power counting is given precisely
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by the number of occurrences of the building block
�n � @s �n � @c�

�1.
We focus first on the case of flavor-nonsinglet final

states and will then discuss the modifications necessary
for the flavor-singlet case. We begin by considering
SCETII operators with fermion field content
Xc�. . .�XcQs�. . .�H s, corresponding to typical partonic
configurations inside the initial- and final-state soft and
collinear mesons. Using Table I, and the fact that SCETI

operators have dimension d � 3, it follows that leading-
power contributions from these configurations are O�	4�.
Later we will discuss other possible end-point configura-
tions, finding that they also appear at the same order in
power counting. From Table I we see that, with the ex-
ception of �n � @s �n � @c�

�1, the building blocks satisfy
	� � d, so that leading-power operators of a given dimen-
sion must be generated with the minimal number of occur-
rences of this building block. Starting with the SCETI

operator in (41) of dimension three, we find that the
appropriate fermion field content cannot be obtained while
remaining at d � 3 without at least one occurrence of the
inverse derivative. The two possibilities at O�	4� are then

JA !
1

�n � @cn � @s

�
1

�n � @c
Xc
6 �n
2

�0Xc

��
1

n � @s
Qs
6n
2

�0H s

�
� f@�c?;A

�
c?; @

�
s?;A

�
s?g (46)

and

JA !
1

�n � @cn � @s

�
1

�n � @c
Xc

�6n
2

�0Xc

�
Qs�

00H s: (47)

As in the tables, the notation is schematic: it is understood
that the soft derivatives can act on any of the soft fields, and
the collinear derivatives on any of the collinear fields.
Using the equation of motion for the soft light-quark field,
the above possibilities result in four independent operators,
whose explicit forms are given in [12]. Their matrix ele-
ments can be expressed in terms of (end-point-divergent)
convolution integrals involving twist-2 and twist-3, two-
and three-particle, LCDAs of the B meson and the light
-14
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meson. The matching relations (46) and (47) are repre-
sented by the term ���5=2�

oc h, shown at tree level in (26).
Next, let us consider the SCETI current operators of

dimension four. First, we observe that the operator
�qsAhc?�00h does not match onto a leading order SCETII

operator. Its soft bracket �qs�00h is of order 	3 and remains
unchanged in the matching. The gluon field Ahc? must
then match onto a d � 1 operator with collinear field
content Xc�. . .�Xc. Inspection of the table shows that
such an operator is of order 	2, making the overall operator
subleading. The only possibility to obtain a leading SCETII

operator at d � 4 is

JB !
�

1

�n � @c
Xc
6 �n
2

�0Xc

��
1

n � @s
Qs
6n
2

�0H s

�
: (48)

At tree level, the matching (48) is represented by the term
��cA

�3=2�
oc? h in (31). At dimension five there are no possibil-

ities for leading-power SCETII operators, due to the con-
straint 	� � d. We thus need the SCETI operators only
through d � 4 for leading-power matching. Finally, from
the second column in Table II, we note that replacing any
of the soft or collinear fields in (46)–(48) by soft-collinear
fields results in power suppression.

Our analysis has so far relied on the assumption that
the field content of the SCETII operator is
Xc�. . .�XcQs�. . .�H s, corresponding to typical parton
configurations. We now consider possible end-point con-
tributions, corresponding to SCETII operators with fermion
field content Xc�. . .�H s. For this purpose, we consider the
building blocks in the first column of Table II, which
generalize the first column of Table I to allow the possi-
bility of nonzero fermion number in the soft and collinear
sectors. Starting with the SCETI operator in (41) of dimen-
sion three, the leading SCETII operator is

JA !Xc�
0H s � 	5=2: (49)

Again, from the second column in Table II we note that
replacing any of the soft or collinear fields in (49) by soft-
collinear fields results in power suppression. The operator
in (49) can yield a leading-power contribution to the form-
factor analogue of the correlator (5) when combined with
leading-power meson currents and subleading Lagrangian
interactions involving the soft-collinear modes [12].
Essentially, these interactions are summarized by the
term Sinduced�3=2�

s�c in the effective action of [25].7 Leading
contributions can also arise from subleading meson cur-
rents and leading Lagrangian interactions. A contribution
of this type to the B! K�� amplitude is illustrated in the
7More precisely, in the presence of the external weak current,
the vacuum correlator of soft-collinear fields defining Sinduced

s�c
includes an extra soft-collinear Wilson loop SyscWsc [12,32].
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first line of Fig. 1. The interpolating current for the B
meson takes the form

�b�5q!H s�
00Qs �H s�

00��H s�
00�� � � �

� 	3 � 	7=2 � 	4 � . . . ; (50)

where the small-component projection � of the soft-
collinear fermion field is related to � as in (12). Similarly
for the light meson, taking, for example, the pseudoscalar
case,

�q�5
6 �n
2
q!Xc

6 �n
2

�0Xc � ��
6 �n
2

�0Xc � � � �

� 	2 � 	3 � � � � : (51)

The subleading currents for both mesons suppress the
contribution of Xc�

0H s by 	3=2, so that it ends up being
of the same order as the contribution of the four-quark
operators. Finally, mixed cases can also occur, where an
O�	1=2�, or O�	�, suppressed meson current from (50) or
(51) is combined with an O�	�, or O�	1=2�, suppressed
Lagrangian interaction, respectively. The relevant
Lagrangian interactions in this case are given by Lint

c�sc
and Lint

s�sc in [25]. By the same reasoning, we find that all
such end-point configurations arising from the d � 4
SCETI operator JB in (41) are power suppressed.

Before ending our discussion of heavy-to-light form
factors, we consider the case of flavor-singlet final states.
Operators corresponding to typical partonic configurations
again have zero collinear fermion number, but may contain
collinear gluon degrees of freedom in place of the fermion
bilinear Xc�. . .�Xc. Requiring also that the collinear fields
carry the appropriate twist and color quantum numbers to
have overlap with the final-state collinear meson, there
must be at least two such collinear gluon fields. From
Table I we see that the new operators are obtained by the
replacements�

1

�n � @c
Xc
6 �n
2

�0Xc

�
f@�c?;A

�
c?; @

�
s?;A

�
s?g

!

�
Ac?Ac?f@

�
c?;A

�
c?; @

�
s?;A

�
s?g;

�n � @c n �AcAc?

�
(52)

in (46), and by the replacement�
1

�n � @c
Xc
6 �n
2

�0Xc

�
!Ac?Ac? (53)

in (47) and (48). From the leading SCETI current, there
will also be new SCETII operators that combine with
subleading soft-collinear Lagrangian interactions and me-
son currents to yield leading-power contributions. From
Tables I and II, we find that at leading power the new
operators are obtained by the replacement
-15
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X c !Qs
1

n � @s

6n
2
Ac? (54)

in (49). Although the right-hand side of (54) scales as 	3=2

(compared to the left-hand side, which scales as 	), leading
contributions to form-factor matrix elements may still be
obtained from subleading Lagrangian interactions involv-
ing the soft-collinear modes, which in this case are essen-
tially summarized by the term Sinduced�1�

s�c of the effective
action in [25].

2. General operators

After this warm-up, we are ready to discuss the general
case where the photon is not necessarily part of the SCETI

operator. The new operators appearing in this case corre-
spond to photon emission from the spectator quark. The
argumentation will be similar to the previous section;
however, we will have to match also the �n-hard-collinear
part in (39):

“n-hard-collinear”�! A�em�
c? � “soft”�

� “soft-collinear”�:
(55)

The building blocks needed in this case are obtained from
Tables I and II by exchanging n and �n, dropping the col-

T. BECHER, R. J. HILL, AND M. NEUBERT
094017
linear quark fields, and replacing the collinear gluon with
the photon field. Note that the definition of the soft fields
then involves Wilson lines in the �n-direction. To distin-
guish them from the soft fields appearing in conjunction
with the n-collinear sector, we denote them by H �s, Q�s,
and A �s. We also recall that the SCETI building blocks
introduced in (33) are not invariant under soft gauge trans-
formations; strictly gauge-invariant combinations are
given by

X �0�
hc �x� � Sys �x��Xhc�x�;

A�0��
hc �x� � Sys �x��A

�
hc�x�Ss�x��;

(56)

with the soft Wilson line defined in (36). In general, the
fields contained in the ‘‘n-hard-collinear’’ and ‘‘ �n-hard-
collinear’’ brackets in (38) are not separately gauge invari-
ant. In order to match onto the building blocks in Tables I
and II in the general case, we first translate to the gauge-
invariant combinations appearing in (56).

Let us again start by writing down a list of the relevant
SCETI operators. By momentum conservation, they must
have at least one n-hard-collinear and one �n-hard-collinear
field in addition to the heavy-quark field, and therefore
start with dimension d � dn � d �n��ds� � 4:
d � 4 �

(
3� 1: XhcAhc?�0h �JA�;

1� 3: XhcAhc?�0h �JD�;

d � 5 �

8>>>>>>>>>>>><>>>>>>>>>>>>:

4� 1: XhcAhc?Ahc?�0h �JB�;

3� 2: XhcAhc?Ahc?�0h;
�

1
n�@

hc
Xhc

6n
2 �0Xhc

�
Xhc�

0h;

2� 3:
�

1
�n�@hc

Xhc
6 �n
2 �0Xhc

�
�Xhc�

0h �JC�; XhcAhc?Ahc?�0h �JE�;

1� 4: XhcAhc?Ahc?�0h;

1� 1� 3: �qsAhc?Ahc?�00h:

(57)
The symbols JA; . . . ; JE in parentheses anticipate the no-
tation to be introduced for these operators in Sec. IV. In
constructing this list, we made the same simplifications as
in (41) for the form-factor case. In the above operators the
field Ahc stands for either the photon or a gluon field,
which are treated on the same footing. In SCETII, we treat
the photon as a collinear field in the �n-direction, A�em�

�c? �
	. Since it appears only once in each operator, we are free
to make such a scaling assignment.

In the above list of operators, we have separately indi-
cated the mass dimensions of fields in the n-hard-collinear,
�n-hard-collinear, and soft brackets, respectively. In those
cases where the only soft field is the heavy-quark field, we
have included it in one of the hard-collinear sectors in such
a way that both hard-collinear brackets carry zero fermion
number. SCETII operators with zero fermion number can
be constructed from the building blocks in Table I which
fulfill 	� � d. Beyond d � 5, operators appear which
cannot be arranged to have zero fermion number in each
hard-collinear sector. For example,

d � 6: Xhc�
0XhcXhc�

0h;

Xhc�
0XhcXhc�

0h; . . . : (58)

In Table II we have generalized the first column of Table I
to include building blocks with nonzero fermion number,
by splitting the various fermion bilinears in two halves in
all possible boost-invariant ways. With the exception of
Xc, all building blocks again satisfy 	� � d. In fact, since
Xc�

00Xc � 0, the operator constructed from the n- and �n-
hard-collinear sectors must contain a factor � �n � @c��1 6 �n=2,
so that the bound 	� � d is recovered in the final operator.
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SCETI operators with d � 6 are therefore not relevant to a leading-power analysis.
For the n-hard-collinear sector, we may use Table I to list the leading-power matching relations onto operators with

minimal collinear field content Xc�. . .�Xc. This yields

dn � 1: Ahc? ! Ss

�
1

�n � @cn � @s

�
1

�n � @c
Xc
6 �n
2

�0Xc

�
As?

�
Sys � 	2

dn � 2:

8<: Ahc?Ahc?;

1
�n�@hc

Xhc
6 �n
2 �0Xhc

9=;! 1

�n � @c
Xc
6 �n
2

�0Xc � 	
2

dn � 3: Xhc�
0h !

8>>><>>>:
1

�n�@cn�@s

�
1

�n�@c
Xc

6 �n
2 �0Xc

�
Qs�

00H s;

1
�n�@cn�@s

�
1

�n�@c
Xc

6 �n
2 �0Xc

��
1
n�@s

Qs
6n
2 �0H s

�
f@�c?;A

�
c?; @

�
s?;A

�
s?g

9>>>=>>>;� 	
4

dn � 4: XhcAhc?�0h !

�
1

�n � @c
Xc
6 �n
2

�0Xc

��
1

n � @s
Qs
6n
2

�0H s

�
� 	4:

(59)

Note the presence of the soft Wilson lines, Ss�. . .�Sys , for the dn � 1 case in (59). These factors are required in order to
preserve soft gauge invariance, and can be derived via the field redefinitions (56). For the case of flavor-singlet final states,
we may again build additional operators using the replacements (52) and (53). Also, in the cases dn � 1 and dn � 3,
operators with collinear field content Ac? appear at one order lower in 	 than those listed in (59), and can combine with
subleading Lagrangian interactions to yield leading-power contributions, cf. (54).

Similarly, in the �n-hard-collinear sector, using the analogue of Table I, we find the leading operators with �n-collinear
field content A�em�

�c? :

d �n � 1: Ahc? !A�em�
�c? � 	

d �n � 2:

8<:
Ahc?Ahc?;

1
n�@

hc
Xhc

6n
2 �0Xhc

9=;!A�em�
�c? A �s? � 	

2

d �n � 3: Xhc�
0h !A�em�

�c?

�
1

�n � @s
Q�s
6 �n
2

�0H �s

�
� 	3

d �n � 4: XhcAhc?�0h !A�em�
�c? Q�s�

0H �s;A
�em�
�c?

�
1

�n � @s
Q�s
6 �n
2

�0H �s

�
f@s?;A �s?g � 	4:

(60)
Note that the soft Wilson lines appearing in the SCETII

building blocks in (60) are in the opposite direction com-
pared to those in (59).

Returning now to (57), we find that dimension-four
operators with d � dn � d �n � 3� 1 (JA) or d � 1� 3
(JD) can contribute at leading power. Similarly, at dimen-
sion five, those operators with d � 4� 1 (JB) or d � 2�
3 (JC, JE) can contribute at leading power. The operators
with d � 3� 1, d � 4� 1 and d � 1� 1� 3 have been
treated already in Sec. III B 1. They correspond to the case
where the SCETI operator contains the photon field. The
remaining operators, with d � 1� 3 and d � 2� 3, rep-
resent new contributions corresponding to emission of the
photon from the spectator quark.

IV. MATCHING AND FACTORIZATION

In the previous section, we have found all effective-
theory operators that can contribute to the decay amplitude
094017
at leading power. Our analysis was concerned with the field
content of the operators and the occurrence of inverse
derivatives in SCETII, but we have not yet specified their
color and Dirac structures. In this section, we present
the relevant operators in all detail. We evaluate the
Wilson coefficients necessary for the phenomenological
discussion in Sec. V and show that the resulting matrix
elements can be brought into the form of the factorization
theorem (1).

A. SCETI matching

We collect here the relevant SCETI operators as derived
in Sec. III. Again, we first consider the operators represent-
ing photon emission from one of the current quarks and
then discuss those operators corresponding to emission
from the spectator quark. We initially restrict our attention
to flavor-nonsinglet final-state mesons. The additional op-
erators that arise for flavor-singlet final states are consid-
ered separately at the end.
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1. Photon emission from the current quarks

Two SCETI operators are relevant for the case of photon
emission from the current quarks, given by the d � 3� 1
and d � 4� 1 entries in (57). For the first of these, we
write

JA�x; s; a� �Xhc�x� � s �n� x?��1� �5�

� 6A�em�

hc?
�x� � an� x?�h�0�e

�imbv�x: (61)

In order not to overburden the notation, we refrain from
indicating the flavor of the light-quark field. The depen-
dence on the parameters s and a arises because the n-hard-
collinear fields are allowed to live at arbitrary points on the
�n-light-cone, and the �n-hard-collinear fields at arbitrary
points on the n-light-cone (cf. the discussion in
Sec. III A). Furthermore, the position arguments of the
fields have been multipole expanded, as appropriate for a
product of fields �hc�hc�s:

�hc�x��hc�x��s�x� � �hc�x� � x?��hc�x� � x?��s�0�

� � � � ; (62)

yielding the peculiar x dependence of the fields in (61).
We use translational invariance to set x � 0 and sup-

press the position argument in the following. The repre-
sentation of the weak Hamiltonian for photon emission
from the current quarks reads

H current
W !

Z
ds
Z
da ~CA�s; a�JA�s; a�

�
X
j�1;2

Z
ds
Z
dr
Z
da ~CBj �s; r; a�J

B
j �s; r; a�

� � � � ; (63)

with the ellipsis denoting terms not relevant to a leading-
power analysis. Here

JA�s; a� � Xhc�s �n��1� �5� 6A
�em�

hc?
�an�h�0�;

JB1 �s; r; a� �Xhc�s �n��1� �5� 6A
�em�

hc?
�an� 6Ahc?�r �n�h�0�;

JB2 �s; r; a� �Xhc�s �n��1� �5� 6Ahc?�r �n� 6A�em�

hc?
�an�h�0�:

(64)

We define Fourier-transformed Wilson coefficients as

CA�E;E���
Z
ds
Z
daeis �n�Peian�P� ~CA�s;a�;

CBi �E;E�;u��
Z
ds
Z
dr
Z
daei�us� �ur� �n�Peian�P� ~CBi �s;r;a�;

(65)
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where E � n � v �n � P=2 and E� � n � P�=�2n � v�. The
quantity �n � P is the large component of the total outgoing
n-hard-collinear momentum, and similarly n � P� is the
large component of the outgoing photon momentum. We
will suppress these quantities in the arguments of the
Wilson coefficients in the following. The variable u de-
notes the fraction of the large component of the n-hard-
collinear momentum carried by the quark field, and �u �
1� u is the fraction carried by the gluon field. The Wilson
coefficients receive contributions from different weak-
interaction operators, and we give separate matching re-
sults, �iC

A and �iC
B
1;2, for the different Qi in (3). For b!

s transitions we have

CA��� �
GF���

2
p

X
p�u;c

V�psVpb

� X
i�1;2

Ci��QCD��
p
i C

A��QCD; ��

�
X8

i�3

Ci��QCD��iC
A��QCD; ��

�
: (66)
The same expression with s! d gives the coefficient for
b! d transitions. Analogous expressions define �iC

B
1;2.

We will concentrate on the phenomenologically most rele-
vant operators, which are Q7, Q1, and Q8. The scale �QCD

is the scale at which QCD and the effective weak
Hamiltonian are matched onto SCETI, and � is the renor-
malization scale in the effective theory.

The matching coefficients for Q7 are obtained directly
from the form-factor analysis and are given as

�7CA �
e �mbE�

4�2

�
�2CAT1 �

1

2
CAT2 � C

A
T3

�
;

�7C
B
1 �

e �mbE�
8�2E

�
1

2
CB

0

T6 � C
B0
T7

�
;

�7CB2 �
e �mbE�
8�2E

�
1

2
CB

0

T2 � C
B0
T3

�
:

(67)
The tensor-current Wilson coefficients have been calcu-
lated through one-loop order, for CATi�E� in [2,33], and for
CBTi�E; u� in [33,34]. Explicit expressions for the combina-
tions appearing in (67) are listed in the appendix. In the
above expressions, the MS quark mass must be evaluated at
the QCD matching scale, i.e., �mb � �mb��QCD�. For the
process B! V�, we have 2E� � mB�1�m2

V=m
2
B� and

2E � mB, with E� and E defined after (65).
For the operators Qq

1 (q � u; c) and Q8, we may deduce
the one-loop matching onto A-type operators from results
available in the literature [35,36]. We find
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(b)
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FIG. 5. Leading-order QCD diagrams for the matching of Qp
1;2

and Q8 onto JCi .

Q1 Q1

(a)

Q8

(b)

FIG. 4. Leading-order QCD diagrams for the matching of Q1

and Q8 onto JBi . Other diagrams are power suppressed or vanish.
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�q
1C

A �
�sCF

4�
G1�xq��7CA;

�8CA �
�sCF

4�
G8�7CA;

(68)

where xq � �m2
q=m2

b (we set mu � 0). The expressions for
G1�x� and G8 are the same as those in [18], and for
convenience are reproduced in the appendix. The B-type
matching is obtained from the diagrams in Fig. 4, from
which we find

Figure 4�a�: �q
1C

B
1 �u� �

E�
4�2

2e
3
f
�

�m2
q

4 �uEE�

�
;

�q
1C

B
2 �u� � ��q

1C
B
1 �u�;

Figure 4�b�: �8C
B
1 �u� �

�mb

4�2

e
3

�u
u
; �8C

B
2 �u� � 0:

(69)

The expression for f�x� is also given in the appendix.

2. Photon emission from the spectator quark

From Sec. III, we also find leading-power SCETI opera-
tors corresponding to photon emission from the spectator
quark. These contributions arise from dimension-two op-
erators in the n-hard-collinear sector mapping onto purely
collinear fields, cf. (59). The n-hard-collinear fields must
therefore transform as a color singlet in order for the
resulting operators to have nonzero matrix elements with
the physical meson states. Also, for the chirality structure
appearing in the standard model, only a single Dirac struc-
ture is relevant. Absorbing a factor 1=�2E� into the Wilson
coefficients, and using the projection properties v6 h � h,
Xhc 6 �n � 0, the resulting four-quark operator takes the form

JC1 �s; r; a� � Xhc�s �n��1� �5�
6 �n
2
Xhc�r �n�

�Xhc�an��1� �5�
6n
2
h�0�: (70)

In the presence of new physics, additional operators can
appear in the effective weak Hamiltonian. The class of
nonstandard operators includes four-quark operators with
scalar, pseudoscalar, or tensor structures in place of the
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usual vector and axial-vector structures [37]. In addition to
JC1 in (70), the following operators can then appear:

JC2 � Xhc�1� �5�
6 �n
2
XhcXhc�1� �5�

6n
2
h;

JC3 � Xhc�1� �5�
6 �n
2
XhcXhc�1� �5�

6n
2
h;

JC4 � Xhc�1� �5�
6 �n
2
XhcXhc�1� �5�

6n
2
h;

JC5 � Xhc�1� �5��
�
?

6 �n
2
XhcXhc�1� �5�

6n
2
�?�h;

JC6 � Xhc�1� �5��
�
?

6 �n
2
XhcXhc�1� �5�

6n
2
�?�h:

(71)

The representation of the weak Hamiltonian for spectator-
quark photon emission is then

H spectator
W !

X6

k�1

Z
ds
Z
dr
Z
da ~CCk �s; r; a�J

C
k �s; r; a�

� � � � :

(72)

In analogy with (65) for the B-type operators, it is conve-
nient to introduce the Fourier-transformed coefficients

CCk �u� �
Z
ds
Z
dr
Z
da ei�us� �ur� �n�Peian�P� ~CCk �s; r; a�:

(73)

The notation n � P� � 2E�n � v anticipates that the �n-
hard-collinear quark field matches onto the photon (and a
soft quark) in SCETII, see Fig. 6. Clearly, Q7 does not
contribute to the matching onto C-type operators, and
hence

�7C
C
1 � 0: (74)

Evaluating the first two diagrams shown in Fig. 5 for the
operators Qq

1 and Q8 yields
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FIG. 6. Matching of JCi onto OC
i . Dashed lines denote hard-

collinear fields, full lines soft fields. Note that the quark that
emits the photon is described by a hard-collinear field in the
�n-direction, while the other two quarks are collinear with the
n-direction.
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Figure 5�a�: �q
1C

C
1 �

2CF
N

�s
4�

�
2

3
�

2

3
ln

4EE�
�2

QCD

�G
�

�m2
q

4EE�
; �u
��
;

Figure 5�b�: �8C
C
1 � �

CF
N

�mb

2E
�s
�

1

�u
: (75)
The function G�x; u� can be taken from [38] and is repro-
duced in the appendix. For the charged decay mode B� !
V��, the third diagram in Fig. 5 also contributes:

Figure 5�c�: �u
1C

C
1 � 2�qu; (76)
where q refers to the flavor of the spectator quark inside the
B meson.

3. Flavor-singlet final states

From (57) we find two new types of SCETI operators
that can give rise to leading contributions. For the chirality
structure appearing in the standard model, the following
operators are relevant:

JD�s; a� � Xhc�an��1� �5� 6Ahc?�s �n�h�0�;

JE�s; r; a� � Xhc�an��1� �5�h�0�

� �g��? � i

��
? �A

a
hc?��s �n�Aa

hc?��r �n�; (77)
with g��? and 
��? as defined in (42). In writing the operator
JE we have used the fact that at leading power the n-hard-
collinear fields match onto purely collinear fields (and no
soft fields) in SCETII, so that we may restrict attention to
color-singlet operators in both the n- and �n-hard-collinear
sectors. Note that the relative sign of the 
��? -term in the
operator JE is without significance. The operator with the
flipped sign is equivalent, if one also replaces ~CE�s; r; a� !
~CE�r; s; a�. Since the outgoing hadron is generated from
gluonic degrees of freedom, the operators JD and JE can
only contribute for flavor-singlet final-state hadrons.
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As usual, we define

CD �
Z
ds
Z
da eis �n�Peian�P� ~CD�s; a�;

CE�u� �
Z
ds
Z
dr
Z
da ei�us� �ur� �n�Peian�P� ~CE�s; r; a�:

(78)

Q7 does not contribute to the matching onto D- or E-type
operators, and hence

�7CD � �7CE � 0: (79)

The matching of the operator Q1 onto JD and JE vanishes
at zeroth order in �s, and hence

�q
1C

D � 0; �q
1C

E � 0: (80)

For the matching of Q8 onto JD and JE, we find

�8C
D � �

E �mb

2�2 ; �8C
E � 0: (81)
B. SCETII matching

We now write down the operators in the final effective
theory and perform the matching of SCETI onto SCETII.
The matching coefficients for this second step are called jet
functions. We begin again with the flavor-nonsinglet case,
considering photon emission from the current quarks as
well as from the spectator quark. We then discuss the new
ingredients needed for the treatment of decays with flavor-
singlet final states.

1. Photon emission from the current quarks

The analysis in Sec. III showed which operator struc-
tures JA matches onto. The explicit form of these operators
and their leading-order jet functions are given in [12].
However, since the nonfactorizable part of the form factor
can be simply defined as the matrix element of the operator
JA, we do not need to perform this second matching step
explicitly.

The current operators JB1 and JB2 match onto

OB
1 �x� 0; s; t� �Xc�s �n��1��5� 6A

�em�
�c? �0�

6 �n
2
Xc�0�

�Qs�tn��1��5�
6n
2
H s�0�;

OB
2 �x� 0; s; t� �Xc�s �n��1��5�

6 �n
2
Xc�0�

�Qs�tn��1��5�
6n
2
6A�em�

�c? �0�H s�0�;

(82)

and two operators with color structure Ta 
 Ta, which have
vanishing meson matrix elements. A consistent matching
of SCETI onto SCETII beyond tree level involves evanes-
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cent operators that mix with the operators in (82) [34].
Since we will be concerned primarily with an analysis at
leading order in RG-improved perturbation theory, and
hence with matching coefficients only at tree level, we do
not list these operators here. The operators in (82) corre-
spond to the d � 4� 1 case in (59) and (60). At tree level,
the inverse derivatives appearing in (59) are accounted for
via the relation

1

i �n � @� i0
��x� � �i

Z 0

�1
ds��x� s �n�; (83)

and similarly for n$ �n. Beyond tree level, the Wilson
coefficients of the operators in (82) also develop logarith-
mic dependence on the light-cone variables s and t. As
usual, we introduce the Fourier-transformed coefficient

DB
i �!; u� �

Z
ds
Z
dt e�i!n�vteius �n�P ~DB

i �s; t�: (84)

The Wilson coefficient ofOB
1 is a convolution of the SCETI

Wilson coefficient CB1 with a jet function J?,

DB
1 �!; u;�� �

1

!

Z 1

0
dyJ?

�
u; y; ln

2E!

�2 ; �
�
CB1 �y;��:

(85)

The operator OB
2 involves the jet function J k. At tree level

the two are identical,

J k�u; v�tree � J?�u; v�tree � �
4�CF�s

N
1

2E �u
��u� v�:

(86)

The one-loop results for the two jet functions can be found
in [34,39]. We may recall that in the form-factor analysis
the hard-scale matching coefficients are constant at tree
level, independent of momentum fractions. In this case, up
to hard-scale radiative corrections, expressions such as
those appearing in (85) collapse into a simple integral
over the jet function. Convolution with the meson
LCDAs then yields a universal function HM, identical for
all form factors describing the same final-state meson M
[39]. In contrast, for the B! V� analysis we see from (69)
that even at tree level the coefficients are momentum-
fraction dependent, so that the approximate universality
represented by HM cannot be utilized in this case.

2. Photon emission from the spectator quark

For flavor-nonsinglet mesons, the only relevant SCETI

operators not already present in the form-factor analysis
are JCi . For the operator JC1 , the corresponding SCETII

operator is
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OC
1 �x � 0; s; t� � �n � v�2Xc�s �n��1� �5�

6 �n
2
Xc�0�

�Q�s�t �n��1� �5� 6A
�em�
�c? �0�

6 �n
2
H �s�0�:

(87)

The remaining C-type operators corresponding to nonstan-
dard interactions are

OC
2 � �n � v�

2Xc�1� �5�
6 �n
2
XcQ�s�1� �5� 6A

�em�
�c?

6 �n
2
H �s;

OC
3 � �n � v�

2Xc�1� �5�
6 �n
2
XcQ�s�1� �5� 6A

�em�
�c?

6 �n
2
H �s;

OC
4 � �n � v�

2Xc�1� �5�
6 �n
2
XcQ�s�1� �5� 6A

�em�
�c?

6 �n
2
H �s;

OC
5 � �n � v�

2Xc�1� �5��
�
?

6 �n
2
Xc

�Q�s�1� �5� 6A
�em�
�c? �?�

6 �n
2
H �s;

OC
6 � �n � v�

2Xc�1� �5��
�
?

6 �n
2
Xc

�Q�s�1� �5� 6A
�em�
�c? �?�

6 �n
2
H �s: (88)

Note that the soft building blocks in (82) involve Wilson
lines in the n-direction and a factor 6n next to Qs, while the
soft fields in (87) and (88) involve Wilson lines in the
�n-direction and a factor 6 �n next to Q�s. As a result, the
matrix elements of the soft parts of the C-type operators
will involve the same B-meson distribution amplitude as
the matrix element of OB

2 . We define Fourier-transformed
Wilson coefficients (recall that �n � v � 1=n � v)

DC
i �!; u� �

Z
ds
Z
dte�i! �n�vteius �n�P ~DC

i �s; t�; (89)

and

DC
i �!; u;�� �

eq
!

JC
ij

�
ln

2E!

�2 ; �
�
CCj �u;��; (90)

where eq � 2e=3 for an up-type quark, and eq � �e=3 for
a down-type quark. From the Feynman rules of SCETI it
follows that JC

ij is proportional to the unit matrix,

J C
ij � �ijJ

C: (91)

To see this, we recall that the n-hard-collinear and �n-hard-
collinear parts of the operators JCi match independently
onto SCETII. The different operators JCi , and also OC

i , are
distinguished only by the chirality of the fermion fields,
and by the Dirac structure next to the heavy quark, both of
which remain unchanged in the matching procedure. From
the diagram in Fig. 6, we then find

J C � 1�O��s�: (92)
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J E
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FIG. 7. Leading-order SCETI diagrams for the matching of the
operators JD and JE onto SCETII operators OD and OE. Dashed
lines denote hard-collinear fields, solid lines soft fields.
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3. Flavor-singlet final states

Finally, let us discuss the new ingredients involved when
flavor-singlet final states are considered. The modifications
in this case are of two types. First, new operators appear in
the matching of A- and B-type operators onto SCETII,
corresponding to new contributions to form factors [40].
The new A-type operators are related to those appearing
already in the flavor-nonsinglet case by the replacements
(52)–(54) in (46), (47), and (49), respectively. Similarly,
the new B-type contributions are given by the replacement
(53) in (48). The symmetry relations obeyed by the A-type
form-factor contributions remain unchanged in the flavor-
singlet case; these contributions derive from SCETI cur-
rents JA� � Xhc�h, and the symmetry relations follow
directly from the projection properties of the spinor fields
Xhc and h. The new B-type form-factor contributions are
factorizable, involving the same B-meson LCDA, and the
leading-twist two-gluon LCDA of the light meson. We
concentrate here on the second new ingredient in the
flavor-singlet case, namely, the operators JD and JE.
These operators contribute only to flavor-singlet decays,
and their contributions are unique to the radiative B-decay
mode.

The operator JD matches onto operators with collinear
field content Xc�. . .�Xc:

OD
1 � �n � v�

2Xc�s �n��1� �5�
6 �n
2
Xc�0�

�Q�s�t
0 �n��1� �5�S

y
�s �0�Ss�0� 6A

�em�
�c? �0�

� 6As?�tn�
6 �n
2
H s�0�;

OD
2 � �n � v�

2Xc�s �n��1� �5�
6 �n
2
Xc�0�

�Q�s�t0 �n��1� �5�S
y
�s �0�Ss�0� 6A

�em�
�c? �0�

� 6As?�tn�
6 �n
2
H s�0�; (93)

and also onto operators with purely gluonic collinear field
content, given by the replacement (53). The matching
conditions in this case take the form

DD
i �!;!

0;u;���
eq

2E!
4��s
2E!0

�JD
i

�
ln

2E!

�2 ; ln
2E�!0

�2 ;u;�
�
CD���;

(94)

where we define

DD
i �!;!

0;u��
Z
ds
Z
dt
Z
dt0e�i!n�vtei!

0 �n�vt0eius �n�P

� ~DC
i �s;t;t

0�: (95)

The jet functions, obtained from the Feynman diagram in
Fig. 7(a), are given by
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J D
1 �

1

uN
�O��s�; JD

2 �
1

�uN
�O��s�: (96)

The operatorsOD
i are of leading power despite the fact that

their soft part involves an additional gluon field. The
matrix elements of the corresponding operators involve
nonvalence Fock states of the B meson, but the presence
of the extra gluon field is compensated by an additional
inverse soft derivative. In a purely diagrammatic analysis,
such a contribution can easily be missed, while the opera-
tor analysis performed in the previous section guarantees
that all leading operators are included. As discussed after
(59), JD also matches onto

OD
3 � �n � v�Q�s�t �n��1� �5�S

y
�s �0�Ss�0�

� 6A�em�
�c? �0� 6Ac?�0�H s�0�; (97)

which appears at one power in 	 lower than OD
1 and OD

2 .
Similar to the A-type current in (49), this operator de-
scribes an end-point configuration of the two mesons
where some of the partons carry very small momenta. It
can combine with subleading terms in the SCETII

Lagrangian or subleading meson current operators involv-
ing soft-collinear fields. The time-ordered product of OD

3
with the subleading Lagrangians Ls�sc and Lc�sc contains
terms with the same field content as OD

1 and OD
2 . The

interactions with soft-collinear fields Ls�sc and Lc�sc

[25] are both suppressed by 	1=2 which makes the overall
contribution leading power. Its presence signals an infrared
divergence at !! 0 in (94), when the soft gluon in (93)
becomes soft-collinear. The analysis based on power
counting of soft-collinear modes provides a systematic
procedure to determine the presence or absence of such
end-point singularities. The D-type contribution cannot be
expressed in factorized form in terms of a finite convolu-
tion integral over (generalized) meson LCDAs, and it is
also not related to the nonperturbative quantities appearing
in the form factor. Because these operators would contrib-
ute to B� ! P�, we conclude that for flavor-singlet final
states this decay mode does not obey a factorization for-
mula such as (2).
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The operator JE is related to JC by the replacement

X hc
6 �n

2 �n � @hc
�0Xhc !Ahc?Ahc?: (98)

It maps onto a SCETII operator related toOC in (87) by the
corresponding replacement in (53). The jet function in this
case arises from the Feynman diagram in Fig. 7(b), and is
identical to JC in (90).

C. Matrix elements and factorization

The analysis of Sec. III determined the SCETII operator
structures onto which the SCETI current JA can be
matched. Performing the matching explicitly and taking
matrix elements yields expressions involving end-point-
divergent convolution integrals [12]. These infrared diver-
gences indicate a sensitivity to end-point momentum con-
figurations, as verified by the presence of soft-collinear
momentum regions at leading power. The contributions
from such infrared momentum modes spoil factorization
and cannot be calculated perturbatively. Since we cannot
reduce the A-type contribution to simpler hadronic quan-
tities, we simply define the SCETI matrix elements8

hM�p�jXhc�hjB����v�i

��2E�M�E� trMM�n��MB��� �v��; (99)

where, as usual, 2E � n � v �n � p. We have used the spinor
wave functions appropriate to the heavy-quark and large-
energy limits:

MB�v� �
1� v6

2
���5�; MB� �v� �

1� v6
2
6;

MP�n� �
6n6 �n
4
���5�; MV?�n� �

6n6 �n
4
6?;

MVk �n� � �
6n6 �n
4
; (100)

where  is the polarization vector in the case of vector
mesons, and M � �0My�0.

The same power-counting arguments in Sec. III showed
that subleading soft-collinear interactions are absent from
the matrix elements of B-type operators. Let us note,
however, that the SCETII Lagrangian still contains
leading-power interactions of soft-collinear gluons with
8Since the quantity �M�E�=
����������
mB���
p

is independent of mb, the
heavy-quark flavor symmetry could be made manifest by ex-
tracting an additional factor

����������
mB���
p

in the definition of �M�E�
[41], similar to the definition of F��� in (101) below. However,
since we are concerned primarily with B mesons, we will use the
normalization (99) that is commonly used in the literature.
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both soft and collinear fields. In analogy to the decoupling
of the soft gluons in SCETI [31], it is possible to perform
field redefinitions that remove the soft-collinear interac-
tions from the leading-order soft and collinear Lagrangians
[32]. Under the same field redefinitions, the soft-collinear
interactions also decouple from the operators OB

1 and OB
2 ,

and therefore the matrix elements of these operators fac-
torize at leading power; the corresponding correlator dia-
grams consist of noninteracting soft and collinear parts
(see Fig. 1). The matrix elements of OB

1 and OB
2 can then

be written as convergent convolution integrals over the
meson LCDAs:

h0jQs�tn�
6n
2

�H s�0�jB����v�i �
iF���

2

����������
mB���
p

� tr
�
6n
2

�MB��� �v�
�Z 1

0
d!e�i!tn�v�B�!;��;

hM�p�jXc�s �n��
6 �n
2
Xc�0�j0i �

ifM���
4

�n � p

� trMM�n���
Z 1

0
du eius �n�p�M�u;��: (101)

Let us note that the soft-collinear interactions are present,
and do not decouple, for the operators with color structure
Ta 
 Ta. The simple fact that an operator can be written as
a product of soft and collinear fields does not guarantee
factorization.

We now collect the various elements and write down the
leading-power decay amplitudes. For the standard model
prediction we have

hV�LjHW jB�v�i�2mBCA����V?

�
mB

2
;�
�

�
m3=2
B F���

2

Z 1
0

d!
!
�B�!;��

�
Z 1

0
dufV?����V?�u;��

�
Z 1

0
dvJ?

�
u;v;ln

mB!

�2 ;�
�
CB1 �v;��

�2mB

�
CA�V?

�

�������
mB
p

F

4
�B
fV?�V? 
J?
C

B
1

�
;

hV�RjHW jB�v�i�0;

hP�LjHW jB��v�i�2mB�

�
CA�P

�

��������
mB�
p

F

4
�B
fP�P
eqJCCC1

�
;

hP�RjHW jB
��v�i��

m3=2
B� F

2
�B
fP�P
J k
C

B
2 :

(102)
-23



T. BECHER, R. J. HILL, AND M. NEUBERT PHYSICAL REVIEW D 72, 094017 (2005)
The factors of 2 appearing in the above matrix elements
arise from evaluating the polarization sums. For example,
in the decay B! V� the prefactor is �g��? � i


��
? �"

�
��� �

�2 if both the photon and the light meson have left-
circular polarization, and zero otherwise. The metric and
epsilon tensor in the transverse plane were introduced in
(42). It is interesting to note that for right-circular photon
polarization the B� ! P� amplitude is completely factor-
izable [42]. The same is not true for B� decays with left-
handed photon polarization, and here spectator emission
gives rise to isospin violation at leading power.

For flavor-singlet final states, new nonfactorizable con-
tributions, which are not already present in the form fac-
tors, arise from the D-type operators. These operators
contribute to the process B� ! P� for left-handed photon
polarization, and we thus conclude that the amplitude for
this process (in the flavor-singlet case) does not obey a
factorization formula of the form (2). For right-handed
photon polarization, on the other hand, the amplitude for
B� ! P� remains factorizable in the flavor-singlet case.

In the presence of new-physics operators with a chirality
structure different from the standard model, one obtains
additional contributions

hV�LjH
NP
W jB�v�i � �m

3=2
B F�B 
 fV?�V? 
 eqJ

CCC5 ;

hV�RjH
NP
W jB�v�i � �m

3=2
B F�B 
 fV?�V? 
 eqJ

CCC6 :

(103)

A contribution to the nonstandard Wilson coefficients C5

and C6 would give a leading-power isospin-violating con-
tribution to the B! V� decay amplitude, with left- and
right-handed photon polarization, respectively [15].

The factorization formulas for the B! V (and B� ! P)
form factors at zero momentum transfer involve the same
hadronic parameters as appear in (102), but with different
Wilson coefficients CA and CB. For example,

hV�p0; �j �s��bjB�p�i

� 2i
������p
0
�p�

V�q2�

mB �mV

�
2i
������p

0
�p�

mB

�
CAV�V?�E�

�

�������
mB
p

F

4
�B 
 fK�

?
�K�

?

 J? 
 CBV

�
; (104)

where q � p� p0. Factorization theorems for all form
factors are given in [39]. One can thus eliminate the non-
factorizable piece �V? in (102) in favor of a form factor at
q2 � 0, and rewrite the resulting expression in the form of
the factorization theorem (1). Note that any choice of the
renormalization scale � will lead to large perturbative
logarithms: the coefficients CA and CB contain logarithms
of the hard scale, ln��2=m2

b�, and the jet function contains
logarithms of the hard-collinear scale, ln��2=!mb�. One
can resum these logarithms by solving the RG equations
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for the Wilson coefficients and the jet functions [39]. The
phenomenological impact of this resummation will be
discussed in Sec. V.

D. Light-quark masses

We have demonstrated factorization for B! V� by
expanding the weak Hamiltonian onto a complete basis
of operators in the effective theory, and then isolating those
contributions that cannot be absorbed into the B! V form
factor. For these contributions, we demonstrated the insen-
sitivity to infrared momentum regions that would signal
end-point divergences in the hard-scattering convolution
integrals. This infrared insensitivity in turn was demon-
strated by the decoupling of the soft-collinear messenger
modes that could potentially communicate between the
soft and collinear sectors of the theory to spoil factoriza-
tion. An interesting question to ask is how light-quark-
mass terms can affect the conclusions drawn from analyz-
ing the massless case.

Light-quark masses of order � can be expanded in the
propagators of hard-collinear particles,

1

p2
hc �m

2
q
�

1

p2
hc

�1�O�	��; (105)

so that the quark masses can be ignored at leading power
for such momentum regions. In contrast, the propagators of
collinear or soft particles,

1

p2
c �m2

q
;

1

p2
s �m2

q
; (106)

cannot be expanded, so that the quark masses appear at
leading power in the low-energy theory. For the region of
soft-collinear momentum we have

1

p2
sc �m2

q
�

1

�m2
q
�1�O�	��; (107)

so that in the presence of such a light-quark mass, no pinch
singularities arise in the fermion propagators from this
region. The absence of the soft-collinear mode does not
imply that all quantities in the low-energy theory factorize,
but rather that the question of factorization has become
more subtle. Individual Feynman diagrams for the soft and
collinear modes contain divergences that are no longer
regulated by dimensional regularization. Additional regu-
lators may be introduced to make the diagrams individu-
ally well-defined, but such regulators link the soft and
collinear sectors. Demonstrating factorization then in-
volves showing insensitivity to the additional regulator.

We restrict ourselves here to the more tractable case
where mq � �. We recall that the fundamental object
under study, the correlator (5), is free of infrared singular-
ities, and so has a smooth limit as mq ! 0, keeping �
fixed. The dependence is not analytic, however, so that we
cannot simply treat the mass term as a perturbation, and
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work systematically to arbitrary order. The nonanalyticity
is associated with new regions that appear in the presence
of the mass term. Such nonanalyticities arise only from the
propagator denominators. In one-loop examples, we find
that the leading nonanalyticities are quadratic in the fer-
mion masses as long as mq � �. Terms linear in the mass
appear only from the numerator structure, with denomina-
tors described by the massless case. Assuming that this
property persists at higher order in perturbation theory, it is
straightforward to show that the soft-collinear fields de-
couple in the usual way from the new terms in the soft and
collinear Lagrangians. Factorization properties of the de-
cay amplitudes are therefore unchanged, except that the
hadronic parameters (�V? , �V? , �B) are modified by
quark-mass effects. Beyond linear order, the analysis
may become more complicated. If the leading nonanaly-
ticities are quadratic in mq, the factorization formula (1)
holds at least up to terms of O�m2

q=�2�.
V. PHENOMENOLOGY OF B! K��

From the decay amplitude, we obtain the following
result for the B! K�� branching fraction:

Br �B! K��� �
�BmB

4�

�
1�

m2
K�

m2
B

�
jAj2; (108)

where we introduce the notation

A � CA�K�
?
�

�������
mB
p

F

4
�B 
 fK�

?
�K�

?

 J? 
 C

B
1

�Asoft �Ahard: (109)

Neglecting contributions proportional to Vub, the Wilson
coefficients are

CA �
GF���

2
p V�csVcb

�
C7 �

CF�s
4�
�C8G8 � C1G1�xc��

�
�7CA

�O��2
s�; (110)

CB1 �
GF���

2
p V�csVcb

�
C7 � C8

�u
3u
� C1

1

3
f
�

�m2
c

4 �uEE�

��
�7C

B
1

�O��s�: (111)

In the above equations, we have suppressed the scale
dependence of the various quantities. The Wilson coeffi-
cients of the effective weak Hamiltonian, C1, C7, and C8,
depend on the renormalization scale �QCD in the ‘‘full
theory’’ consisting of ordinary QCD and the operators
Qi. The quantity �7CA depends on �QCD as well as on
the renormalization scale in SCETI, �. This dependence
on � is canceled by the opposite dependence of �K�

?
���.

Since we will determine the nonfactorizable part Asoft

directly from a physical form factor, it is simplest to choose
the scale �QCD � ��mb in this part. This choice guar-
antees the absence of large logarithms in the perturbative
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expansion of CA. Such a choice is not appropriate for the
factorizable part, Ahard, but since the two parts are sepa-
rately RG invariant, we are free to choose different scales
in the two parts [39].

Since we have performed two matching steps for the
factorizable part, a single choice for all renormalization
scales inevitably leads to large perturbative logarithms: the
SCETI matching coefficients depend on the hard scale mb,
and the jet function on the hard-collinear scale

����������
!mb
p

�����������
�mb

p
� 1:5 GeV. Also, the meson LCDAs are typically

given at a low renormalization scale � � 1 GeV. By solv-
ing the RG equation for the Wilson coefficients, one can
sum up perturbative logarithms of ratios of these scales,
and match consistently onto the hadronic matrix elements
at the low scale. Below we will give the result obtained
after resummation and compare it to the fixed-order result.

A. Nonperturbative input

In order to evaluate the branching ratio, we need the
value of �K�

?
at the kinematical point q2 � 0, correspond-

ing to maximum recoil energy of the K� meson, as well as
the meson LCDAs�B and�K�

?
to evaluate the factorizable

part. Unfortunately, there is no direct experimental infor-
mation on these quantities available, so that we will rely on
sum-rule determinations. The value of �K�

?
can be deter-

mined from any B! K�? form factor at zero momentum
transfer, because all such form factors have the same non-
factorizable part. We will use the vector form factor V,
which fulfills the factorization theorem (104). This choice
is convenient, since the factorizable part of V is O��s�
suppressed compared to other form factors, e.g. the tensor
form factor T1. In other words, CBV vanishes at tree level,
and we have

mB

mB �mV
VB!K

�
�q2� � CAV�E;���K�?�E;��

�O��s�mb��s�
����������
�mb

p
��: (112)

The B! K� form factors have been determined from
light-cone sum rules. The most recent evaluation gives
V�0� � 0:411� 0:045 [43]. This value is compatible
with, but somewhat lower than, the earlier result V�0� �
0:458� 0:069 [44]. Using the known one-loop expression
for CAV [2,33], the sum-rule determination yields

�K�
?
� �K�

?

�
E �

mB

2
; � � mb

�
� 0:40� 0:04: (113)

Let us check whether the sum-rule results for the axial
form factor A1 and the tensor form factor T1 give the same
value of �K�

?
, as required for consistency with the heavy-

quark limit. The relations between the vector form factor V
and the axial form factor A1 is especially simple, i.e.,
-25



TABLE III. Numerical input values and uncertainties. See [45] for the definition of C�eff�
7;8 . Leading-log (LL) accuracy is sufficient for

C1 and C�eff�
8 , while we need the next-to-leading-log (NLL) value for C�eff�

7 in CA.

mB 5.28 GeV �B � ��B� � �B0 �=2 1.60 ps
mb�mb� 4:25� 0:1 GeV mb 4.8 GeV
fB 200� 30 MeV �K�

?
0:41� 0:04

	B 460� 110 MeV �B 1:4� 0:4
mK� 894 MeV fK�

?
�1 GeV� 170� 10 MeV

a1�1 GeV� 0:1� 0:1 a2�1 GeV� 0:1� 0:1

�
nf�5
QCD 217 MeV jV�csVcbj 0:040� 0:002

mc 1:1� 0:2 GeV C1�mb� 1.108 (LL)

C�eff�
7 �mb� �0:320 (LL), �0:311 (NLL) C�eff�

8 �mb� �0:151 (LL)
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m2
B

�mB �mV�
2

V�0�
A1�0�

� 1�O�1=mb�: (114)

This form-factor relation does not receive perturbative
corrections [39]. The sum-rule value for this ratio is very
close to unity, and the value �K�

?
� 0:39� 0:05 extracted

from the axial form factor is consistent with the value
obtained from V. The relation between the vector and
tensor form factors is slightly more complicated, since
their Wilson coefficients CA and CB are different. In par-
ticular, the factorizable piece is not suppressed in the case
of the tensor form factor, for which the sum-rule evaluation
gives T1�0� � 0:33� 0:04 [43]. Evaluating the factoriz-
able part using the hadronic input as given in Table III, and
including the resummation effects as discussed in Sec. V B,
we obtain �K�

?
� 0:37� 0:04, again consistent with the

value from V�0�.
The K�-meson LCDA is used as an input for the sum-

rule evaluation of V�0�. Following [43], we parametrize
this function in terms of the lowest two Gegenbauer mo-
ments as

�K�
?
�u;�� � 6u�1� u�1� a1���C

3=2
1 �2u� 1�

� a2���C
3=2
2 �2u� 1��; (115)

and we use a1�1 GeV� � 0:1� 0:1 [46], a2�1 GeV� �
0:1� 0:1. For the K� decay constant we use
fK�

?
�1 GeV� � 170� 10 MeV. For the B meson, we take

the model [47] (see [48] for an alternative form)

�B�!;� � 1 GeV� �
4	�1

B

�
!�

!2 ��2

�

�
�2

!2 ��2 �
2��B � 1�

�2 ln
!
�

�
;

(116)

with parameters 	B � 460� 110 MeV and �B �
1:4� 0:4. To leading order in perturbation theory, and if
no RG improvement is performed, the factorizable part
depends only on the first inverse moment of the LCDA,
defined as
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	�1
B ��� �

Z 1
0

d!
!
�B�!;��: (117)

Note that in the model (116), 	B�� � 1 GeV� � 	B. The
quantity F defined in (101) is related to the B-meson decay
constant,

�������
mB
p

fB � KF���F���, up to higher orders in
1=mb, with [49]

KF��� � 1�
CF�s���

4�

�
3 ln

mb

�
� 2

�
: (118)

We use the value fB � 200� 30 MeV for the B-meson
decay constant, which lies in the ball park of lattice and
sum-rule determinations of this quantity. For the b-quark
mass in the MS scheme, we use mb�mb� � 4:25�
0:1 GeV [50]. For the charm-quark mass we use mc �
1:1� 0:2 GeV, a range of values that corresponds to an
MS-mass with a scale between mc and mb.

Note that the branching ratio depends only weakly on
the value of the pole massmb � 4:8 GeV, through the one-
loop corrections to CA. The pole mass can be eliminated in
favor of a low scale subtracted b-quark mass. For the
B-meson lifetime, we use �B � 1:60 ps. We use three-

loop running for �s with �
nf�5
QCD � 217 MeV [50] and

work with nf � 4 below the scale � � mb and nf � 3

below the intermediate scale � �
�������������
�hmb

p
� 1:55 GeV �

mc, where �h � 0:5 GeV represents a typical hadronic
scale. Numerically, using nf � 3 or nf � 4 makes very
little difference in the results.

B. Resummation

The anomalous dimensions of the SCETI current opera-
tors JB were calculated in [39]. The anomalous dimensions
of the SCETII four-quark operators are given by the anoma-
lous dimensions of the meson LCDAs. In both SCETI and
SCETII, the operators are nonlocal along one or more light-
cone directions; their anomalous dimensions are distribu-
tions that describe how the operators at different light-cone
coordinates mix among themselves. The necessary steps to
solve the evolution equations were spelled out in detail in
-26



TABLE IV. Hadronic uncertainties in the evaluation of the factorizable part Ahard in units of 10�3A�0�. The parameters are varied
within the bounds given in Table III. We add the symmetrized errors in quadrature to estimate the total hadronic uncertainty for which
we obtain �Ahard �A�0��0:019� 0:011i�.

fB 	B �B fK�
?

a1 a2 mc=mb

103�Ahard=A
�0� �8� 5i �14� 8i �3� i �3� 2i �5� i �5� i 5�7i

�10�5i
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[39] and we refrain from repeating the discussion here.
After resummation, the factorizable part of the amplitude
takes the form

Ahard �

�������
mB
p

F���

4
�B��� 
 fK�

?
����K�

?
���


UII��;�i� 
 J?��i� 
UI��i;�h�


 CB1 ��h�; (119)

where UI evolves the coefficient CB1 from the hard scale to
the intermediate, hard-collinear scale, andUII describes the
second evolution step down to the low scale of order
1 GeV. Ahard is independent of the scales �QCD, �h, �i,
and �, up to higher orders in �s at these scales when
evaluated at fixed order in perturbation theory. To estimate
the uncertainty from higher-order perturbative contribu-
tions, we will independently vary the hard and the hard-
collinear scales by a factor of

���
2
p

around their central
values �h � mb and �i �

�������������
�hmb

p
with �h � 0:5 GeV.

Throughout, we set �QCD � �h. Let us stress again that
we count mc as a hard scale and therefore do not resum
perturbative logarithms of mc=mb. In view of the fact that
mc is numerically rather close to the intermediate scale it
might be advantageous to count mc as hard-collinear in-
stead of hard, which would allow one to also resum such
logarithms. However, an effective-theory framework for
such a treatment is not yet available.

To gauge the size of the corrections to the amplitude, we
will express them in terms of the leading-order result

A�0� � CA�0��K�
?

� �
GFV�csVcb���

2
p

e

2�2 E� �mb�mb�C
LL
7 �mb��K�

?
: (120)

Including O��s� corrections, and normalizing with respect
to the leading-order result, the contribution of the non-
factorizable part is

ANLL
soft � CA�K�

?
�A�0��1:091� 0:052� 0:027�

� i�0:062� 0:014� 0:016��; (121)

where the first uncertainty comes from varying �QCD �

�h and the second from the variation of mc in the contri-
bution from Q1. The larger values of Asoft arise from the
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lower values of the scale �h, which we indicate with the
symbol ‘‘�.’’ The factorizable part of the amplitude is
smaller, similar in size to the O��s� correction to the
nonfactorizable part. We find

ALL
hard �A�0��0:055� 0:010� 0:009� 0:019�

� i�0:031� 0:005� 0:004� 0:011��: (122)

The first uncertainty comes from varying the intermediate
scale �i, the second from varying the hard scale �h. The
third uncertainty is estimated by varying the hadronic input
parameters within the ranges in Table III. It is dominated
by the uncertainty in the B-meson LCDA and in mc=mb,
see Table IV.

Let us compare this result to what is obtained in a fixed-
order calculation. Using a common scale �h � �i ��������������

�hmb

p
, we find

Ahard �A�0��0:116� i0:062�: (123)

The above scale choice guarantees the absence of large
logarithms in the jet function, but will lead to perturbative
logarithms ln��2

i =m
2
b� in CB. We could instead use a large

scale �h � �i � mb, which eliminates the logarithms
from CB but induces logarithms ln��2

h=�hmb� in the jet
function. This gives

Ahard �A�0��0:032� i0:019�: (124)

With this scale choice, the result is more than a factor 3
smaller. The fixed-order calculation suffers from large
scale uncertainties, which are greatly reduced by perform-
ing RG improvement.

The one-loop corrections to the jet function are beyond
the accuracy of our calculation, since at the same order also
the effect of the two-loop running and the O��s� correc-
tions to CB would need to be included. However, to get an
idea of the impact of these corrections, we evaluate Ahard

including the one-loop jet function on top of the leading-
order evolution. The effect of perturbative corrections to
the jet function are moderate:

ALL�1�loop J?
hard �A�0��0:063� 0:007� 0:010� 0:023�

� i�0:034� 0:003� 0:004� 0:013��;

(125)
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9For example, in place of the quantity ac7�K
��� in Eq. (55) of

[18], we have

ac7�K
��� ! �0:320� 0:009� �K�

?
=T1�0����0:098� 0:023i�

� CLL
7 �0:055� 0:031i� 0:042�:

The first two terms arise from the dipole coefficients CLL
7 and

CNLL
7 . The third term represents the soft contribution of Q1 and

Q8, from (121), and similarly the fourth term gives the hard
contribution of Q1 and Q8, from (122).

T. BECHER, R. J. HILL, AND M. NEUBERT PHYSICAL REVIEW D 72, 094017 (2005)
with the errors arising from the same sources as in (122).
The uncertainty from varying the renormalization scales
�h and �i in the factorizable part is very small, indicating
that perturbative corrections to the above result are likely
to be small.

Combining (121) and (125), we obtain from (108) the
branching ratio

Br�B! K��� � 6:6� 1:3�K�
?

� 1:3�=mb
� 0:7CKM

� 0:7�i;�h
� 0:4� � 10�5: (126)

We have isolated the uncertainties associated with �K�
?

,
power corrections, the Cabibbo-Kobayashi-Maskawa pre-
factor, and the renormalization scale; the latter uncertainty
is dominated by the soft term (121). The final uncertainty
in (126) is associated with the remaining input parameters.
If �K�

?
is determined from the tensor form factor, as dis-

cussed after (113), the branching ratio comes out lower,
with central value 5:7� 10�5.

The uncertainties from power corrections are difficult to
quantify. We have followed standard practice and esti-
mated these corrections by assuming � � 500 MeV,
which gives a 10% uncertainty in the amplitude. In the
case of charmless two-body decays classes of enhanced
power corrections have been identified which are larger
than this naive estimate [16,38]. However, since these
chirally enhanced and annihilation contributions are absent
in our case, we believe the power corrections are of natural
size. In addition to the scale mb, our results involve the
hard-collinear scale �hc �

����������
�mb

p
and the charm-quark

mass. The expansion of the amplitude in the inverse of
the hard-collinear scale is quadratic, so that these contri-
butions are of the same size as the �=mb corrections. The
situation is similar for the power corrections associated
with the charm quark. We have analyzed the diagram
shown in Fig. 4(a) and find that the corrections are
�2=m2

c. Similar conclusions were reached in [18] based
on the end-point behavior of light-cone wave functions.
While we do not have a formal proof that linear terms are
always absent, this seems plausible since we are integrat-
ing out a heavy charm quark. At leading power in �=mb,
the charm-quark corrections are furthermore suppressed by
�s at the hard or hard-collinear scale, which compensates
for the fact that the Wilson coefficient C1 multiplying these
contributions is approximately 3 times larger than the
dipole coefficient C7.

Although we find agreement with previous analytic
results in the literature [17,18], there are some differences
in the evaluation of the final branching fraction (126) due
to hadronic input parameters and to our RG analysis. The
largest difference comes from the overall normalization
given by the input value of the form factor. The remaining
difference in the soft contributions from Q1 and Q8 is due
to our smaller value of the charm-quark mass, and to our
use of �K�

?
for the soft matrix element in place of T1, which
094017
includes (higher-order) hard-scattering terms unrelated to
Q1 and Q8. For the hard contributions, the difference is
accounted for by�1� variations in the input values of mc,
	B and a1, and by our inclusion of a complete leading-
order RG analysis.9

The B! K�� branching ratio has been accurately mea-
sured by the CLEO [51], Belle [52], and BABAR [53]
collaborations. An average of their results gives Br�B0 !
K�0�� � �4:03� 0:26� � 10�5 and Br�B� ! K���� �
�4:01� 0:20� � 10�5. At leading power, the factorization
formula predicts that the branching ratios for the charged
and neutral decay are identical. At subleading power,
photon emission from the spectator quark breaks the iso-
spin symmetry. This effect was estimated in [15].

Our result for the decay rate is 65% larger than the
experimental result, or 1:2� with the errors in (126). If
we were to take such a discrepancy seriously, it would be
difficult to attribute the difference in the exclusive decay to
new physics, given that the prediction for the inclusive b!
s� decay agrees well with the experimental result [54]. In
principle, it is possible that new physics affects the two
decay modes differently: spectator emission is suppressed
by 1=m3

b in the inclusive decay, while it can be leading
order in the exclusive decay if new physics is present.
However, the presence of such operators would typically
lead to large isospin asymmetries, as we discuss below in
Sec. V C. It is also not plausible that higher-order pertur-
bative effects could account for the difference. Either the
sum-rule result for �K�

?
is �30% too large, or there are

power corrections of this size which violate the factoriza-
tion theorem (or some combination of these possibilities).
If we instead use the experimental result for the branching
fraction to determine the nonfactorizable part of the form
factor, we obtain �K�

?
� 0:31� 0:02.

C. Isospin and CP asymmetries from new physics

We now consider the effect of the C-type operators,
which arise from spectator emission. As discussed earlier,
the two operators OC

5 and OC
6 that contribute to B! K��

have vanishing Wilson coefficients in the standard model.
Consequently, spectator emission is power suppressed in
the standard model, and the new-physics effects associated
with these operators can lead to isospin and CP asymme-
tries that are enhanced over the standard model predictions.
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Because the jet functions of the C-type operators are
proportional to the charge of the spectator quark, the
presence of these operators induces an asymmetry between
the charged and neutral decay modes:

��B� !K�������B0!K�0��

�
m3
Bf

2
K�
?
f2
B

16�	2
B

e2
u�jĈ

u
5j

2� jĈu6j
2�� e2

d�jĈ
d
5j

2�jĈd6j
2��

�
1:5� 10�3

�B

�
jĈu5j

2�jĈu6j
2�

1

4
jĈd5j

2�
1

4
jĈd6j

2

�
�TeV4: (127)

In general, the Wilson coefficients Cu;d5;6 are functions of the
light-cone momentum fraction of the light current quark
and are convoluted with the LCDA of the light meson: Ĉ �R

1
0 du�K�

?
�u�C�u�. If the new physics takes the form of

four-quark operators at the hard scale, the coefficients will
be constant and Ĉ5;6 � C5;6. If the new physics is isospin
symmetric, then Cui � Cdi and the difference (127) is posi-
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tive. However, in general the operators entering the
charged and neutral decays can have different Wilson
coefficients. Experimentally, the difference between the
decay rates, normalized by the average lifetime �B as in
(127), is ��3� 3� � 10�6, where we take a weighted
average of the values from [51–53]. The most recent
estimate of the difference in the standard model is ��5�
3� � 10�6 [23]. From (127), we find that the Wilson co-
efficients evaluated at renormalization scale ��mb must
obey jĈ5;6j & 5� 10�2 TeV�2, meaning that even with
present precision one is able to probe new-physics effects
at scales of several TeV.

Let us now turn to the time-dependent CP asymmetry.
The B0 and �B0 mesons can decay into jK�L�Li or jK�R�Ri.
These two states can be combined into a CP-even and a
CP-odd final state, and since the spins are not measured,
the experiments give the sum of the two rates. Expressed in
terms of the amplitudes AL;R �A�B0 ! K��L;R� and
�AL;R �A� �B0 ! K��L;R�, the time-dependent CP asym-

metry is
ACP �
��B0�t� ! K��� � �� �B0�t� ! K���

��B0�t� ! K��� � �� �B0�t� ! K���

�
jALj

2 � jARj
2 � j �ALj

2 � j �ARj
2� cos��mBt� � 2 Imqp �

�ALA
�
L �

�ARA
�
R�� sin��mBt�

jALj
2 � jARj

2 � j �ALj
2 � j �ARj

2
: (128)

The coefficients p and q relate the mass to the flavor eigenstates: jBH;Li � pjB0i � qj �B0i. In deriving the above
expression, we have assumed jq=pj � 1. This holds to good approximation, since the width difference in the Bd system
is very small.

In the standard model AL and �AR vanish to leading power in 1=mb. The coefficient of sin��mBt� is thus power
suppressed. The prefactor of cos��mBt� also happens to be small in the standard model. The reason is that, up to terms
which are doubly Cabibbo suppressed, the b! s amplitude has only a single weak phase, so that there is no CP violation
in the decay. The direct CP asymmetry from the Cabibbo suppressed terms is

jARj
2 � j �ALj

2

jARj
2 � j �ALj

2
� 2 Im

�
VubV�us
VcbV�cs

�
Im
�
hK��jC1Qu

1 � C2Qu
2 �

P8
i�3 CiQij �B0i

hK��jC1Qc
1 � C2Qc

2 �
P8
i�3 CiQij �B0i

�
�O�	4

C�

� 	2
C�0:14� 0:03�=mb

� 0:03�i;�h
� 0:04mc

� 0:02� �O�	4
C�: (129)
Power corrections are estimated as 20% of the leading
result. Uncertainties associated with scale variation and
the charm-quark mass are indicated explicitly, and the final
uncertainty is due to the remaining input parameters. At
leading power, the asymmetry is identical for neutral and
charged Bmesons. Here 	C � Vus � 0:22 is the sine of the
Cabibbo angle, and the Wolfenstein parameter  is related
to the imaginary part of Vub. The CP violation in the
standard model is thus negligible. New physics can change
these predictions rather dramatically. If the new physics
has operators that induce leading-power contributions to
the decay amplitudes AL and �AR, large CP-violation
effects from the interference of mixing and decay can be
observed, even if the new-physics operators do not have a
new CP-violating phase [55]. In the presence of
new-physics operators with additional phases, asymme-
tries in the decay can also occur. Note that the operators
OC

5 and OC
6 can contribute in both cases. These

operators are suppressed by 1=m3
b in the inclusive decay.

A difference in the exclusive and inclusive direct CP
asymmetries could be explained by the presence of such
operators.

Recently, both BABAR [56] and Belle [57] have per-
formed measurements of the time-dependent CP asymme-
try in the B! K�� decay. Within large errors, their results
are consistent with a vanishing CP asymmetry.
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VI. DISCUSSION AND CONCLUSIONS

We have established the factorization formula (1) for
B! V� decays, which provides the basis for the phe-
nomenological analysis of the decays B! K�� and B!
��. To perform the diagrammatic analysis of the factori-
zation properties of the amplitude, we studied a current
correlation function from which the B! K�� amplitude
can be extracted. The diagrams contributing to the corre-
lator are expanded around the heavy-quark limit using the
strategy of regions. The different momentum regions are
represented by corresponding fields in the effective theory.
Similar to the case of two-body decays, such as B! ��,
the decay B! K�� involves energetic partons propagating
in two directions. It is then necessary to introduce collinear
fields along the light-meson direction as well as the photon
direction, making the effective-theory analysis more in-
volved than in the case of the heavy-to-light form factors.
A large number of possible operator structures appear and
it becomes crucial to have an efficient way of identifying
the relevant operators both in SCETI and SCETII. There are
three complications that make the construction of the
operators nontrivial: (i) the power counting in the two
effective theories is different and the power of an operator
in SCETII does not impose a strong constraint on the
SCETI operators that match onto it; (ii) the SCETII opera-
tors can contain inverse soft derivatives which count as
inverse powers of the expansion parameter, and (iii) two
collinear sectors are present. We have set up an efficient
formalism to construct the operators which addresses all
three issues. We classify the SCETI operators by their
dimension instead of their power in 	 and derive a con-
straint on the maximum dimension of the SCETI operators
beyond which they cannot match onto leading SCETII

operators. We construct the SCETII operators from
gauge-covariant and boost-invariant building blocks. The
use of these building blocks makes it simple to identify
how many inverse soft derivatives can occur. Finally, we
separately match the collinear fields from the two sectors to
account for the structure of the SCETI Lagrangian. Once
the operators are identified, it becomes possible to make
all-order statements concerning factorization by identify-
ing which classes of operators are insensitive to infrared
momentum regions. Our analysis shows that the B! K��
amplitude indeed takes the form of the factorization for-
mula (1).

The basis of effective-theory operators which we con-
structed for the factorization proof can be used to analyze
the effects of new physics in the decay B! V�. These
operators also describe decays with a flavor-singlet final-
state meson, and the related decay processes B� ! P� of
B� vector mesons. New-physics operators yield calculable
contributions at leading power to the isospin asymmetry
and the time-dependent CP asymmetry in B! K��, so
that measurements of these asymmetries provide useful
constraints on the corresponding new-physics operators.
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For flavor-nonsinglet final-state mesons, we found that the
B� ! P� amplitudes obey the generalized factorization
formula (2). For the flavor-singlet case, however, the B� !
P� decay amplitude does not obey a factorization formula
of the type (2), highlighting the nontrivial nature of the
B! V� factorization formula. More precisely, only the
B� ! P�L mode violates the factorization formula. The
power counting of soft-collinear fields makes apparent the
sensitivity to infrared momentum regions at leading power,
and consequently the breakdown of factorization in this
case. In contrast, the B� ! P�R mode is completely fac-
torizable, involving only the second term of (2), and the
same power-counting arguments show that the entire am-
plitude in this case is perturbatively calculable as a con-
vergent convolution integral over meson LCDAs.

The effective-theory approach allows us to disentangle
the different scales in these decay processes and to resum
perturbative logarithms of these scales by solving the RG
equations in the effective theory. We reanalyzed the B!
K�� branching ratio with recent values for hadronic input
parameters taken from light-cone sum rules, and presented
the first analysis of the hard-scattering terms to leading
order in RG-improved perturbation theory. We also eval-
uated the impact of perturbative corrections to the jet
function, which are potentially significant because they
arise at a low scale � � 1:5 GeV. Parts of these correc-
tions were identified in the diagrammatic analysis of [19],
which isolated large logarithms occurring in the hard-
scattering kernels. The result for these logarithms is pre-
cisely reproduced by integrating the one-loop jet function
J? in [34,39] over the tree-level hard-scale coefficient. In
our analysis the leading logarithms are resummed and the
remaining one-loop jet-function correction increases the
factorizable part of the amplitude by approximately
15%. Depending on which QCD form factor is used to
determine the SCET quantity �K�

?
, our result for the B!

K�� branching fraction differs from the experimental
value by 1�–2�. The discrepancy is smaller than in earlier
evaluations, mostly because the new sum-rule values for
the B! K�? form factors are somewhat smaller than ear-
lier results.

The jet function appearing in B! V� is identical to that
appearing in B! V? form factors. The universality of the
jet function gives rise to new symmetry relations between
different form factors when perturbative corrections at the
hard scale are neglected. The reason is that the SCETI

Wilson coefficients for the form factors are constant at
tree level. In this approximation, the integral of the jet
function over meson LCDAs yields a universal quantity,
identical for all form factors describing the same final-state
meson [39]. The same integral over the jet-function also
appears in processes such as B! �� at the same level of
approximation [58]. In contrast, for B! V� the tree-level
hard-scale coefficient is not a constant. Here, even in this
leading-order approximation the universal hadronic pa-
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rameters must be taken as the meson LCDAs, and the
perturbative expansion of the jet function is essential to
retain predictive power in the factorization formula.

In summary, we have presented the first factorization
analysis for a charmless Bmeson decay that addresses both
the construction of the operator basis and the factorization
properties of the matrix elements in a systematic way. The
same techniques can be used to establish factorization for
hadronic decays such as B! ��.
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APPENDIX: MATCHING COEFFICIENTS

In the matching onto the SCETI current operators, the
following combinations of Wilson coefficients appear:
2CAT1 �
1

2
CAT2 � C

A
T3 � 2�

�sCF
4�

�
�4ln2 �

xmb
� 10 ln

�
mb
� 4 ln

�QCD

xmb
� 4Li2�1� x� � 12�

�2

6

�
�O��2

s�;

1

2
CB

0

T6 � C
B0
T7 � 2x�O��s�;

1

2
CB

0

T2 � C
B0
T3 � O��s�;

(A1)
where x � 2E=mb. The A-type coefficients can be found in
[2,33]. The O��s� term for the B-type coefficients are also
known, see [33,34]. However, they appear only at O��2

s� in
the decay rate, since they are multiplied by the jet function,
which is proportional to �s.

We collect the known results from the literature for the
matching coefficients appearing in Sec. IV. For the match-
ing of Q1 and Q8 onto A-type current operators, we need
the functions

G8�
8

3
ln
�QCD

mb
�

11

3
�

2�i
3
�

2�2

9

G1�x� ��
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27
ln
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�
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�
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�
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9
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9
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� 6i�ln2x� ln3x�x2�
1

27
�9� 112i�� 14�2

��182� 48i�� lnx� 126ln2x�x3�O�x4�; (A2)
which were defined in [18] and deduced from the results of
[35,36]. Here x is a ratio of squared masses, xq � m2

q=m2
b,

for a quark of flavor q. The matching of Q1 onto B- and
C-type operators involves the functions

f�x� �

8<:1� 4x
�

arctanh�
��������������
1� 4x
p

�� i�2

�
2
; for x< 1=4;

1� 4xarctan2 1���������
4x�1
p ; for x� 1=4;

(A3)

and [38]

G�x; u� � �4
Z 1

0
dvv�1� v� lnx� v�1� v�u�
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: (A4)
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