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Scalar nonet quarkonia and the scalar glueball: Mixing and decays in an effective chiral approach
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We study the strong and electromagnetic decay properties of scalar mesons above 1 GeV within a chiral
approach. The scalar-isoscalar states are treated as mixed states of quarkonia and glueball configurations.
A fit to the experimental mass and decay rates listed by the Particle Data Group is performed to extract
phenomenological constraints on the nature of the scalar resonances and to the issue of the glueball
decays. A comparison to other experimental results and to other theoretical approaches in the scalar meson
sector is discussed.
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I. INTRODUCTION

The unique interpretation of scalar mesons constitutes
an unsolved problem of hadronic QCD. Below the mass
scale of 2 GeV various scalar states [1] are encountered:
the isoscalar resonances � � f0�400–1200�, f0�980�,
f0�1370�, f0�1500� and f0�1710�, the isovectors a0�980�
and a0�1450� and the isodoublets K�0�800� and K�0�1430�.
The existence of the K�0�800� is still not well established
and omitted from the summary tables of [1]. From a
theoretical point of view one expects the scalar quark-
antiquark ground-state nonet 0��, a scalar-isoscalar glue-
ball, which lattice QCD predicts to be the lightest gluonic
meson with a mass between 1.4–1.8 GeV [2], and possibly
other exotic states (non �qq states), like e.g. four-quark
states or mesonic molecules [3]. Various interpretations
of and assignments for the physical scalar resonances in
terms of the expected theoretical states have been proposed
(see, for instance, the review papers [3–5] and references
therein).

In this work we follow the original assignment of
Ref. [6], where in a minimal scenario the bare quarkonia
states N �

��������
1=2

p
� �uu� �dd� � �nn, S � �ss and the bare

scalar glueballGmix, resulting in the three scalar-isoscalar
resonances f0�1370�, f0�1500� and f0�1710�. Such a mix-
ing scheme has been previously investigated by many
authors, as, for example, in the lattice study of [7] or within
the model approaches of [8–13].

The mesons a0�1450� and K�0�1430� are considered as
the I � 1 and I � 1=2 quarkonia JPC � 0�� states. In this
way the low-lying scalar-quarkonia nonet is located in the
energy range of 1–2 GeV, where the other p-wave nonets
of tensor (2��) and pseudovector mesons (1��) [1] are
also situated. Masses of selected scalar-quarkonia states
were also estimated on the Lattice; in Ref. [14] the I � 1
scalar quarkonium state is predicted to have a mass of
Ma0
� 1:51� 0:19. This result favors the interpretation

of the state a0�1450� [and not a0�980�] as the isovector
ground-state scalar quarkonium. However, previous lattice
studies (as in [15]; see also [14,16] and references therein)
find different results. Scalar resonances below 1 GeV can
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possibly be interpreted as four-quark states or mesonic
molecules. In [17] the hypothesis of Jaffe’s four-quark
states was studied on the Lattice, where the masses of
four-quark states are found to be lighter than 1 GeV.
Recent attempts in the context of chiral perturbation theory
to describe the scalar states below 1 GeV as ‘‘dynamically
generated’’ resonances, i.e. states which do not survive in
the large Nc limit [18,19], have also been performed. In
this scheme the nature of the scalars below 1 GeV can also
be related to four-quark configurations. This can be viewed
as a further indication that scalar-quarkonia states are
located at masses above 1 GeV.

In this work, starting from an effective chiral Lagrangian
[13] derived in Chiral Perturbation Theory (ChPT) [20–
22], we perform a tree-level analysis of the strong and
electromagnetic decays of scalar mesons settled in the
energy range between 1 and 2 GeV. The scalar glueball
is introduced as an extra-flavor-singlet composite field with
independent couplings to pseudoscalar mesons (and to
photons, although suppressed). Although a chiral approach
cannot be rigorously justified at this energy scale, since
loop corrections could be large, we intend to use this
framework as a phenomenological tool to extract possible
glueball-quarkonia mixing scenarios from the observed
decays.

The scalar glueball G mixes with the scalar-quarkonia
fields N �

��������
1=2

p
�uu� dd� � nn and S � ss in accord

with flavor blindness. We also consider in this scheme a
possible direct mixing of the quarkonia fields N and S. The
origin of such mixing can be driven by instantons [23]. The
presence of a (even small) flavor mixing in the scalar-
isoscalar sector can sensibly affect the phenomenology.

In the presented approach the glueball decay into two-
pseudoscalar mesons is occurring by two mechanisms: (a)
through mixing, that is the glueball G acquires a quark-
onium component, which subsequently decays into two
pseudoscalars; (b) direct decay of the glueball component
G into two pseudoscalars without an intermediate scalar
quarkonium [6,8,10]. In [6,10] this direct decay is argued
to be suppressed as based on arguments of the strong
coupling expansion, while in the phenomenological fit of
-1 © 2005 The American Physical Society
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[8] it dominates. Here we also address the question, if the
direct decay is needed to explain the decay phenomenol-
ogy of the scalar-isoscalar resonances f0�1370�, f0�1500�
and f0�1710�.

For consistency we also consider the strong decays of
the isovector and isodoublet scalar states as well, trying to
highlight the difficulties and the open issues, also compar-
ing with previous works on this subject. Following the idea
of [20] we analyze deviations from the large Nc limit in the
framework of the proposed scalar-quarkonia assignment
(which differs from [20]), which turn out to be relatively
small in the phenomenology.

The paper is organized as follows: in Sec. II we discuss
the effective Lagrangian related to the scalar-quarkonia-
glueball mass spectrum and the strong and electromagnetic
decays. In Sec. III we determine a phenomenological fit to
the experimental data listed in [1] by first neglecting the
direct decay of the glueball component. In Sec. IV we also
allow for a direct glueball decay studying its influence on
the results. There we use the lattice data of [24], where an
approximate calculation of the glueball decays into two-
pseudoscalar mesons has been performed, to constrain our
analysis. Finally, in Section V we summarize our results
and draw conclusions.
II. THE MODEL

A. The Lagrangian

The strong and electromagnetic decays of scalar mesons
are based on an effective chiral Lagrangian Leff as derived
in chiral perturbation theory (ChPT) [20–22]. The
Lagrangian involves the nonets of pseudoscalar and of
scalar mesons,

P �
1���
2
p

X8

i�0

Pi�i; S �
1���
2
p

X8

i�0

Si�i; (1)

the electromagnetic field and, in addition, a new degree of
freedom, the bare glueball field G, which is treated as a
flavor-blind mesonic field. The lowest order effective
Lagrangian Leff in the large Nc limit including 1=Nc
corrections reads

Leff �
F2

4
hD�UD�Uy � ��i �

1

2
hD�SD�S �M2

SS
2i

�
1

2
�@�G@

�G�M2
GG

2� � csdhSu�u
�i

� csmhS��i �
cgd���

3
p Ghu�u�i �

cgm���
3
p Gh��i

� csehSF
�
��F

���i �
cge���

3
p GhF���F

���i �LP
mix

�LS
mix: (2)

Here the symbol h:::i denotes the trace over flavor matrices.
The constants csd, csm, cgd, cgm, cse and cge define the coupling
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of scalar fields and of the bare glueball to pseudoscalar
mesons and photons, respectively. We use the standard
notation for the basic blocks of the ChPT Lagrangian
[21]: U � u2 � exp�iP

���
2
p
=F� is the chiral field collecting

pseudoscalar fields in the exponential parametrization, D�

denotes the chiral and gauge-invariant derivative, u� �
iuyD�Uu

y is the chiral field, �� � uy�uy � u�yu; � �
2B�s� ip�; s �M� . . . and F��� � uyF��Qu�
uF��Qu

y, where F�� is the stress tensor of the electro-
magnetic field. The charge and the mass matrix of current
quarks are denoted by Q � ediagf2=3;�1=3;�1=3g and
M � diagfm̂; m̂; msg (we restrict to the isospin symmetry
limit with mu � md � m̂); B is the quark vacuum conden-
sate parameter and F the pion decay constant.

The masses of the octet pseudoscalar mesons in the
leading order of the chiral expansion (first term of the
Lagrangian) are given by

M2
� � 2m̂B; M2

K � �m̂�ms�B;

M2
�8 �

2
3�m̂� 2ms�B:

(3)

The contribution to the mass of �0 in leading order is

M2
�0 �

2
3�2m̂�ms�B; (4)

i.e. �0 is a Goldstone boson in the largeNc and in the chiral
limits.

Following [22], we encode in LP
mix an extra-contribution

to the mass of �0 (due to the axial anomaly) and the �0-�8

mixing term:

L P
mix � �

1
2�P��

0�2 � zP�
0�8; (5)

(the parameters �P and zP are in turn related to the pa-

rameters M�1
and edm of [22]). The physical diagonal states

� and �0 are given by

�0 � �0 cos	P � � sin	P; �8 � �0 sin	P � � cos	P;

(6)

where 	P is the pseudoscalar mixing angle. We follow the
standard procedure [20,22,25,26] and diagonalize the
corresponding �0-�8 mass matrix to obtain the masses of
� and �0. By using M� � 139:57 MeV, MK �
493:677 MeV (the physical charged pion and kaon
masses), M� � 547:75 MeV and M�0 � 957:78 MeV the
mixing angle is determined as 	P � �9:95	, which corre-
sponds to the tree-level result (see details in Ref. [25]).
Correspondingly one finds M�0 � 948:10 MeV and zP �
�0:105 GeV2. Higher-order corrections in ChPT cause a
doubling of the absolute value of the pseudoscalar mixing
angle [25]); in our work we restrict to the tree-level evalu-
ation, we therefore consistently use the corresponding tree-
level result of 	P � �9:95	. In the present approach we do
not include the neutral pion when considering mixing in
the pseudoscalar sector, because we work in the isospin
limit. This mixing is small, and can be safely neglected
-2



SCALAR NONET QUARKONIA AND THE SCALAR . . . PHYSICAL REVIEW D 72, 094006 (2005)
when studying the decay of scalar resonances into two
pseudoscalars. Similarly, for all pseudoscalar mesons we
use the unified leptonic decay constant F, which is identi-
fied with the pion decay constant F � F� � 92:4 MeV. A
more accurate analysis including higher orders should use
the individual couplings of the pseudoscalar mesons (for a
detailed discussion see Refs. [27]).

B. Scalar-quarkonia-glueball mixing

In this subsection we discuss the glueball-quarkonia
mixing. For this reason we restrict to the following part
of the effective Lagrangian (2):

LS � 1
2hD�SD�S �M2

SS
2i � 1

2�@�G@
�G�M2

GG
2�

�LS
mix (7)

where, besides the scalar-quarkonia nonet, also the scalar
glueball field G has been introduced. In the large Nc limit
all the states of the quarkonia nonet have the same nonet
mass MS and the glueball is decoupled from the quarkonia
sector. Deviations from this limit are encoded in LS

mix,
where the glueball-quarkonia mixing is introduced and
where the degeneracy of the nonet states is lifted.

For what concerns the explicit mass term and the next-
to-leading order 1=Nc terms in the quarkonia sector we
follow [20]. Including additionally a possible breaking of
the Gell-Mann-Okubo (GMO) mass relation and the
glueball-quarkonia mixing under the hypothesis of flavor
blindness, we have

L S
mix � eSmhS

2��i � k
S
mS0h��i � �S0

M2
S0

2
S2

0

� �S8

M2
S8

2
S2

8 �
���
3
p
fGS0: (8)

The parameter eSm describes the strength of flavor-
symmetry breaking derived from the nonzero values of
the current quark masses, the parameters kSm and �S0

de-
scribe the order 1=Nc terms. The parameter �S8

and the
related term in the Lagrangian is not derived in the Nc
expansion (it is in fact absent in [20]), but it describes
violations of the GMO mass formula (indeed a result from
higher orders in the chiral expansion). Finally, the parame-
ter f is the glueball-quarkonia mixing strength. Note that
G, being a flavor singlet, couples only to the flavor-singlet
quarkonium state S0 in the flavor-blind mixing limit. The
glueball and the quarkonia sector decouple in the large Nc
limit [28]: a nonzero mixing, as described by a nonvanish-
ing parameter f, takes into account a possible deviation
from the large Nc limit, as the parameters kSm and �S0

in the
quarkonia sector.

The terms contained in LS
mix lead to mass shifts of the

nonet masses, while also introducing mixing both among
quarkonia states and in the glueball-quarkonia sector. With
the use of Eqs. (7) and (8) the explicit expression of the
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Lagrangian LS reads

LS � �1
2 ~a0���M2

a0
� ~a0 � K

�y
0 ���M

2
K�0
�K�0

� 1
2G���M

2
G�G�

1
2M

2
S8
S2

8 �
1
2M

2
S0
S2

0 � zSS0S8

�
���
3
p
fGS0; (9)

where ~a0 is the isovector collecting a�0 and a0
0 fields; K�0

and K�y0 are the doublets of �K��0 ; K�00 � and �K��0 ; �K�00 �
mesons, respectively, (see II A), and where the correspond-
ing masses are given by [see Eqs. (7) and (8)]:

M2
a0
� M2

S � 4eSmM
2
�;

M2
K�0
� M2

S � 4eSmM
2
K;

M2
S8
� M2

S�1� �S8
� �

4

3
eSm�4M2

K �M
2
��;

M2
S0
� M2

S�1� �S0
� �

4

3
eSm�2M

2
K �M

2
��;

zS �
8
���
2
p

3

�
eSm �

���
3
p

2
kSm

�
�M2

K �M
2
��:

(10)

By inverting we get

M2
S � M2

a0
�
M2
��M

2
a0
�M2

K�0
�

�M2
K �M

2
��

;

eSm �
M2
a0
�M2

K�0

4�M2
K �M

2
��
;

�S8
�
M2
S8
�M2

S �
4
3 e

S
m�4M2

K �M
2
��

M2
S

;

�S0
�
M2
S0
�M2

S �
4
3 e

S
m�2M2

K �M
2
��

M2
S

;

kSm �
2���
3
p

�
3zS

8
���
2
p
�M2

K �M
2
��
� eSm

�
:

(11)

We can immediately deduce MS and eSm for the considered
assignment (which differs from [20]) by using the experi-
mental masses Ma0

� Ma0�1450� � 1:474� 0:019 GeV
and MK�0

� MK�0�1430� � 1:416� 0:006 GeV [1]:

MS � 1:479 GeV; eSm � 0:199: (12)

Note that eSm is positive, contrary to the other nonets
[20]. The numerical values for the other constants kSm, �S0

and �S8
(which should be small if the large Nc limit and

chiral symmetry still applies approximately for the scalar
nonet) are determined by a fit to data.

Finally we discuss the mass relation in the octet sector.
From the first three equations in (10) we have

3M2
S8
� 4M2

K�0
�M2

a0
� 3�S8

M2
S ; (13)

where the term proportional to �S8
includes deviations

form the GMO limit.
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Glueball-quarkonia mixing is usually set up in the basis
of fields N �

��������
1=2

p
�uu� dd� � nn and S � ss instead of

the octet and singlet fields S0 and S8. The connection is
given by

S0 �
��������
2=3

p
N �

��������
1=3

p
S; S8 �

��������
1=3

p
N �

��������
2=3

p
S:

(14)

Therefore, the scalar-isoscalar part of the Lagrangian (9)
involving the fields N; S and G is rewritten as

~L S � �1
2����M

2
��� (15)

with

� �
N
G
S

0@ 1A; M2
� �

M2
N

���
2
p
f "���

2
p
f M2

G f
" f M2

S

0B@
1CA: (16)

The bare masses MN , MS and the flavor-mixing parameter
" are determined by inserting (14) into (9) with:

M2
N �

2

3
M2
S0
�

1

3
M2
S8
�

2
���
2
p

3
zS;

M2
S �

1

3
M2
S0
�

2

3
M2
S8
�

2
���
2
p

3
zS;

" �

���
2
p

3
�M2

S0
�M2

S8
� �

1

3
zS:

(17)

The inverted relations are

M2
S0
�

2

3
M2
N �

1

3
M2
S �

2
���
2
p

3
";

M2
S0
�

1

3
M2
N �

2

3
M2
S �

2
���
2
p

3
";

zS �

���
2

3

s
�M2

N �M
2
S� �

1

3
":

(18)

As we will show in the next section, as a result of the fit we
will determine the values MN , MS, and ", from which we
can deduce MS0

, MS8
and zS or, equivalently by (11), the

parameters kSm, �S0
and �S8

of the Lagrangian (7).
The parameter f is the quarkonia-glueball mixing

strength, analogous to the parameter z of Refs. [6–10].
The mixing strength z refers to the quantum mechanical
case, where the mass matrix is linear in the bare mass
terms. The connection between f and z, discussed in
Refs. [9,12], leads to the approximate relation f ’ 2zMG.

The parameter " induces a direct flavor mixing between
the quarkonia states N and S. This effect is neglected
in [6,8–10], where flavor mixing is considered to be of
higher order. However, a substantial N-S mixing in the
scalar sector is the starting point of the analysis of
Refs. [29,30]. The origin of quarkonia flavor mixing is,
according to [29,30], connected to instantons as in the
pseudoscalar channel, but with opposite sign (see also
[23]). Such a phase structure is also found in the NJL
094006
model including the six-point t’ Hooft interaction term
[31,32]). The mixed physical fields are predicted to be a
higher lying state of flavor structure 
N

���
2
p
� S�=

���
3
p

and a
lower one with 
N � S

���
2
p
�=

���
3
p

. Here we study the case
" � 0, more precisely " > 0, which leads to the same
phase structure as in Ref. [29,30], but the quantitative
results and interpretation will differ.

For the glueball-quarkonia mixing we work in the limit
of flavor blindness. The issue of flavor blindness breaking
at the mixing level has been considered in [7,8,12]. This
effect can be taken into account when introducing in the
mass mixing matrix M2

�, defined in (15), an additional
parameter r as

M2
� �

M2
N

���
2
p
f � r "���

2
p
f � r M2

G f
" f M2

S

0B@
1CA: (19)

For r � 1 we regain the original expression, r � 1 takes
into account a possible deviation from this limit.
Determination of this parameter on the Lattice [7] results
in r � 1:20� 0:07, in the fit of [8] a value of r � 1� 0:3
is obtained. In the microscopic quark/gluon model of [12]
the value r
 1:1–1:2 is deduced. All these findings point
to possible small deviations from the flavor-blind mixing
configuration. Hence, in the following we will restrict to
the limit r � 1.

The orthogonal physical states assigned as f1 �
f0�1370�, f2 � f0�1500� and f3 � f0�1710� resulting
from Eq. (15) are obtained by diagonalization of M2

�
[Eq. (16)] with the transformation matrix B as

BM2
�B

T � M2
f �

M2
f1

0 0

0 M2
f2

0

0 0 M2
f3

0B@
1CA; (20)

where the eigenvalues of M2
f represent the masses of the

physical states f1 � f0�1370�, f2 � f0�1500� and f3 �
f0�1710�. The physical states jii, with i � f1; f2; f3, are
then given in terms of the bare states as

jii �
X

j�N;G;S

Bijjji: (21)

In a covariant framework, where mixing of bound states is
studied on a elementary level, it is not possible to define an
orthogonal mixing matrix B (B � BT � BT � B � 13) con-
necting the physical to the bare fields [12,31,32]. However,
as shown in the model of [12] for the glueball-quarkonia
system, deviations from orthogonality of the mixing matrix
B are small, therefore justifying a Klein-Gordon mixing
scenario as in the present approach.

C. Strong and electromagnetic decays of scalar states

The generic expression for the strong decay width of a
scalar state s (both quarkonia and gluonium) into two-
pseudoscalar mesons p1 and p2 is given by
-4
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�s!p1p2
�
�1=2�M2

s ;M2
p1
;M2

p2
�

16�M3
s

�sp1p2
jMs!p1p2

j2; (22)

where ��x; y; z� � x2 � y2 � z2 � 2xy� 2yz� 2xz is the
Källen triangle function. The factor �sp1p2

� 1=2 or 1
stands for identical or different particles in the final state.
In the case of a degenerate isomultiplet an average over the
isospin configurations is understood.

The matrix elements Ms!p1p2
are expressed in terms of

parameters csd, csm, cgd and cgm [see Eq. (2)]. The parameters
csd and csm refer to the scalar-quarkonia decays, cgd and cgm to
the direct glueball decays. The complete expressions for
the two-pseudoscalar decay widths (matrix elements in-
cluded) of the scalar resonances are given in the
Appendix B.

The decay of the bare glueball states embedded in the
physical f0 states can proceed in two ways (see Sec. I).
Mixing expressed by the parameter f corresponds to the
conversion of a bare glueball to a quarkonia state, which in
turn decays into a pseudoscalar meson pair. For f � 0 no
physical f0 state is a pure glueball, and the decays of the
quarkonia components are driven by the amplitudes BiN
and BiS, which depend on f.

The direct decay of the glueball component, without
proceeding via an intermediate scalar quarkonium state,
is contained in the parameters cgd and cgm. For a microscopic
description of this mechanisms we refer to Refs. [6,10],
where the possible transition of the glueball to two-
pseudoscalar mesons is described by processes containing
four internal quark/antiquark lines. The parameters cgd and
cgm are attached to the gluonic amount BiG of the state i,
where i � f1; f2; f3. With the normalization adopted in
Eq. (2) the limit csd � cgd, csm � cgm refers to a direct
glueball decay strength equivalent to the decay of a
flavor-singlet quarkonia state. In the large Nc limit the
quarkonia decay constants csd and csm scale as N1=2

c , while
the glueball decay constants cgd and cgm scale as Nc [28].
Large Nc arguments therefore suggest that the direct glue-
ball decay is suppressed with respect to quarkonia decays.
When performing in the following a fit to data, we first
study the large Nc limit by setting the direct glueball decay
parameters cgd and cgm to zero.

The matrix element for the two-photon decay of the
scalar �0��� state has the manifestly gauge-invariant form

Ms!�� � e2gs���g
��q1q2 � q

�
1q

�
2 �
��q1�
��q2� (23)

where q1 and q2 are the photon four-momenta, p � q1 �
q2 is the scalar state momentum and gs�� is the s��
coupling constant. The decay width of the transition s!
�� is given by

�s!�� �
1

32�Ms

X
pol

jMs!��j
2 �

�
4
�2g2

s��M3
s ; (24)

where � � e2=�4�� � 1=137 is the fine structure constant.
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The coupling constants gs�� for the bare states S0; S8; G
and for the isovector state a0

0 are directly calculated using
the effective Lagrangian (2):

gS0�� �
32

3
���
3
p cse; gS8�� �

8

3

���
2

3

s
cse;

gG�� �
32

3
���
3
p cge; ga0�� �

8

3

���
2
p
cse:

(25)

The parameter cse refers to the quarkonia components,
while cge contains the direct coupling of the glueball com-
ponent to the electromagnetic fields. Latter coupling con-
stant cge is supposed to be suppressed, since gluons do not
couple directly to the photon field. However, an intermedi-
ate state of two vector mesons for example can in the
framework of vector meson dominance generate a coupling
of the glueball to the two-photon final state; this coupling is
supposed to be suppressed and will not be considered in the
numerical analysis. Using the identities for the field trans-
formations (14) and (21) we can derive the couplings for
the bare N �

��������
1=2

p
� �uu� �dd� and S � �ss states and finally

for the three physical scalar-isoscalar states i � f1; f2, and
f3:

gN�� �
5���
2
p gS�� �

40

9

���
2
p
cse; gi�� �

X
j�N;G;S

Bijgj��:

(26)
III. PHENOMENOLOGICAL FIT WITHOUT
DIRECT GLUEBALL DECAY

A. General considerations

In the following we determine a best fit of the parameters
entering in Eqs. (2) to the experimental averages of masses
and decay modes listed in Ref. [1]. We first analyze the
case of a nondecaying glueball, i.e. cgd � cgm � 0, where
the decays are dominated by the quarkonia components (as
in the original work of [6]) in line with large Nc arguments.
The phenomenological analysis of Ref. [10] confirmed this
trend, but, as already mentioned, the fit of [8] shows a
strong contribution from the direct decays of the glueball
configuration.

The parameters of the model entering in the fit are the
three bare massesMN ,MG,MS, the two mixing parameters
f and " and the two quarkonia decay parameters csd and csm:

MN;MG;MS; f; "; c
s
d; c

s
m: (27)

As an experimental input we use the following accepted
values from [1]:

(a) The scalar-isoscalar f0 masses with the correspond-
ing values of

Mf1�f0�1370� � 1:35� 0:15 GeV; (28)
-5



TABLE I. Fitted mass and decay properties of scalar mesons.

Quantity Exp Theory �2
i

Mf1
�MeV� 1350� 150 1417 0.202

Mf2
�MeV� 1507� 5 1507 
0

Mf3
�MeV� 1714� 5 1714 0.003

�f2!�� �MeV� 38:0� 4:6 38.52 0.011
�f2!KK

�MeV� 9:4� 1:7 10.36 0.322
�f2!�� �MeV� 5:6� 1:3 1.90 8.109
�f2!��=�f3!KK

0:20� 0:06 0.212 0.036
�f3!��=�f3!KK

0:48� 0:15 0.249 2.446
�a0!KK

=�a0!�� 0:88� 0:23 0.838 0.032
�a0!��0=�a0!�� 0:35� 0:16 0.288 0.150
�K�0!K� �MeV� 273� 51 59.10 17.590
��f3
�2P �MeV� 140� 10 143.27 0.110

�2
tot � � � � � � 29.01
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Mf2�f0�1500� � 1:507� 0:005 GeV; (29)

Mf3�f0�1710� � 1:714� 0:005 GeV: (30)

(b) The partial decay widths of f2 � f0�1500� with:

�f2!�� � 0:0380� 0:0050 GeV; (31)

�f2!KK
� 0:0094� 0:0017 GeV; (32)

�f2!�� � 0:0056� 0:0014 GeV: (33)

(c) The two accepted ratios for f3 � f0�1710�:

�f3!��=�f3!KK
� 0:20� 0:06; (34)

�f3!��=�f3!KK
� 0:48� 0:15: (35)

(d) The state f0�1710� has only been observed in the
decays into two-pseudoscalar mesons [1]. The decay into
the final state 4�, which can be fed by higher meson
resonances, is suppressed [33]. We therefore impose the
additional condition that the sum of partial decay widths
into two-pseudoscalar mesons ��f3

�2P saturates the total
width ��f3

�tot:

��f3
�2P � ��f3

�tot � 140� 10 MeV: (36)

Such a constraint is necessary to obtain meaningful total
decay widths: without this condition on the full width a
minimum for �2 is obtained where ��f3

�tot is larger than
1 GeV, a clearly unacceptable solution.

(e) The two decay ratios of the I � 1 state a0�1450�:

�a0!��0

�a0!��
� 0:35� 0:16; (37)

�a0!KK

�a0!��
� 0:88� 0:23: (38)

The total width of a0�1450� into two pseudoscalars is not
known, because of the uncertainty of other decay widths as
for !��.

(f) The I � 1=2 state K�0�1450� decays dominantly into
K� with the corresponding width

�K�0!K� � 273� 51 MeV: (39)

The only accepted average not included in the fit is
�f2!��0 for the reason that the decay channel ��0 is
produced at threshold. Therefore, a significant distortion
due to the finite width of the state is expected.

For the N � 12 experimental values listed in Eqs. (28)–
(39) we perform a �2 fit with

�2 � �2
MN;MG;MS; f; "; c
s
d; c

s
m�

�
XN�12

i�1

�
Atheory
i � Aexp

i

4Ai

�
2
; (40)
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where Aexp
i represents the ith experimental result,4Ai is its

error and Atheory
i is the corresponding theoretical expres-

sion, depending on the parameters of (27).
For the case, where the direct glueball is suppressed (i.e.

we set cgd � cgm � 0), two local minima for �2 are ob-
tained, the consequences of which we will describe in the
following. The first solution was already analyzed in [13],
while the second one is a novel solution with some peculiar
characteristics.

B. First solution and implications

Fit results.—From the first solution (I) we extract fol-
lowing fit parameters:

MN � 1:455 GeV; MG � 1:490 GeV;

MS � 1:697 GeV; f � 0:065 GeV2;

" � 0:211 GeV2; csd � 8:48 MeV;

csm � 2:59 MeV; �2
tot � 29:01:

(41)

The corresponding fit results are reported in Table I.
Bare masses.—The bare nonstrange quarkonia field N

has a mass of MN � 1:455 GeV, which is, as desired,
similar to the scale set by the isotriplet combination
a0�1450� with a mass of Ma0

� 1:474� 0:019 GeV [1].
The mass of the bare glueball MG � 1:490 GeV is in
agreement with the lattice results [2] and with the phe-
nomenological analyses of [6,8,10]. The bare state S has a
mass of MS � 1:697 GeV, which is about 
200 MeV
heavier than the N state, an acceptable mass difference
like in the tensor meson nonet.

Mixing parameters.—For the glueball-quarkonia mix-
ing parameter we get f � 0:065 GeV2, which by the ap-
proximate relation f ’ 2zMG [9,12] corresponds to
z ’ 21:8 MeV.

The results of Refs. [8,10,12] are z � 85� 10 MeV,
z � 80 MeV and z ’ 62 MeV, respectively, i.e. of the
-6



TABLE II. Decays of f1 � f0�1370�.

Quantity Exp (WA102) Theory

�f1!KK
=�f1!�� 0:46� 0:19 0.34

�f1!��=�f1!�� 0:16� 0:07 0.06
��f1
�2P �MeV� ‘‘Small’’ 166

SCALAR NONET QUARKONIA AND THE SCALAR . . . PHYSICAL REVIEW D 72, 094006 (2005)
same order, but larger. The introduction of additional flavor
mixing between the quarkonia configurations in the fit, as
done here, leads to a reduction of the strength parameter f.
The lattice result of Ref. [7] with 43� 31 MeV is in
agreement with the present evaluation, but has a large
uncertainty. A mixing strength of the same order is found
in the lattice evaluation of [15].

The flavor-mixing parameter resulting from the fit is
" � 0:211 GeV2. In the limit f � 0 the mixed physical
states are jf1i � 0:97jNi � 0:26jSi and jf3i �
�0:26jNi � 0:97jSi (and, of course, jf2i � jGi). The
phase structure of the mixed states is, as discussed previ-
ously, as in [23,29,30]. But here the strength of flavor
mixing is smaller, resulting in mixed states, which are
dominantly N or S. The influence however of (an even
small) flavor mixing in strong and electromagnetic decays
may be nonnegligible.

Mixing matrix.—The mixing matrix B relating the
physical to the bare states in the present fit is expressed as

jf1i � jf0�1370�i

jf2i � jf0�1500�i

jf3i � jf0�1710�i

0BB@
1CCA � 0:86 0:45 0:24

�0:45 0:89 �0:06

�0:24 �0:06 0:97

0BB@
1CCA

�

jNi � j �nni

jGi � jggi

jSi � j �ssi

0BB@
1CCA: (42)

The physical resonances are dominated by the
diagonal bare components, qualitatively in line with
Refs. [3,6,8,10]. Since the glueball does not contribute to
the decay, the relative phase with respect to the quarkonia
components is at this stage irrelevant. By inverting f !
�f we would find the same results for the decays, but
opposite glueball-quarkonia phases. In turn, the relative
phases of theN and S components are not symmetric under
"! �". As discussed above, in f0�1370� they are in
phase, while in f0�1710� they are out of phase. The state
jf0�1500�i behaves like a N state with a decreased width,
while the S component is small [10,34]. Thus the decay
into KK is smaller than for the �� channel. In the present
solution (I) the N and S state components are in phase
contrary to the results of [6,10]. However, the other solu-
tion (II), presented later on, shows again an opposite phase
in f2 � f0�1500�, but with a large ss amount.

Large Nc constants.—From the fit parameters of (41)
we determine �S0

, �S8
and kSm by using (11) and (18):

MS � 1:479 GeV; eSm � 0:199; �S8
� 0:225;

�S0
� 0:236; kSm � �0:818: (43)

The values of �S0
and kSm are smaller than in [20]. Also, the

violation of the GMO relation, encoded in �S8
, is small,

indicating that higher-order corrections in the chiral ex-
pansion are possibly not too large to invalidate the present
094006
study. In the present scenario the smallness of the glueball
mixing parameter f can also be interpreted as a small
violation of the large Nc limit. The present results show
that large Nc and chiral symmetry can, although violated at
some level, be a useful guideline to scalar meson physics.

Resonance f0�1370�.—The experimental uncertainties
of the f0�1370� resonance are large, no average or fit is
presented in [1]. The main problem connected with this
resonance is its large width �200–500 MeV� and its partial
overlap with the broad low-lying � � f0�400–1200�.
However, the results from WA102 [33] indicate a large
N � nn component in its wave function. Results from
CRYSTAL BARREL (summarized in [35] and subse-
quently analyzed in [36]) confirm such a trend (see also
[37] for a recent review).

Predictions for the two-pseudoscalar decay modes are in
acceptable agreement with the results of WA102 as shown
in Table II. The measured ratio �f1!4�=�f1!�� � 34:0�22

�9

[33], although the errors are large, points to a dominant 4�
contribution to the total width. Our prediction gives how-
ever a sizable contribution of the two-pseudoscalar decay
mode and is therefore not in agreement with such a large
4� decay mode.

In the original work of [6], a quarkonium nn state has a
very large two-pseudoscalar width with �nn!�� � 270�
25 MeV, �nn!KK � 195� 20 MeV and �nn!�� � 95�
10 MeV, i.e. ��nn�2P 
 500 MeV. The f1 � f0�1370� is in
[6] dominantly nn, therefore one expects a large value for
��f1
�2P, in contrast to the presented experimental analyses

listed above. A large value for ��nn�2P is also predicted in
[10]: for the mixed state f0�1370� one has ��f1

�2P �

115:7 MeV comparable to the present study.
On the contrary, in the study of [8], small two-

pseudoscalar partial widths are obtained by the following
mechanism: the glueball decay amplitude in f0�1370� to
two pseudoscalar is large and interferes destructively with
the nn component [the phases quarkonia-glueball in [8] are
inverted with respect to (42)]. As a result [8] the two-
pseudoscalar decay width ��f1

�2P is smaller than ��f2
�2P

with ��f2
�2ps=��f1

�2ps � 10:0� 3:0. At the same time
��f3
�2P=��f1

�2P � 0:7� 0:2 is obtained.
In the present fit with an inert glueball (as in the original

work of [6] and as in [10], where the glueball is allowed to
decay, but the quarkonia components still dominate) we
find the following decay widths into two-pseudoscalar
pairs:
-7
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��f1
�2P � 166 MeV> ��f3

�2P � 143 MeV> ��f2
�2P

� 51 MeV: (44)

An analysis by CRYSTAL BARREL [36] also indicates
sizable partial decay widths of the 4� decay channels:
�f1!�� � 120:5� 65 MeV and �f1!�� � 62:2�
28:8 MeV. The same analysis gives the following two-
pseudoscalar partial widths [36,37]: �f1!�� �

21:7� 9:9 MeV, �f1!KK
� �7:9� 2:7 MeV� to (21:2�

7:2 MeV), �f1!�� � 0:41� 0:27 MeV. On the contrary,
the analysis of [38] reports the ratio �f1!��=��f1

�tot �

0:26� 0:09, pointing to a large �� (ergo to a large two-
pseudoscalar) partial decay width for f0�1370�. This ex-
perimental result is therefore in disagreement with the
analysis of [36]. New results on f0�1370� would be crucial
to disentangle the scalar puzzle and to understand if a
destructive glueball/quarkonia interference as in [8] is
necessary.

Resonance f0�1500�.—The theoretical partial widths of
the f0�1500� are in good agreement with the data (see
Table I) apart from a slight underestimate of the 2� chan-
nel. We also obtain �f2!��0 � 0:036 MeV as compared to
the experimental value of �f2!��0 � 2� 1 MeV. Taking
into account the finite width of the resonance will lead to an
increase of the theoretical value.

Resonance f0�1710�.—For the decays of f0�1710� we
summarize our results compared to the data of WA102 [33]
in Table III.

The first two ratios, already included in the fit of Table I,
can be reproduced. The theoretical ratio �f3!��0=�f3!��,
which is not included in [1], is in complete disagreement
with the WA102 result. The dominance of the ��0 mode
over �� is a solid prediction in the framework of
solution I, which does not depend very much on the choice
of parameters. A confirmation of the experimental result
could possibly hint at a different mixing scenario or at a
sizable role of direct glueball decay.

Resonance a0�1450�.—The ratios of two-pseudoscalar
decay modes of a0�1450�, included in the fit of Table I, are
well reproduced. The prediction for the two-pseudoscalar
width of ��a0

�2P � 84:26 MeV is smaller than the total
width of 265� 13 MeV. However, the experimental ratio
(�a0!!��=�a0!��� is not known: no average or fit is listed
in [1]. The experimental value from [39], which is 10:7�
2:3, would imply a dominant !�� mode and in turn a
TABLE III. Decays of f3 � f0�1710�.

Quantity Exp (WA102) Theory

�f3!KK
=�f3!�� 5:0� 0:7 4.70

�f3!��=�f3!�� 2:4� 0:6 1.17
�f3!��0=�f3!�� <0:18 1.59
��f3
�2P �MeV� ‘‘Dominant’’ 143.27
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rather small two-pseudoscalar partial decay widths. This
finding is in disagreement with the results of [6,40]. In [6] a
value of ��a0

�2P � 390� 110 MeV is found, in the work
of [40] one has ��a0

�2P � 420–940 MeV for a0 masses in
the range of 1200–1400 MeV. For our value for ��a0

�2P we
obtain the estimate: �a0!!��=�a0!�� � 
��a0

�tot �

��a0
�2P�=�a0!�� 
 4:5.

Resonance K�0�1430�: Our result for �K�0!K� underesti-
mates the experimental value by a factor of about 5 (see
Table I). Furthermore, for the additional K� decay channel
we get �K�0!K�=�K�0!�K � 0:026.

In [40] a value of �K�0!K� � 340 MeV is predicted, but,
as discussed above, ��a0

�2P is of the order of 1 GeV, much
larger than the full width. Similarly, in [6] with �K�0!K� �

200� 20 and ��a0
�2P � 390� 110 MeV the first result

underestimates while the second overshoots the experi-
mental value. A full analysis in the 3P0 model [41] results
in �K�!�K � 166 MeV and �N!�� � 271 MeV; unfortu-
nately the resonance a0�1450� is not discussed in [41]. The
authors of [41] also tried to adjust �K�0!�K to its experi-
mental value, and then calculate the 2� partial width of aN
state, obtaining �N!�� 
 450 MeV. The last result im-
plies a very large two-pseudoscalar and full width for a
N state. A full experimental determination of all relevant
decay modes involving a0�1450� and K�0�1430� would
certainly help to clarify this issue. We refer to section
III D for a further discussion of this problem.

If f0�1370� is dominantly �nn, as in [6–10,12], there is, as
discussed above, an incompatibility of the present experi-
mental small two-pseudoscalar partial decay widths [36]
and various model calculations. At the same time, a con-
sistent understanding of the isodoublet states K�0�1450� and
the isovectors a0�1450� is still missing.

Two-photon decays.—As a further consequence we dis-
cuss the two-photon decay rates of the scalar resonances.
We assume that the coupling cge is suppressed with respect
to cse, i.e. we set the glueball-photon coupling cge to zero.
The ratios of radiative decay widths as a prediction of the
fit are

�f1!2�:�f2!2�:�f3!2�:�a0
0!2� � 1:0:305:0:002:0:471;

(45)

which are independent of the coupling cse. The result for
�f2!2�=�f1!2� is in qualitative agreement with the results
of [8,12]. The ratio �f3!2�=�f1!2�, however, is consider-
ably smaller than in the previous works. The suppression of
�f3!2� originates from the destructive interference be-
tween the N and S components, which in turn is traced to
the flavor mixing with " > 0 in accord with the phases of
[29,30]. Another interesting prediction is the ratio
�a0

0!2�=�f1!2�, which is relatively large.
The experimental status of the two-photon decays is

still incomplete. For the f0�1370� two values are indicated
-8
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in PDG2000 [42]: 3:8� 1:5keV and 5:4� 2:3 keV.
However, it is not clear if the two-photon signal comes
from the f0�1370� or from the high mass end of the broad
f0�400–1200�. The PDG currently [1] seems to favor this
last possibility, but the data could also be valid for the
f0�1370�. We therefore interpret the two experimental
values as an upper limit for the two-photon decay width
of the f0�1370�. Signals for two-photon decays of f0�1500�
and f0�1710� have not yet been seen, the following upper
limits are reported [1]:

�f0�1500�!2���f0�1500�!��=�f0�1500�tot�< 0:46 keV;

�f0�1710�!2���f0�1710�!K �K=�f0�1710�tot�< 0:11 keV:
(46)

Using the known branching ratio �f0�1500�!2�=�f0�1500�tot

one gets �f0�1500�!2� < 1:4 keV [34]. An accepted fit for
�f0�1710�!K �K=�f0�1710�tot is not reported in [1]. Using the
value from [43] with �f0�1710�!K �K=�f0�1710�tot � 0:38�0:03

�0:13

we find an upper limit of the order of �f0�1710�!2� 


0:3 keV.
For an absolute prediction of the two-photon decay

widths we use cse � 0:0138 GeV�1 as determined in the
model approach of Ref. [12] For the nonstrange quark-
onium state we get �N!2� � 0:969 keV, while for the
isovector and mixed scalars we have:

�f1!2� � 0:703 keV; �f2!2� � 0:235 keV;

�f3!2� � 0:002 keV; �a0
0!2� � 0:362 keV:

(47)

The results for the mixed states are below the current upper
limits (the original results presented in [13] contain a slight
misprint, the correct numbers are reported here. The physi-
cal considerations are not affected from this slight change).

The estimate for the 2� decay of the bare quarkonium
state N � �nn of 0:969 keV is smaller than the one of [34],
where the following expression has been used:

�nn!2��0
��� � k

�
MN�0

���

MN�2
���

�
3
�nn!2��2

���: (48)

The coefficient k is 15=4 in a nonrelativistic calculation,
but becomes smaller when considering relativistic correc-
tions [44]. In [34] a range of values for k from 2 to 15=4 is
considered. Our chiral Lagrangian approach combined
with [12] points to a smaller value of k. Using our result
for �N!2��0

��� and taking the value �N!2��2
��� �

2:60� 0:24 keV [1] at MN�2
��� � 1:27 GeV we get k


0:25. This result is model dependent, since it relies on the
parameters for the covariant description of the scalar me-
sons used in [12]. A fully covariant treatment may imply
strong deviations from the nonrelativistic limit.

Discussion.—The largest contribution to �2 is due to the
underestimate of the K�0 ! K� width: from Table I we
have �2

tot=N � 2:42. When excluding the data point for
�K�0!K� in the fit, a very similar minimum compared to
(41) is found with
094006
MN � 1:442 GeV; MG � 1:485 GeV;

MS � 1:695 GeV; f � 0:080 GeV2;

" � 0:225 GeV2; csd � 8:12 MeV;

csm � 3:57 MeV; �2
tot � 11:19:

(49)

In this case we have �2
tot=N � 1:02, corresponding to a

good description of data. The discussion about the isosca-
lar states and a0�1450� remains unchanged.

The underestimate of K�0 ! K� constitutes an open
problem of the scalar analysis. As already discussed, a
consistent understanding of the complete scalar nonet is
lacking in other approaches as well. We will further discuss
this issue in Sec. III D.

Aside from this difficulty, the rest of the accepted data in
[1] is well described. The quality of the current fit seem-
ingly excludes a sizable direct decay of the scalar glueball
component. Concerning results for data, which are not
reported as average or fit in [1], the situation is less clear:
the predicted full two-pseudoscalar width of f1 �
f0�1370� is large, when confronted with the WA102 result
(see Table II and Refs. [35–37], but also the different result
of [38]). The ratio �f3!��0=�f3!�� (Table III) is also
problematic in the present solution. An accepted average,
in particular, for these values, would help in clarifying
these issues.

C. Second solution and implications

Fit results.—Solution II is obtained for following fit
parameters:

MN � 1:298 GeV; MG � 1:513 GeV;

MS � 1:593 GeV; f � 0:400 GeV2;

" � 0:015 GeV2; csd � 7:48 MeV;

csm � 6:42 MeV; �2
tot � 24:61:

(50)

The corresponding results are reported in Table IV.
A first look to (50) shows some peculiar differences

when compared to the set of (41). In the following we
discuss the implications and the differences of this second
solution.

Bare masses.—The bare massesMN and MS are smaller
than in solution I, their mass difference is still around
200 GeV [Eq. (50)]. The bare glueball mass is about

1:5 GeV, as before, but now is much closer to MS.
This small mass difference leads to a strong mixing be-
tween the glueball and the bare S � ss state.

Mixing parameters.—The quarkonia flavor mixing
" � 0:015 GeV2 is very small in this solution and has
practically no influence on the phenomenology. On the
contrary f � 0:400 GeV2 is much larger, leading to a
strong glueball-quarkonia mixing. In this respect there is
a clear difference between the two solutions. Using the
approximate relation f ’ 2zMG [9,12] we find in this case
-9



TABLE V. Decays of f1 � f0�1370�.

Quantity Exp (WA102) Theory

�f1!KK
=�f1!�� 0:46� 0:19 0.27

�f1!��=�f1!�� 0:16� 0:07 0.02
��f1�2P (MeV) Small 56.79

TABLE VI. Decays of f3 � f0�1710�.

Quantity Exp (WA102) Theory

�f3!KK
=�f3!�� 5:0� 0:7 4.63

�f3!��=�f3!�� 2:4� 0:6 1.15
�f3!��0=�f3!�� <0:18 0.36
��f3
�2P (MeV) Dominant 143.94

TABLE IV. Fitted mass and decay properties of scalar mesons.

Quantity Exp Theory �2
i

Mf1
(MeV) 1350� 150 1142 1.924

Mf2
(MeV) 1507� 5 1508 0.023

Mf3
(MeV) 1714� 5 1713 0.0254

�f2!�� (MeV) 38:0� 4:6 37.31 0.019
�f2!KK

(MeV) 9:4� 1:7 10.08 0.167
�f2!�� (MeV) 5:6� 1:3 4.70 0.477
�f3!��=�f3!KK

0:20� 0:06 0.216 0.071
�f3!��=�f3!KK

0:48� 0:15 0.248 2.400
�a0!KK

=�a0!�� 0:88� 0:23 1.078 0.741
�a0!��

0=�a0!�� 0:35� 0:16 0.291 0.134
�K�0!K� (MeV) 273� 51 53.75 18.480
��f3
�2P (MeV) 140� 10 143.94 0.155

�2
tot � � � � � � 24.61
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z ’ 130 MeV, which is larger than the results from other
works listed in Sec. III B, but still in qualitative agreement.

Mixing matrix.—The mixing matrix B, relating the
physical to the bare states, for the second solution is ex-
pressed as

jf1i � jf0�1370�i

jf2i � jf0�1500�i

jf3i � jf0�1710�i

0BB@
1CCA � 0:81 0:54 0:19

�0:49 0:49 0:72

�0:30 �0:68 0:67

0BB@
1CCA

�

jNi � j �nni

jGi � jggi

jSi � j �ssi

0BB@
1CCA: (51)

The large mixing parameter f causes the glueball configu-
ration to be spread out among the f0 states: f1 � f0�1370�
is still dominantly �nn, f2 � f0�1500� is mostly �ss, but with
a sizable out-of-phase �nn amplitude (the opposite phase of
�nn and �ss was first considered in [6] as a mechanism to
explain the large��=KK ratio). In f3 � f0�1710� both the
gluonium and the �ss components are large, where the
gluonic component is slightly larger. Remarkably,
although the bare level ordering is still MN <MG <MS,
the largest �ss amount is contained in f2, while the largest
gluonic component is present in f3. The mixing matrix
resembles some features of the results of [7], although the
bare level ordering is different.

Large Nc constants.—From the parameters in (50) we
determine �S0

, �S8
and kSm by using (11) and (18):

MS � 1:479 GeV; eSm � 0:199; �S8
� 0:139;

�S0
� �0:032; kSm � �0:786: (52)

The same considerations as for solution I also hold here.
Resonance f0�1370�.—The results for f1 � f0�1370�

are summarized in Table V.
The main difference with respect to solution I concern-

ing f1 � f0�1370� is the decreased theoretical two-
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pseudoscalar width (mostly caused by the smaller physical
mass, see Table IV). In the present fit we find the following
decay widths into two-pseudoscalar pairs:

��f3
�2P � 144 MeV> ��f1

�2P � 57 MeV> ��f2
�2P

� 52 MeV: (53)

Here the decay pattern is in better agreement with the
analysis of [36,37] than the one of solution I.

Resonance f0�1500�.—The theoretical partial widths of
f0�1500� are in rather good agreement with the data (see
Table IV). We also obtain �f2!��0 � 1:5 MeV as com-
pared to the experimental value of �f2!��0 � 2� 1 MeV
without invoking further threshold corrections.

Resonance f0�1710�.—For the decays of f0�1710� we
summarize our results compared to the data of WA102 [33]
in Table VI.

The theoretical ��0=�� ratio is now smaller than in
solution I. Although the prediction is still larger than the
upper limit set by WA102, it does not represent such an
evident mismatch.

Resonance a0�1450�.—The two experimental ratios are
satisfactorily described. Otherwise, the discussion of
solution I is still valid here.

Resonance K�0�1430�.—The underestimate of �K�0!K� is
also present in the second solution (see Table IV).
Furthermore, for the additional K� decay channel we get
�K�0!K�=�K�0!�K � 0:050 65.

Two-photon decays.—The two-photon decay ratios re-
sulting from solution II read:

�f1!2�:�f2!2�:�f3!2�:�a0
0!2� � 1:0:253:0:055:0:493:

(54)

The two � results are in qualitative agreement with [8,12].
Following the arguments of the previous section by

using the result of [12] we find:
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�f1!2� � 0:350 keV; �f2!2� � 0:088 keV;

�f3!2� � 0:019 keV; �a0
0!2� � 0:172 keV:

(55)

As before, the rates are below the upper limits set by
current data, but they depend on the model-dependent
evaluation of [12].

Discussion.—If in this case we exclude the K�0 ! K�
mode from the fit (which generates the by far largest
contribution to �2), the following set of parameters is
found:

MN � 1:313 GeV; MG � 1:511 GeV;

MS � 1:594 GeV; f � 0:395 GeV2;

" � 0:002 GeV2; csd � 7:30 MeV;

csm � 6; 61 MeV; �2
tot � 5:97:

(56)

We then obtain �2
tot=N � 0:54, corresponding also in this

case to a good description of the remaining data. Again,
there is no phenomenological evidence for a direct decay
of the glueball component.

Apart from the decayK�0 ! K�, both solutions (I and II)
describe the data (28)–(38) well. There are, however,
differences when comparing to the WA102 results. The
second solution comes in this respect closer to these data,
but the experimental results are not yet conclusive.

D. K�0�1430�

The most striking mismatch with the data is in both
analyzed scenarios I and II the theoretical underestimate
of the K�0 ! K� mode (Tables I and IV). The correspond-
ing partial �2

K�0!K�
is by far the dominant contribution to

�2
tot. This mismatch also holds when including direct glue-

ball decays in the analysis as shown in the next section.
As a further attempt, following [41], we can also pursue

another strategy: in a first fit we fix the quarkonium decay
parameters csd and csm in order to reproduce K�0 ! K�
[Eq. (39)] and the two ratios for a0 given in (37) and
(38). Then we obtain csd � 17:94 MeV (larger by a
factor 2 when compared to the previous fit in Tables I
and IV). and csm � 7:35 MeV. With these values one
has �K�0!�K � 281 MeV, �a0!KK

=�a0!�� � 0:88 and
�a0!��0=�a0!�� � 0:30 and �a0!2P � 381:17 MeV (al-
ready larger than the experimental result).

The corresponding decay width of the N state into two
pseudoscalars is �N!2P 
 900 MeV (for a mass of MN 

1:4 GeV). We then find similar results as in [6,41], imply-
ing that the discussed trend is rather model independent. If
at this stage we fix csd � 17:94 MeV and csm � 7:35 MeV
and we make a second fit of the remaining free parameters
�MN;MG;MS; f; "; c

g
d; c

g
m� to the values reported in (28)–

(36), we find minima with �2
tot 
 500, which are clearly

unacceptable. This is a further confirmation of the incom-
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patibility of results in the scalar mesonic sector. If we
attempt to reproduce the width of K�0�1430�, the other
results are off. As noted above, this problem arises in other
models as well.

In [1] only theK�0 ! K�mode is quoted in the list of the
decay modes. Our suggestion is that a strong coupling to
the scalar mesons below 1 GeV,K�0�800� and� takes place.
Both states are very broad and could eventually influence
the decay strengths of K�0�1430�. The theoretical descrip-
tion of such a phenomenon is however beyond the goals of
the present tree-level study.
IV. PHENOMENOLOGY INVOLVING THE DIRECT
GLUEBALL DECAY MECHANISM

A. Flavor-symmetry limit

The analysis of the previous section did not reveal a
phenomenological need to include the direct two-
pseudoscalar decay of the glueball component. In this
section we analyze this additional mechanism when in-
cluding it in the fit. We start first by including the interac-
tion term proportional to cgd, while neglecting the flavor-
symmetry breaking contribution cgm.

The ratio cgd=c
s
d is a measure of the direct glueball decay

strength. The analogous quantity used in [8] is, because of
the different normalization, related as cgd=c

s
d !

��������
3=2

p
r2.

For the different solutions in the fit of [8] the parameter r2

varies between 1 and 5. Note that the case r2 � 1 corre-
sponds to a direct glueball decay strength into two pseu-
doscalars 
1:22 larger than the quarkonium strength. In
[13] the bare masses have been kept fixed when the glue-
ball decay parameters have been introduced. Here we
release this constraint by leaving the bare masses free. In
the fit we again find two different solutions, which corre-
spond to the ones (I and II) analyzed in the previous
section.

The �2 minimum corresponding to solution I but now
with inclusion of cgd in the fit is
MN � 1:416 GeV; MG � 1:493 GeV;

MS � 1:694 GeV; f � 0:075 GeV2;

" � 0:241 GeV2; csd � 8:73 MeV;

csm � 1:48 MeV; cgd � �0:94 MeV;

�2
tot � 28:70:

(57)
A comparison with the previous fit (41) shows that the
parameters practically did not change: with cgd �
�0:94 MeV the direct glueball decay is suppressed, result-
ing in jcgd=c

s
dj � 0:11� 1. Also, the total �2 is only

slightly smaller than in (41).
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The minimum corresponding to solution II reads

MN � 1:401 GeV; MG � 1:461 GeV;

MS � 1:609 GeV; f � 0:376 GeV2;

" � �0:082 GeV2; csd � 7:63 MeV;

csm � 7:09 MeV; cgd � 1:82 MeV; �2
tot � 22:87:

(58)

A comparison with (50) shows a clear similarity, although
the bare masses are somewhat shifted. Again, direct glue-
ball decay is suppressed with jcgd=c

s
dj � 0:24.

The inclusion of cgd in the fit does not lead to a drastic
change of the previous fit parameters. The bare glueball
decay strength is strongly suppressed with respect to the
quarkonium one, thus in agreement with the analysis of the
previous section and with large Nc considerations.

B. Flavor-symmetry breaking and lattice results

Inclusion of the flavor-symmetry breaking term in direct
glueball decay, that is the term with cgm, results in nine free
parameters [the set of (27) and cgd, cgm]. A direct fit of these
parameters to the data generates various minima, which are
not well pronounced. For example, solutions are found
where the flavor-symmetry breaking term in the glueball
sector cgm is exceedingly large, dominating the decay
mechanism. Instead, to study the effect of flavor-symmetry
breaking in glueball decay we resort to a first lattice study
[24] to fix the decay parameters cgd and cgm.

In [24] a full two-pseudoscalar decay width of the scalar
glueball with about 100 MeV is deduced. The correspond-
ing mass of 1:7 GeV led the authors of [24] to interpret the
resonance f0�1710� as mainly gluonic. However, in the
cited lattice analysis it is not clear if the glueball decay
mechanism occurs partially by mixing with scalar quarko-
nia (here parametrized by f), or by direct decay (parame-
trized by cgd and cgm). In [9] a scenario is studied, where the
lattice results of [24] are explained by mixing only (hence
cgd and cgm are set to zero). The physical state f0�1710� is
mainly gluonic, but because of mixing, it acquires a large
ss amount, which it turn explains the decay pattern. The
corresponding mixing matrix is then similar to the results
of [7] (and to some aspects of our solution II).

In [7] it is stated that the amplitudes deduced in [24]
probably include significant contributions from mixing of
the scalar glueball with quarkonium, although not proven.
If this is the case, only the mixing mechanism contributes
to glueball decay and then we are back to the previous
solutions, where the constants cgd and cgm are negligible.
Here we also intend to investigate the opposite case, where
the decay couplings calculated in [24] arise from direct
glueball decay.

The decay widths of the glueball can be expressed as
[24] (see also [9]):
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�G!�� �
3�1=2�M2

G;M
2
�;M2

��

32�M3
G

fyG��M�g
2;

�G!KK �
�1=2�M2

G;M
2
K;M

2
K�

8�M3
G

fyGKKM�g
2;

�G!�� �
�1=2�M2

i ;M
2
�;M

2
��

32�M3
G

fyG��M�g
2;

(59)

whereM� � 775 MeV is the �mass. The lattice results for
the decay constants yG��, yGKK and yG�� are

yG�� � 0:834�0:603
�0:579; yGKK � 2:654�0:372

�0:402;

yG�� � 3:099�0:364
�0:423:

(60)

Note that in the flavor-symmetry limit we would expect
yG��:yGKK:yG�� � 1:1:1. Although the errors are large,
the lattice results show a sizable deviation from this limit.
As already noted, it is however not clear, if and to what
extent mixing with quarkonia is included in these ampli-
tudes. Interpreting the lattice results in the context of the
direct glueball decay mechanism implies a large symmetry
violation parameter cgm.

The corresponding decays can be derived from the ex-
pressions of Appendix B by setting the glueball-quarkonia
mixing to zero, that is by considering the scalar-isoscalar
decay for Mi � MG and BiN � BiS � 0 and, of course,
BiG � 1. The explicit expressions for the �� and KK
modes of the direct glueball decay are

�G!�� �
3�1=2�M2

G;M
2
�;M

2
��

32�M3
G

�
2���
3
p
F2
�
M2

G � 2M2
��c

g
d

� 2M2
�c

g
m�

�
2
;

�G!KK �
�1=2�M2

G;M
2
K;M

2
K�

8�M3
G

�
2���
3
p
F2
�
M2

G � 2M2
K�c

g
d

� 2M2
Kc

g
m�

�
2
: (61)

Matching the expressions for the �� and KK decay modes
of (61) to (59) using MG � 1:7 GeV (as in [24]) we obtain
for the decay constants:

cgd � 1:34 MeV and cgm � 24:6 MeV: (62)

For a bare glueball mass of MG � 1:5 GeV we find rather
similar values of cgd � 1:72 MeV and cgm � 25 MeV;
hence we have a rather slight dependence on MG within
a reasonable range of values. In the following we take the
values evaluated at MG � 1:7 GeV.

Using the values of (62) we can also determine the
�� decay amplitude. Compared to the lattice result
of yG��M� � 2:40�0:28

�0:33 MeV we get the value of
2:025 GeV. The corresponding decay widths for the bare
glueball are (for MG � 1:7 GeV):
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TABLE VIII. Decays of f1 � f0�1370�.

Quantity Exp (WA102) Theory

�f1!KK
=�f1!�� 0:46� 0:19 1.10

�f1!��=�f1!�� 0:16� 0:07 0.17
��f1�2P (MeV) Small 193.5

TABLE IX. Decays of f3 � f0�1710�.

Quantity Exp (WA102) Theory

�f3!KK
=�f3!�� 5:0� 0:7 5.08

�f3!��=�f3!�� 2:4� 0:6 1.59
�f3!��0=�f3!�� <0:18 2.01
��f3
�2P (MeV) Dominant 143.3

SCALAR NONET QUARKONIA AND THE SCALAR . . . PHYSICAL REVIEW D 72, 094006 (2005)
�G!�� � 7:23 MeV; �G!KK � 80:61 MeV; (63)

�G!�� � 18:35 MeV; �G!��0 � 11:73 MeV: (64)

For a lower value of mass MG the only significantly
affected mode is ��0, since threshold effects become
important (note that the ��0 mode is entirely generated
by the flavor-symmetry breaking term proportional to cgm).

With the direct glueball decay including flavor-
symmetry violation fixed by (62), we now perform a fit
with the remaining free parameters MN , MG, MS, f, ", csd,
csm. Two solutions (III and IV) are obtained, which corre-
spond to the bare level orderings MN <MG <MS and
MN <MS <MG, which we analyze in the following.
Although the direct glueball decay dominates in these
cases, the two solutions have similarities to the ones dis-
cussed in detail in the previous section.

C. Third solution and implications

Solution III is obtained for the set of parameters:

MN � 1:359 GeV; MG � 1:435 GeV;

MS � 1:686 GeV; f � 0:212 GeV2;

" � 0:277 GeV2; csd � 8:28 MeV;

csm � 7:21 MeV; �2
tot � 21:56;

(65)

where the fit results are listed in Table VII. The mixing
matrix is similar to the one of solution I and explicitly reads

jf1i � jf0�1370�i

jf2i � jf0�1500�i

jf3i � jf0�1710�i

0BB@
1CCA � 0:79 0:56 0:26

�0:58 0:81 0:02

�0:20 �0:16 0:97

0BB@
1CCA

�

jNi � j �nni

jGi � jggi

jSi � j �ssi

0BB@
1CCA: (66)
TABLE VII. Fitted mass and decay properties of scalar me-
sons.

Quantity Exp Theory �2
i

Mf1
(MeV) 1350� 150 1242 0.519

Mf2
(MeV) 1507� 5 1507 0.003

Mf3
(MeV) 1714� 5 1714 0.011

�f2!�� (MeV) 38:0� 4:6 38.50 0.010
�f2!KK

(MeV) 9:4� 1:7 10.38 0.332
�f2!�� (MeV) 5:6� 1:3 3.65 2.252
�f3!��=�f3!KK

0:20� 0:06 0.197 0.002
�f3!��=�f3!KK

0:48� 0:15 0.314 1.221
�a0!KK

=�a0!�� 0:88� 0:23 1.079 0.745
�a0!��0=�a0!�� 0:35� 0:16 0.291 0.134
�K�0!K� (MeV) 273� 51 71.02 16.221
��f3
�2P (MeV) 140� 10 143.3 0.109

�2
tot � � � � � � 21.560
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The decay rates for f1 � f0�1370� and f3 � f0�1710� as
compared to the WA102 data are summarized in
Tables VIII and IX.

The two-photon decay ratios resulting from solution III
read

�f1!2�:�f2!2�:�f3!2�:�a0
0!2� � 1:1:018:0:025:0:494:

(67)

The results of the fit summarized in Table VII are
acceptable, apart from the already discussed underestimate
of the K� decay width. The corresponding prediction for
the WA102 data on f0�1370� has problems: the predicted
ratio �f1! �KK=�f1!�� is larger than unity and the full two-
pseudoscalar decay width is very large (we refer to the
discussion of solution I on the issue of the latter point). For
the state f0�1710� we obtain a large ratio �f3!��0=�f3!��,
again as in solution I, in contrast to the WA102 result. For
the two-photon decays we have a large ratio
�f2!2�=�f1!2�.

D. Fourth solution and implications

Solution IV corresponds to an inverted bare level order-
ing and a small glueball-quarkonia mixing with

MN � 1:392 GeV; MG � 1:712 GeV;

MS � 1:452 GeV; f � �0:050 GeV2;

" � 0:232 GeV2; csd � 6:66 MeV;

csm � 5:84 MeV; �2
tot � 26:330:

(68)

Although the fit results given in Table X are acceptable,
the smallness of the glueball-quarkonia mixing is clear
contrast to other phenomenological studies [8–13] and
lattice result [7,24].
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TABLE X. Fitted mass and decay properties of scalar mesons.

Quantity Exp Theory �2
i

Mf1
(MeV) 1350� 150 1330 0.017

Mf2
(MeV) 1507� 5 1507 0.002

Mf3
(MeV) 1714� 5 1714 
0

�f2!�� (MeV) 38:0� 4:6 39.84 0.135
�f2!KK

(MeV) 9:4� 1:7 10.21 0.230
�f2!�� (MeV) 5:6� 1:3 4.89 0.297
�f3!��=�f3!KK

0:20� 0:06 0.129 1.416
�f3!��=�f3!KK

0:48� 0:15 0.227 2.842
�a0!KK

=�a0!�� 0:88� 0:23 1.086 0.863
�a0!��

0=�a0!�� 0:35� 0:16 0.291 0.134
�K�0!K� (MeV) 273� 51 45.05 20.365
��f3
�2P (MeV) 140� 10 142.95 0.087

�2
tot � � � � � � 26.330

TABLE XI. Decays of f1 � f0�1370�.

Quantity Exp (WA102) Theory

�f1!KK
=�f1!�� 0:46� 0:19 0.73

�f1!��=�f1!�� 0:16� 0:07 0.13
��f1�2P (MeV) Small 99.47

TABLE XII. Decays of f3 � f0�1710�.

Quantity Exp (WA102) Theory

�f3!KK
=�f3!�� 5:0� 0:7 7.78

�f3!��=�f3!�� 2:4� 0:6 1.76
�f3!��0=�f3!�� <0:18 1.00
��f3
�2P (MeV) Dominant 142.95
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The mixing matrix reads

jf1i � jf0�1370�i

jf2i � jf0�1500�i

jf3i � jf0�1710�i

0BB@
1CCA � 0:82 �0:07 0:57

�0:57 
0 0:82

�0:06 0:99 0:04

0BB@
1CCA

�

jNi � j �nni

jGi � jggi

jSi � j �ssi

0BB@
1CCA: (69)

In this solution the state f0�1710� is very close to a pure
gluonic configuration, which is traced to the small mixing
parameter f. The states f0�1370� and f0�1500� are in turn
dominated by the quarkonia components, but with strong
mixing between nn and ss. The decay rates for f1 �
f0�1370� and f3 � f0�1710� as compared to the WA102
data are listed in Tables XI and XII.

Finally, the two-photon decay ratios resulting from
solution IV read:

�f1!2�:�f2!2�:�f3!2�:�a0
0!2� � 1:0:273:0:008:0:382:

(70)
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E. Discussion of solutions III and IV

The study of the previous subsections shows that a direct
glueball decay with large violation of flavor symmetry is
feasible. This feature is based on an interpretation of first
lattice results, which corresponds to the limiting case of a
direct glueball decay as contained in the parameters cgd and
cgm�. This interpretation is in contrast to the phenomeno-
logical study of [9] and to the comments given in [24].
Furthermore, such a large value for the flavor-symmetry
breaking parameter cgm is not in agreement with large Nc
arguments. In any case, considering that the interpretation
of lattice results is not unique, from a phenomenological
point of view it is interesting to analyze the situation,
where a strong, flavor-symmetry violating glueball decay
is present.

A sizable direct glueball decay is, as already discussed,
the result of the phenomenology given in [8]. However, in
[8] the direct glueball decay pattern is flavor blind, which
would correspond to a large cgd but to a suppressed value
for cgm. In this sense the solutions III and IV differ from the
analysis of [8].

Care should also be taken when considering the two-
photon decay in this scheme: if the two-pseudoscalar am-
plitudes are sizable, the same can also be expected for the
transitions into two vector mesons (although not studied
here). Invoking vector meson dominance sizable correc-
tions to the two-photon final state are expected. The use
of the limit cge � 0 in the present case is therefore
questionable.

V. CONCLUSIONS

In this paper we analyzed the two-pseudoscalar and the
two-photon decays of the scalar states between 1–2 GeV in
the framework of a chiral Lagrangian, where the glueball
has been included as a flavor-blind composite mesonic
field with independent couplings to pseudoscalar fields.

In a first step we have set the glueball-pseudoscalar
couplings to zero and performed a fit to the accepted
averages of PDG2004 [1]. We find two possible solutions
(I and II), which, apart from the underestimate of the K�0 !
K� mode, show good agreement with the data. The
solutions I and II differ in the bare isoscalar masses, in
the mixing matrix (in scheme I) the state f0�1500� has the
largest gluonic amount, while in scheme II the state
f0�1710� has the main gluonic component), in some pre-
dictions concerning other decay modes, which have been
compared to the experimental results of [33]. From a
phenomenological point of view, there is no striking hint
for a direct glueball-pseudoscalar coupling.

We then enlarged our analysis by including the direct
glueball decay parameter (cgd) in the flavor-symmetry limit
in the fit. A small value for this parameter is obtained,
which in turn confirms the suppression of the direct glue-
ball decay in agreement with large Nc arguments and with
[6,10], but contrary to the study of [8]. In a last step we also
-14
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included the second glueball decay parameter (cgm) in the
fit, which involves flavor-symmetry breaking in the direct
glueball decay. The minima in the fit are less pronounced,
therefore we utilized the lattice results of [24] to determine
the direct glueball decay parameters cgd and cgm. The lattice
data are interpreted such as they are matched by the direct
glueball decay mechanism, although this procedure might
be a limiting case. The resulting fits also generate a good
description of the data, where either the f0�1500� or the
f0�1710� contain a dominant glueball component. These
solutions however should at present taken with some care
and require further input either from an enlarged, reliable
database or lattice constraints. For this reason our preferred
solutions are I and II presented in section III.

Although the presence of a strong direct glueball decay
cannot be verified directly, the presence of a sizable
glueball-quarkonia mixing is essential to be in accord
with the data. The magnitude is different in the two pro-
posed solutions (smaller in I, largest in II), but is in line
with other models and in magnitude qualitatively consis-
tent with lattice results [7,15].

The starting point of the Lagrangian has been outlined in
[20]. In the present work we added the glueball degree of
freedom, both for mixing and decays. As a result of the fit,
we also considered deviations from the large Nc limit. We
find that large Nc arguments are still useful as a guideline
in the scalar sector as well. Also a small deviation from the
GMO octet mass relation is found.

A direct isoscalar nn-ss quarkonia mixing has been
introduced in the theoretical analysis. Instanton solutions
of the QCD vacuum are believed to generate strong flavor
mixing in both the isoscalar and the scalar sectors. The
presence of such mixing is established in the pseudoscalar
nonet, while it is still an open question in the scalar-
isoscalar mesonic sector. Our two proposed solutions differ
in this point: while in the first one this flavor mixing
sensibly affects the results, in the second solution it turns
out to be negligible.

The problem of the K�0 ! K�mode has been discussed;
although no final statement to this puzzle can be said, we
compared predictions of various approach and attempted to
highlight the difficulty in the scalar sector.

Although many experimental results can be reproduced,
and the presence of a scalar glueball and its mixing with
scalar quarkonia explains many features of the scalar me-
son spectroscopy, further work, both theoretically and
experimentally, is needed to rule out some mixing scenar-
ios in favor of others.
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APPENDIX A: ASPECTS OF THE CHIRAL
LAGRANGIAN

We use the following phase conventions for the pseudo-
scalar P � f��; �0; K�; K0; K0; �0; �8g and scalar S �
fa�0 ; a

0
0; K

��
0 ; K�00 ; K

�0
0 ; S

0; S8g meson fields (neglecting
the mixing of the third and the eighth component):

�� �
1���
2
p �P1 � iP2�; �0 � P3;

K� �
1���
2
p �P4 � iP5�; K0 �

1���
2
p �P6 � iP7�;

K0 �
1���
2
p �P6 � iP7�; �0 � P0; �8 � P8;

(A1)

a�0 �
1���
2
p �S1 � iS2�; a0

0 � S3;

K��0 �
1���
2
p �S4 � iS5�; K�00 �

1���
2
p �S6 � iS7�;

K�00 �
1���
2
p �S6 � iS7�:
APPENDIX B: TWO-BODY s! p1p2 AND s! ��
TRANSITIONS (MATRIX ELEMENTS AND DECAY

WIDTHS)

1. Scalar-isoscalar strong decays

The strong decay widths of the scalar states are derived
at tree-level from the following term of the Lagrangian (2):

Lstrong
decay � csdhSu�u

�i � csmhS��i �
cgd���

3
p Ghu�u

�i

�
cgm���

3
p Gh��i: (B1)

The decay expression for the scalar-isoscalar states jiiwith
i � f1; f2; f3 into ��, KK, �� and ��0 are given by the
following expressions:

�i!�� � �i!���� � �i!�0�0 �
3

2
�i!����

�
3�1=2�M2

i ;M
2
�;M2

��

32�M3
i

jMi����j
2; (B2)

�i!KK � �i!K�K� � �i!K0 �K0 � 2�i!K�K�

�
�1=2�M2

i ;M
2
K;M

2
K�

8�M3
i

jMiK�K�j
2; (B3)
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�i!�� �
�1=2�M2

i ;M
2
�;M2

��

32�M3
i

jMi��j
2; (B4)

�i!��0 �
�1=2�M2

i ;M
2
�;M

2
�0 �

16�M3
i

jMi��0 j
2; (B5)

where ��x; y; z� is the Källen triangle function:

��x; y; z� � x2 � y2 � z2 � 2xy� 2yz� 2xz: (B6)

The matrix elements Mi���� , MiK�K� , Mi�� and Mi��0 are
given by

Mi!���� � �
2BiN
F2

���
2
p f
M2

i � 2M2
��csd � 2M2

�csmg

�
2BiG
F2

���
3
p f
M2

i � 2M2
��c

g
d � 2M2

�c
g
mg; (B7)

Mi!K�K� � �
BiN �

���
2
p
BiS

F2
���
2
p f
M2

i � 2M2
K�c

s
d � 2M2

Kc
s
mg

�
2BiG
F2

���
3
p f
M2

i � 2M2
K�c

g
d � 2M2

Kc
g
mg; (B8)

Mi!����
2csd
F2

���
2
p 
M2

i �2M2
��fBiNsin2
P�BiScos2
P

���
2
p
g

�
4csm
F2

���
2
p fM2

�BiNsin2
P

�
2M2
K�M

2
��BiScos2
P

���
2
p
g

�
2BiG
F2

���
3
p fcgd
M

2
i �2M2

���2cgm�M2
�

�2
M2
K�M

2
��cos2
P�g; (B9)

Mi!��0 �
sin2
P
F2

���
2
p fcsd
M

2
i �M

2
� �M2

�0 �
BiN � BiS
���
2
p
�

� 2csm
M2
�BiN � �M2

� � 2M2
K�BiS

���
2
p
�

� 4
��������
2=3

p
cgmBiG
M2

K �M
2
��g; (B10)

where 
P � 	P � 	IP and 	IP is the ideal mixing angle with
sin	IP � 1=

���
3
p

; the quantities Bij are the elements of mix-
ing matrix relating physical states i � f1; f2; f3 and bare
states j � N;G; S [see definitions in Eqs. (14) and (21)].
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2. Isovector and isodoublet strong decays

The decay rates for a0�1450� into KK, �� and ��0 are

�a0!KK
�

1

3

�

a�0 !K
�K0 � �a�0 !K�K0 � �a0

0!K
�K�

� �
a0

0!K
0K0�

� �a�0 !K�K
0 �

�1=2�M2
a0
;M2

K;M
2
K�

16�M3
a0

jMa�0 K
�K0 j2;

(B11)

�a0!�� �
1

3

�a�0 !��� � �a�0 !��� � �a0

0!�
0��

� �a�0 !��� �
�1=2�M2

a0
;M2

�;M2
��

16�M3
a0

jMa�0 ���
j2;

(B12)

�a0!��0 �
1

3

�a�0 !���0 � �a�0 !���0 � �a0

0!�
0�0 �

� �a�0 !���0 �
�1=2�M2

a0
;M2

�;M
2
�0 �

16�M3
a0

jMa�0 ���
0 j2:

(B13)

The matrix elements Ma�0 K
� �K0 , Ma�0 �

�� and Ma�0 �
��0 are

given by

Ma�0 K
� �K0 � �

1

F2 �
M
2
a0
� 2M2

K�c
s
d � 2M2

Kc
s
m�; (B14)

Ma�0 �
�� �

sin
P
���
2
p

F2 �
M2
a0
�M2

� �M2
��c

s
d � 2M2

�csm�;

(B15)

Ma�0 �
��0 � �

cos
P
���
2
p

F2 �
M2
a0
�M2

� �M
2
�0 �c

s
d

� 2M2
�csm�: (B16)

The decay rates for K�0�1430� into K� and K� are
(considering the isodoublet fK��0 ; K�00 g):

�K�0!K� �
1

2

�K��0 !K0�� � �K��0 !K��0 � �K�00 !K

0�0

� �K�00 !K
����

�
3

2
�K��0 !K0��

�
3�1=2�M2

K�0
;M2

K;M
2
��

32�M3
K�0

jMK��0 K0��j
2; (B17)
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�K�0!K� �
1

2

�K��0 !K�� � �K�00 !K

0��

� �K��0 !K�� �
�1=2�M2

K�0
;M2

K;M
2
��

16�M3
K�0

jMK��0 K��j
2;

(B18)

The matrix elements MK��0 K0�� and MK��0 K�� are given by

MK��0 K0�� � �
1

F2 �
M
2
K�0
�M2

� �M
2
K�c

s
d

� 
M2
� �M

2
K�c

s
m�; (B19)
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MK��0 K�� �
cos
P
F2 �
M2

K�0
�M2

K �M
2
��c

s
d

� 
3M2
K �M

2
��c

s
m�

�
sin
P
F2

���
2
p �
M2

K�0
�M2

K �M
2
��c

s
d

� 
M2
K �M

2
��csm�: (B20)
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