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Decay rates and time-dependent and direct CP asymmetries in the decays B0 ! K�K�KS�L� and
KSKSKS�L� are studied. Resonant and nonresonant contributions to the three-body decays are carefully
investigated. Nonresonant effects on two-body and three-body matrix elements are constrained by QCD
counting rules. The predicted branching ratios are consistent with the data within the theoretical and
experimental errors, though the theoretical central values are somewhat smaller than the experimental
ones. Owing to the presence of color-allowed tree amplitudes in B0 ! K�K�KS�L�, this penguin-
dominated mode may be subject to a potentially significant tree pollution and the deviation of the
mixing-induced CP asymmetry from that measured in B! J= KS, namely, � sin2�K�K�KS�L� �
sin2�K�K�KS�L� � sin2�J= KS , can be as large as O�0:10�. In contrast, the KSKSKS�L� modes appear
theoretically very clean in our picture with negligible theoretical errors in � sin2�KSKSKS�L� . Direct CP
asymmetries in K�K�KS�L� and KSKSKS�L� modes are found to be very small.
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I. INTRODUCTION

Considerable activity in search of possible new physics
beyond the standard model (SM) has recently been devoted
to the measurements of time-dependent CP asymmetries in
neutral B meson decays into final CP eigenstates defined
by

��B�t� ! f� � ��B�t� ! f�

��B�t� ! f� � ��B�t� ! f�
� Sf sin��mt�

�Af cos��mt�; (1.1)

where �m is the mass difference of the two neutral B
eigenstates, Sf monitors mixing-induced CP asymmetry,
and Af measures direct CP violation (in the BABAR
notation, Cf � �Af). The time-dependent CP asymme-
tries in the b! sq �q penguin-induced two-body decays
such as B0 ! ��;!;�0; �0; f0�KS measured by BABAR
[1,2] and Belle [3–5] show some indications of sizable
deviations from the expectation of the SM where CP
asymmetry in all above-mentioned modes should be equal
to SJ= KS � 0:687� 0:032 [6] with a small deviation of at
most O�0:1� [7,8]. Based on the framework of QCD facto-
rization [9], the mixing-induced CP violation parameter Sf
in the seven two-body modes ��;!; �0; �0; �; �0; f0�KS
has recently been quantitatively studied in [10–12]. It is
found that the sign of �Sf � ��fSf � SJ= KS (�f being
the CP eigenvalue of the final state f) at short distances is
positive except for the channel �0KS. After including final-
state rescattering effects, the central values of �Sf become
positive for all the modes under consideration, but they
tend to be rather small compared to the theoretical uncer-
tainties involved so that it is difficult to make reliable
statements on the sign at present [10].
05=72(9)=094003(10)$23.00 094003
Time-dependent CP asymmetries in the b!
sq �q-induced three-body decays B0 ! K�K�KS and
KSKSKS have also been measured by B factories
[2,4,5,13–16] (see Table I). Three-body modes such as
these were first discussed by Gershon and Hazumi [17].
While KSKSKS has fixed CP parity, K�K�KS is an ad-
mixture ofCP-even andCP-odd components, rendering its
CP analysis more complicated. By excluding the major
CP-odd contribution from �KS, the three-body K�K�KS
final state is primarily CP even. A measurement of the
CP-even fraction f� in the B0 ! K�K�KS decay yields
f� � 0:89� 0:08� 0:06 by BABAR [2] and 0:93�
0:09� 0:05 by Belle [5], while the CP-odd fraction in
K�K�KL is estimated to be f� � 0:92� 0:07� 0:06 by
BABAR [13]. Hence, while �f � 1 for the KSKSKS mode,
�f � 2f� � 1 for K�K�KS and �f � ��2f� � 1� for
K�K�KL. It is convenient to define an effective sin2�
via Sf � ��f sin2�eff . The results of sin2�eff for
K�K�KS obtained from the measurements of SK�K�KS
and f� are also shown in Table I.

In order to see if the current measurements of the
deviation of sin2�eff in KKK modes from sin2�J= KS
signal new physics in b! s penguin-induced modes, it
is of great importance to examine and estimate how much
of the deviation of sin2�eff is allowed in the SM. One of the
major uncertainties in the dynamic calculations lies in the
hadronic matrix elements which are nonperturbative in
nature. One way to circumvent this difficulty is to impose
SU(3) flavor symmetry [18,19] or isospin and U-spin sym-
metries [20] to constrain the relevant hadronic matrix
elements. While this approach is model independent in
the symmetry limit, deviations from that limit can only
be computed in a model dependent fashion. In addition, it
may have some weakness as discussed in [19].
-1 © 2005 The American Physical Society
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TABLE I. Mixing-induced CP asymmetries �Sf (top), direct CP violation Af (middle), and branching ratios (in units of 10�6,
bottom) for B0 ! K�K�KS and KSKSKS decays. For effective sin2� for K�K�KS, the third error is due to the uncertainty in the
fraction of CP-even contributions to the decay rate. Experimental results are taken from [2,4,5,13–16].

Final state BABAR Belle Average

K�K�KS
a 0:42� 0:17� 0:03 0:52� 0:16� 0:03 0:47� 0:12

�sin2�eff�K�K�KS 0:55� 0:22� 0:04� 0:11 0:60� 0:18� 0:04�0:19
�0:12 0:57�0:18

�0:17

K�K�KL
b 0:07� 0:28�0:11

�0:12 0:07� 0:30
�sin2�eff�K�K�KL 0:09� 0:33�0:13

�0:14 � 0:10 0:09� 0:37
KSKSKS 0:63�0:28

�0:32 � 0:04 0:58� 0:36� 0:08 0:61� 0:23

K�K�KS
a �0:10� 0:14� 0:04 �0:06� 0:11� 0:07 �0:08� 0:10

K�K�KL
b �0:54� 0:22�0:09

�0:08 �0:54� 0:24
KSKSKS 0:10� 0:25� 0:05 0:50� 0:23� 0:06 0:31� 0:17

K�K�KS 11:9� 1:0� 0:8 14:2� 1:7� 2:0 12:4� 1:2
KSKSKS 6:9�0:9

�0:8 � 0:6 4:2�1:6
�1:3 � 0:8 6:2� 1:2 c

awith ��1020�KS excluded.
bwith ��1020�KL excluded.
cwith the error enlarged by a factor of S � 1:4.

1Note that since K�K�KS is not a pure CP eigenstate, we
define � sin2�eff � sin2�eff � sin2�J= K with sin2�eff �
�Sf=�f. In general, the relation �Sf � � sin2�eff

f holds for
the final state with fixed CP parity.
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We shall apply the factorization approach in this work as
it seems to work even in the case of three-body B decays
[21]. By using factorization and kaon timelike form factors
extracted from the e�e� ! KK process, the predicted
B0 ! D����K�K0 rate agrees well with the data [21]. In
general, three-body B decays are more complicated than
the two-body case as they receive resonant and nonreso-
nant contributions and involve three-body matrix elements.
Nonresonant charmless three-body B decays have been
studied extensively [22–27] based on heavy meson chiral
perturbation theory (HMChPT) [28–30]. However, the
predicted decay rates are, in general, unexpectedly large.
For example, the branching ratio of the nonresonant decay
B� ! ������ is predicted to be of order 10�5 in
[22,23], which is too large compared to BABAR’s prelimi-
nary result �0:68� 0:41� 	 10�6 [31]. The issue has to do
with the applicability of HMChPT. In order to apply this
approach, two of the final-state pseudoscalars have to be
soft. The momentum of the soft pseudoscalar should be
smaller than the chiral symmetry breaking scale �� 


830 MeV. For three-body charmless B decays, the avail-
able phase space where chiral perturbation theory is appli-
cable is only a small fraction of the whole Dalitz plot.
Therefore, it is not justified to apply chiral and heavy quark
symmetries to a certain kinematic region and then general-
ize it to the region beyond its validity. In order to have a
reliable prediction for the total rate of direct three-body
decays, one should try to utilize chiral symmetry to a
minimum. Therefore, we will apply HMChPT only to the
strong vertex and use the form factors to describe the weak
vertex [32]. Moreover, we shall introduce a form factor to
take care of the off-shell effect.

As shown in [10], among the aforementioned seven
neutral PKS modes, only the !KS and �0KS modes are
expected to have a sizable deviation of the mixing-induced
094003
CP asymmetry Sf from SJ= KS . More precisely, it is found
that �S!KS � 0:12�0:05

�0:06 and �S�0KS � �0:09�0:03
�0:07

1 in the
absence of final-state interactions [10]. Although the tree
contribution in these two modes is color suppressed, the
large cancellation between a4 and a6 penguin terms ren-
ders the tree pollution relatively significant. Unlike the
above-mentioned case for two-body decays, the tree con-
tribution to the three-body decay B0 ! K�K�KS is color-
allowed and hence it has the potential for producing a large
deviation from sin2� measured in B! J= KS. We shall
see in this work that it is indeed the case. In contrast, the
absence of tree pollution in KSKSKS renders it theoreti-
cally very clean in our picture.

The layout of the present paper is as follows. In Sec. II
we apply the factorization approach to study B0 !
K�K�KS and KSKSKS decays and discuss resonant and
nonresonant contributions. Numerical results for decay
rates and CP-violating parameters Sf and Af and discus-
sions are presented in Sec. III. Section IV contains our
conclusions.
II. FORMALISM FOR CHARMLESS THREE-BODY
B DECAYS

In the factorization approach, the matrix element of the
B! KKK decay amplitude is given by

hKKKjH effjBi �
GF���

2
p

X
p�u;c

�phKKKjTpjBi; (2.1)
-2
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where �p � VpbV
�
ps and [9]
Tp � a1�pu� �ub�V�A � ��su�V�A � a2�pu� �sb�V�A � � �uu�V�A � a3��sb�V�A �
X
q

� �qq�V�A � a
p
4

X
q

� �qb�V�A � ��sq�V�A

� a5� �sb�V�A �
X
q

� �qq�V�A � 2ap6
X
q

� �qb�S�P � � �sq�S�P � a7� �sb�V�A �
X
q

3

2
eq� �qq�V�A

� 2ap8
X
q

� �qb�S�P �
3

2
eq� �sq�S�P � a9� �sb�V�A �

X
q

3

2
eq� �qq�V�A � a

p
10

X
q

� �qb�V�A �
3

2
eq��sq�V�A; (2.2)

with � �qq0�V�A � �q	
�1� 	5�q
0, � �qq0�S�P � �q�1� 	5�q

0 and a summation over q � u; d; s being implied. The matrix
element hKKKjj � j0jBi corresponds to hKKjjjBihKjj0j0i, hKjjjBihKKjj0j0i, or h0jjjBihKKKjj0j0i, as appropriate, and
ai are the next-to-leading order effective Wilson coefficients. In this work, we take

a1 � 0:99� 0:37i; a2 � 0:19� 0:11i; a3 � �0:002� 0:004i; a5 � 0:0054� 0:005i;

au4 � �0:03� 0:02i; ac4 � �0:04� 0:008i; au6 � �0:06� 0:02i; ac6 � �0:06� 0:006i;

a7 � 0:54	 10�4i; au8 � �4:5� 0:5i� 	 10�4; ac8 � �4:4� 0:3i� 	 10�4; a9 � �0:010� 0:0002i;

au10 � ��58:3� 86:1i� 	 10�5; ac10 � ��60:3� 88:8i� 	 10�5; (2.3)

for typical ai at the renormalization scale 
 � mb=2 � 2:1 GeV which we are working on.
Applying Eqs. (2.1) and (2.2) and the equation of motion, we obtain the B0 ! K�K�K0 decay amplitude as

hK0K�K�jTpjBi � hK�K
0j� �ub�V�AjB

0ihK�j��su�V�Aj0i
a1�pu � a
p
4 � a

p
10 � �a

p
6 � a

p
8 �r��

� hK0j��sb�V�AjB
0ihK�K�j� �uu�V�Aj0i�a2�pu � a3 � a5 � a7 � a9�

� hK0j��sb�V�AjB
0ihK�K�j� �dd�V�Aj0i

�
a3 � a5 �

1

2
�a7 � a9�

�

� hK0j��sb�V�AjB
0ihK�K�j� �ss�V�Aj0i

�
a3 � a

p
4 � a5 �

1

2
�a7 � a9 � a

p
10�

�

� hK0j �sbjB0ihK�K�j �ssj0i��2ap6 � a
p
8 � � hK

�K�K0j��sd�V�Aj0ih0j� �db�V�AjB
0i

�
ap4 �

1

2
ap10

�

� hK�K�K0j �s	5dj0ih0j �d	5bjB
0i��2ap6 � a

p
8 �; (2.4)

with r� � 2m2
K=�mbms�. In the factorization terms, the KK pair can be produced through a transition from the Bmeson or

can be created from vacuum through V and S operators. There exist two weak annihilation contributions, where the B
meson is annihilated and a final state with three kaons is created. Note that the Okubo-Zweig-Iizuka rule suppressed matrix
element hK�K�j� �dd�V�Aj0i is included in the factorization amplitude since it could be enhanced through the long-distance
pole contributions via the intermediate vector mesons such as �0 and !.

To evaluate the above amplitude, we need to consider the B! KK, 0! KK, and 0! KKK matrix elements, the so-
called two-meson transition, and two-meson and three-meson creation matrix elements in addition to the usual one-meson
transition and creation ones. The two-meson transition matrix element hK0K�j� �ub�V�AjB

0i has the general expression [33]

hK0�p1�K
��p2�j� �ub�V�AjB

0i � ir�pB � p1 � p2�
 � i!��p2 � p1�
 � i!��p2 � p1�


� h�
�
�p
�
B�p2 � p1�


�p2 � p1�
�: (2.5)

This leads to

hK��p3�j� �su�V�Aj0ihK
0�p1�K��p2�j� �ub�V�AjB

0i � �
fK
2

2m2

3r� �m
2
B � s12 �m2

3�!� � �s23 � s13 �m2
2 �m

2
1�!��;

(2.6)

where sij � �pi � pj�2. A pole model calculation of the B0 ! K0K� transition matrix element amounts to considering the
094003-3
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strong interaction B0 ! K0B�s followed by the weak transition B�s ! K� and the result is [32]


hK��p3�j� �su�V�Aj0ihK
0�p1�K��p2�j� �ub�V�AjB

0i�pole �
fK
f�

g ���������������mBmB�s
p

s23 �m2
B�s

F�s23; mB�s �F
BsK
1 �m2

3�

	

�
mB �

s23

mB
�mB

m2
B � s23

m2
3

�
1�

FBsK0 �m2
3�

FBsK1 �m2
3�

��

	

�
m2

1 �m
2
3 � s13 �

�s23 �m
2
2 �m

2
3��m

2
B � s23 �m

2
1�

2m2
B�s

�
; (2.7)
2As explained in [21], at least two hard gluon exchanges are
needed: one creating the s �s pair in K0K�, the other kicking the
spectator to catch up with the energetic s quark to form the K
meson. This gives rise to a 1=s2

12 asymptotic behavior.
where g is a heavy-flavor independent strong coupling
which can be extracted from the recent CLEO measure-
ment of the D�� decay width, g � 0:59� 0:01� 0:07
[34], and FBsK0;1 are the Bs ! Kweak transition form factors
in the standard convention [35]. Since B�s can be far from
the mass shell, it is necessary to introduce a form factor
F�s23; mB�s � to take into account the off-shell effect of
the B�s pole. Following [36], it is parametrized as
F�s23; mB�s � � ��

2 �m2
B�s
�=��2 � s23� with the cutoff pa-

rameter � chosen to be � � mB�s ��QCD.
It is worth making a digression for a moment. In prin-

ciple, one can apply HMChPT twice to evaluate the form
factors r, !�, and !� [33]. However, this will lead to too
large decay rates in disagreement with experiment [32].
This is because the use of HMChPT is reliable only in the
kinematic region where K� and K0 are soft. Therefore, the
available phase space where chiral perturbation theory is
applicable is very limited. If the soft meson result is
assumed to be applicable to the whole Dalitz plot, the
decay rate will be greatly overestimated. Therefore, we
employ the pole model to evaluate the aforementioned
form factors. We shall apply HMChPT only once to the
B0K0B�s strong vertex and introduce a form factor to take
care of the momentum dependence of the strong coupling.

The resonant pole contributions to the form factors r,
!�, and h can be worked out from Eq. (2.7). In principle,
there are also nonresonant contributions to these form
factors. It turns out that the leading nonresonant contribu-
tion can be determined as follows. We notice that the same
B! KK two-meson transition matrix element also ap-
pears in the decay B� ! D0K0K� under factorization
[21]. The data favors a 1� configuration in the K0K�

pair [37]. The corresponding two-meson transition matrix
element is dominated by the !� term. Following [21] we
shall include a nonresonant contribution to !� parame-
trized as

!NR
� � �

2pB � p2

s2
12

; (2.8)

and employ the B� ! D0K0K� data and apply isospin
symmetry to the B! KK matrix elements to determine
the unknown parameter �. The denominator in the above
parametrization is inspired by the QCD counting rule
094003
which gives rise to a 1=s2
12 asymptotic behavior,2 while

the numerator pB � p2 � mBEK� is motivated by the ob-
servation that K� contains an energetic u quark coming
from the b! u transition.

The matrix elements involving 3-kaon creation are given
by [32]

hK0�p1�K��p2�K��p3�j� �sd�V�Aj0ih0j� �db�V�AjB
0i � 0;

hK0�p1�K��p2�K��p3�j �s	5dj0ih0j �d	5bjB
0i

� v
fBm

2
B

f�mb

�
1�

s13 �m
2
1 �m

2
3

m2
B �m

2
K

�
FKKK�m2

B�; (2.9)

where

v �
m2
K�

mu �ms
�
m2
K �m

2
�

ms �md
(2.10)

characterizes the quark-order parameter h �qqi which spon-
taneously breaks the chiral symmetry. Both relations in
Eq. (2.9) are originally derived in the chiral limit [32] and
hence the quark masses appearing in Eq. (2.10) are referred
to the scale 
1 GeV. The first relation reflects helicity
suppression which is expected to be even more effective for
energetic kaons. For the second relation, we introduce the
form factor FKKK to extrapolate the chiral result to the
physical region. Following [32] we shall take FKKK�q2� �

1=
1� �q2=�2
���with �� � 0:83 GeV being a chiral sym-

metry breaking scale.
We now turn to the 2-kaon creation matrix element

which can be expressed in terms of timelike kaon current
form factors as

hK��pK��K
��pK��j �q	
qj0i � �pK� � pK��
F

K�K�
q ;

hK0�pK0�K0�p �K0�j �q	
qj0i � �pK0 � p �K0�
FK
0 �K0

q :

(2.11)

The weak vector form factors FK
�K�

q and FK
0 �K0

q can be
related to the kaon electromagnetic (e.m.) form factors
FK

�K�
em and FK

0 �K0

em for the charged and neutral kaons, re-
-4



4The sign convention is fixed by using hM�q �q0; p�
M�q �q0; p0�j �q	
qj0i � hM�q �q0; p�j �q	
qjM�q �q0; �p0�i �
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spectively. Phenomenologically, the e.m. form factors re-
ceive resonant and nonresonant contributions and can be
expressed by

FK
�K�

em � F� � F! � F� � FNR;

FK
0 �K0

em � �F� � F! � F� � F
0
NR:

(2.12)

It follows from Eqs. (2.11) and (2.12) that

FK
�K�

u � FK
0 �K0

d � F� � 3F! �
1

3
�3FNR � F

0
NR�;

FK
�K�

d � FK
0 �K0

u � �F� � 3F!;

FK
�K�

s � FK
0 �K0

s � �3F� �
1

3
�3FNR � 2F0NR�;

(2.13)

where use of isospin symmetry has been made.
The resonant and nonresonant terms in Eq. (2.12) can be

parametrized as

Fh�s23� �
ch

m2
h � s23 � imh�h

;

F�0�NR�s23� �

�
x�0�1

s23
�
x�0�2

s2
23

��
ln
�
s23

~�2

��
�1
;

(2.14)

with ~� � 0:3 GeV. The expression for the nonresonant
form factor is motivated by the asymptotic constraint
from perturbative QCD (pQCD), namely, F�t� ! �1=t�	

ln�t=~�2���1 in the large t limit [38]. The unknown pa-
rameters ch, xi, and x0i are fitted from the kaon e.m. data,
giving the best fit values (in units of GeV2 for ch) [21]:

c� � 3c! � c� � 0:363; c��1450� � 7:98	 10�3;

c��1700� � 1:71	 10�3; c!�1420� � �7:64	 10�2;

c!�1650� � �0:116; c��1680� � �2:0	 10�2;

(2.15)

and

x1 � �3:26 GeV2; x2 � 5:02 GeV4;

x01 � 0:47 GeV2; x02 � 0:
(2.16)

Note that the form factors F�;!;� in Eqs. (2.12) and (2.13)
include the contributions from the vector mesons ��770�,
��1450�, ��1700�, !�782�, !�1420�, !�1650�, ��1020�,
and ��1680�. It is interesting to note that (i) the fitted
values of cV are very close to the vector-meson dominance
expression gV	gVKK for V � �;!;� [39,40], where gV	 is
the e.m. coupling of the vector meson defined by
hVjjemj0i � gV	��V

3 and gVKK is the V ! KK strong cou-
pling with �g�K�K� ’ g�K�K�=

���
2
p
� g!K�K�=

���
2
p
’

3The vector-meson e.m. couplings are given by g�	 �
esm�f�, g�	 � 
�eu � ed�=

���
2
p
�m�f�, and g!	 � 
�eu�

ed�=
���
2
p
�m!f! where eq is the quark’s charge and fV is the

vector decay constant.
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3:03, and (ii) the vector-meson pole contributions alone
yield FK

�K�
u;s �0� � 1;�1 and FK

�K�
d �0� � 0 as the charged

kaon does not contain the valence d quark.4 The matrix
element in the decay amplitude relevant for our purpose
then has the expression

hK0�p1�j� �sb�V�AjB
0ihK��p2�K

��p3�j� �qq�V�Aj0i

� �s12 � s13�F
BK
1 �s23�F

K�K�
q �s23�: (2.17)

We also need to specify the two-body matrix element
hK�K�j �ssj0i induced from the scalar density. It receives
resonant and nonresonant contributions:

hK��p2�K��p3�j �ssj0i � fK
�K�

s �s23�

�
X
i

mi
�figi!KK

m2
i � s23 � imi�i

� fNR
s ;

fNR
s �

v
3
�3FNR � 2F0NR�

� v
�

s2
23

�
ln
�
s23

~�2

��
�1
; (2.18)

where the scalar decay constant ~fi is defined in hij �ssj0i �
mi

�fi, gi!KK is the i! KK strong coupling, and the non-
resonant terms are related to those in FK

�K�
s through the

equation of motion.5 The main scalar meson pole contri-
butions are those that have dominant s�s content and large
coupling to KK. It is found in [41] that among the f0

mesons, only f0�980� and f0�1530� have the largest cou-
plings with the KK pair. Note that f0�1530� is a very broad
state with the width of order 1 GeV [41]. To proceed with
the numerical calculations, we use gf0�980�!KK � 1:5 GeV,
gf0�1530�!KK � 3:18 GeV, �f0�980� � 80 MeV, �f0�1530� �

1:160 GeV [41], �ff0�980��
 � mb=2� ’ 0:39 GeV [42],
and �ff0�1530� ’ �ff0�980�. The sign of the resonant terms is
fixed by fK

�K�
s �0� � v from a chiral perturbation theory

calculation (see, for example, [43]). It should be stressed
that although the nonresonant contributions to fKKs and
FKKs are related through the equation of motion, the reso-
nant ones are different and not related a priori. To apply the
equation of motion, the form factors should be away from
the resonant region. In the large s23 region, the nonresonant
contribution dominated by the 1=s23 term is far away from
the resonant one. In contrast, the 1=s2

23 term dominates in
the low s23 region where resonant contributions cannot be
ignored. The 1=s2

23 term in Fs is not necessarily conveyed
to fS through the equation of motion. Hence, the 1=s2

23
�p � p0�
jF
MM
q j in the case of a real FMMq .

5The use of equations of motion also leads to

fK
�K�

s � �vFK
�K�

s : (2.19)

Note that the pole contribution to FK
�K�

s should be dropped in
the above relation as it applies only to nonresonant contributions.
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term in Eq. (2.18) is undetermined and a new parameter �,
which is expected to be of similar size as x2, is assigned
and will be determined later by fitting to the data. The
corresponding matrix element is now given by

hK0�p1�j �sbjB
0ihK��p2�K

��p3�j�ssj0i

�
m2
B �m

2
K

mb �ms
FBK0 �s23�f

K�K�
s �s23�: (2.20)

Collecting all the relevant matrix elements evaluated
above, we are ready to compute the amplitude A�B0 !

KS�L�K�K�� � �A�B
0 ! K0K�K��=

���
2
p

. Since under
CP conjugation we have KS� ~p1� ! KS�� ~p1�, K�� ~p2� !
K��� ~p2�, and K�� ~p3� ! K��� ~p3�, the B0 ! KSK

�K�

amplitude can be decomposed into CP-odd and CP-even
components

A
B0 ! KS�p1�K
��p2�K

��p3�� � A�s12; s13; s23�

� ACP� � ACP�;

ACP� �
1

2

A�s12; s13; s23�

� A�s13; s12; s23��:

(2.21)

Correspondingly, we have
094003
� � �CP� � �CP�;

�CP� �
1

�2��3
1

32m3
B

Z
jACP�j

2ds12ds13

�
1

�2��3
1

32m3
B

Z
jACP�j

2ds12ds23: (2.22)

The vanishing cross terms due to the interference between
CP-odd and CP-even components can be easily seen from
the (anti)symmetric properties of the amplitude and the
integration variables under the interchange of s12 $ s13.
Similar relations hold for the conjugated B0 decay rate ��.
The CP-even fraction f� is defined by

f� �
�CP� � �CP�

�� �
j�KS excluded: (2.23)

Note that results for theK�K�KL mode are identical to the
K�K�KS ones with the CP eigenstates interchanged. For
example, results for �K�K�KL�CP� are the same as those
for �K�K�KS�CP� and hence f� in K�K�KS corresponds
to f� in K�K�KL.

We next turn to the B0 ! KSKSKS; KSKSKL decays.
The decay amplitudes are given by
A
B0 ! KS�p1�KS�p2�KS;L�p3�� �

�
1

2

�
3=2
f�A
B0 ! K0�p1�K

0�p2�K
0�p3�� � A
B

0 ! K0�p2�K
0�p3�K

0�p1��

� A
B0 ! K0�p3�K
0�p1�K

0�p2��g; (2.24)

with

A
B0 ! K0�p1�K
0�p2�K

0�p3�� �
GF���

2
p

X
p�u;c

�p

�

hK0�p1�K

0�p2�j� �db�V�AjB
0ihK0�p3�j��sd�V�Aj0i

� hK0�p1�K
0�p3�j� �db�V�AjB

0ihK0�p2�j� �sd�V�Aj0i�
�
ap4 �

1

2
ap10 �

�
ap6 �

1

2
ap8

�
r�

�

� 
hK0�p2�j�sbjB
0ihK0�p1�K

0�p3�j�ssj0i � hK
0�p3�j�sbjB

0ihK0�p1�K
0�p2�j�ssj0i�

	 ��2ap6 � a
p
8 � � hK

0�p1�K
0�p2�K

0�p3�j �s	5dj0ih0j �d	5bjB
0i��2ap6 � a

p
8 �

� 
hK0�p2�j��sb�V�AjB
0ihK0�p1�K

0�p3�j� �ss�V�Aj0i � hK
0�p3�j� �sb�V�AjB

0i

	 hK0�p1�K
0�p2�j� �ss�V�Aj0i�

�
a3 � a

p
4 � a5 �

1

2
�a7 � a9 � a

p
10�

��
; (2.25)

where the last term will not contribute to the purely CP-even decay B0 ! KSKSKS. Decay rates for the KSKSKS and
KSKSKL modes can be obtained from Eq. (2.22) with an additional factor of 1=3! and 1=2!, respectively, for identical
particles in the final state.

We now consider the CP asymmetries for B0 ! K�K�KS�L�; KSKSKS�L� decays. The direct CP asymmetry and the
mixing-induced CP violation are defined by
-6



TABLE III. Mixing-induced and direct CP asymmetries
sin2�eff (top) and Af (in %, bottom), respectively, in B0 !

K�K�KS and KSKSKS decays. Results for �K�K�KL�CP� are
identical to those for �K�K�KS�CP�. Experimental results are
taken from Table I.

Final state sin2�eff Expt.

�K�K�KS��KS excluded 0:749�0:080�0:024�0:004
�0:013�0:011�0:015 0:57�0:18

�0:17

�K�K�KS�CP� 0:770�0:113�0:040�0:002
�0:031�0:023�0:013

�K�K�KL��KL excluded 0:749�0:080�0:024�0:004
�0:013�0:011�0:015 0:09� 0:34

KSKSKS 0:748�0:000�0:000�0:007
�0:000�0:000�0:018 0:65� 0:25

KSKSKL 0:748�0:001�0:000�0:007
�0:001�0:000�0:018

Af�%� Expt.

�K�K�KS��KS excluded 0:16�0:95�0:29�0:01
�0:11�0:32�0:02 �8� 10

�K�K�KS�CP� �0:09�0:73�0:16�0:01
�0:00�0:27�0:01

TABLE II. Branching ratios for B0 ! K�K�KS;KSKSKS;
KSKSKL decays and the fraction of CP-even contribution to
B0 ! K�K�KS, f� [see Eq. (2.23)]. The branching ratio of
CP-odd K�K�KS with �KS excluded is shown in parentheses.
Results for �K�K�KL�CP� are identical to those for
�K�K�KS�CP�. Theoretical errors correspond to the uncertain-
ties in (i) �, (ii) ms, FBK0 , and � (constrained by the KSKSKS
rate), and (iii) 	.

Final state B�10�6�theory B�10�6�expt

K�K�KS 7:33�8:38�2:31�0:70
�1:08�1:59�0:10 12:4� 1:2

�K�K�KS�CP� 5:45�5:29�1:48�0:05
�0:65�1:13�0:06

�K�K�KS�CP� 1:88�3:08�0:83�0:04
�0:43�0:46�0:04

�0:48�2:98�0:54�0:03
�0:40�0:22�0:03�

KSKSKS input 6:2� 1:2
KSKSKL 5:74�6:02�2:24�0:02

�0:88�1:40�0:03

ftheory
� fexpt

�

K�K�KS 0:92�0:06�0:04�0:00
�0:16�0:08�0:00 0:91� 0:07

ftheory
�

K�K�KL 0:92�0:06�0:04�0:00
�0:16�0:08�0:00
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AKKK �
�� �

�� �
�

R
jAj2ds12ds23 �

R
j �Aj2ds12ds23R

jAj2ds12ds23 �
R
j �Aj2ds12ds23

;

SKKK;CP� �
2
R

Im�e�2i�ACP� �A�CP��ds12ds23R
jACP�j2ds12ds23 �

R
j �ACP�j2ds12ds23

;

SKKK �
2
R

Im�e�2i�A �A��ds12ds23R
jAj2ds12ds23 �

R
j �Aj2ds12ds23

� f�SKKK;CP� � �1� f��SKKK;CP�; (2.26)

where �A is the decay amplitude of B0 ! K�K�KS�L� or
KSKSKS�L�. For the K�K�KS mode, it is understood that
the contribution from�KS is excluded. It is expected in the
SM that SKKK;CP� � sin2�eff � sin2�, SKKK;CP� �
� sin2�, and hence SKKK � ��2f� � 1� sin2�.6

III. NUMERICAL RESULTS AND DISCUSSIONS

To proceed with the numerical calculations, we need to
specify the input parameters. For the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements, we use the Wolfenstein
parameters A � 0:825, � � 0:22622, �� � 0:207, and �� �
0:340, corresponding to �sin2��CKM � 0:724 [44]. For
B! K form factors we shall use those derived in the
covariant light-front quark model [45] with the assigned
error to be 0.03, namely, FBK0;1 �0� � 0:35� 0:03. The pa-
rameter � in Eq. (2.8) is determined from the B� !
D0K0K� data. From the measured branching ratio
B�B� ! D0K0K�� � �5:5� 1:4� 0:8� 	 10�4 [37], we
obtain � � 3:1�5:1

�1:8 GeV where use of aDKK1 � 0:935 and
aDKK2 �’ aD�2 � � 0:4� 0:2 has been made [21]. For the
quark masses and the unitarity angle 	, we shall use
mb�mb� � 4:2 GeV, ms�mb=2� � 80� 20 MeV, and 	 �
�58:6� 7�� [44]. The KSKSKS rate sensitive to the pa-
rameter � in Eq. (2.18) is used to determine � �
��10:4�5:4

�4:8� GeV4, where the errors include the uncertain-
ties in the KSKSKS decay rate, the strange quark mass, and
the FBK0 form factor.

Results for the decay rates and CP asymmetries in B0 !

K�K�KS�L�; KSKSKS�L� are exhibited in Table II and
Table III, respectively. The theoretical errors shown there
are from the uncertainties in (i) the parameter � which
governs the nonresonant contribution to the form factor!�
[see Eq. (2.8)], (ii) the strange quark mass ms, the form
factor FBK0 and � [see Eq. (2.18)] constrained from the
KSKSKS rate, and (iii) the unitarity angle 	. To compute
the CP-even fraction f� and sin2�eff for K�K�KS, we
need to turn off the coefficient c� in Eq. (2.13). As one can
see from Table II, the predicted rates for B0 ! K�K�KS�L�
decays and the CP-even (odd) ratio f���� are in accor-
dance with the data within errors, though the theoretical
central values on rates are somewhat smaller than the
6Writing the CP-conjugated decay amplitude as �A � �ACP� �
�ACP�, we have �ACP� � �ACP� with �p ! ��p. This leads to
SKKK;CP� � �SKKK;CP�.

094003
experimental ones. Theoretical errors on the branching
ratios are dominated by the sizable error in � and the
uncertainty in the strange quark mass as the penguin
term a6r� and the parameter v are very sensitive to ms.
Note that the second error in rates (including the contribu-
tion from the uncertainty in �) is constrained from the
KSKSKS rate and hence is reduced significantly. For the
first error, we note that the larger the value of j�j we have,
the larger the rate on CP-odd K�K�KS is obtained, lead-
ing to a smaller value of f��K�K�KS�. Since the central
value of our f��K�K�KS� agrees well with data, � is
preferred to be around its central value.
�K�K�KL��KL excluded 0:16�0:95�0:29�0:01
�0:11�0:32�0:02 �54� 24

KSKSKS 0:74�0:02�0:00�0:05
�0:06�0:01�0:06 31� 17

KSKSKL 0:77�0:12�0:08�0:06
�0:28�0:11�0:07
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FIG. 2. Mixing-induced CP asymmetry sin2�eff�m
max
K�K�� (see

the text for the definition) versus the invariant mass mmax
K�K� for

K�K�KS with �KS excluded (solid line) and for CP-even
K�K�KS (dashed line). When mmax

K�K� approaches the upper
limit mB �mKS , the whole phase space is saturated and
sin2�eff�m

max
K�K�� is reduced to the usual sin2�eff . This result

also applies to the K�K�KL mode.

FIG. 1. The K�K� mass spectra for B0 ! K�K�KS decay from (a) CP-even and (b) CP-odd contributions. The insert in (b) is for
the � region. Results for �K�K�KL�CP� are identical to those for �K�K�KS�CP�.
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The K�K� mass spectra of the B0 ! K�K�KS decay
from CP-even and CP-odd contributions are shown in
Fig. 1. In the spectra, there are peaks at the threshold and
a milder one in the large mK�K� region. For the CP-even
part, the threshold enhancement arises from the f0�980�KS
and the nonresonant fK

�K�
S contributions [see Eq. (2.18)],

while the peak at largemK�K� comes from the nonresonant
two-meson transition B0 ! K�KS followed by a current-
produced K�. Since the nonresonant term [Eq. (2.8)] fa-
vors a small mK�Ks region, the spectrum should peak at the
largemK�K� end. For the CP-odd spectrum the bump at the
large mK�K� end originates from the same two-meson
transition term, while the peak on the lower end corre-
sponds to the �Ks contribution, which is also shown in the
insert. The full K�K�KS spectrum is basically the sum of
the CP-even and the CP-odd parts. Note that although we
include f0�1530�KS contribution, its effect is not as promi-
nent as one may expect from the K�K�K� spectrum
where a large fX�1500�K� contribution is found [46].

For the mixing-induced CP asymmetry in the K�K�KS
mode, we compute the effective sin2� in two different
ways: In one way, we calculate S with �KS excluded in
K�K�KS and then apply the relation S � ��2f� � 1�	
sin2�eff and the theoretical value of f� to obtain sin2�eff .
This procedure follows closely the BABAR and Belle
method of measuring the effective sin2�. In the other
way, we calculate S directly for the CP-even K�K�KS
and identify SKKK;CP� with sin2�eff . As for the KSKSKS
mode, there is no such ambiguity as it is a purely CP-even
state. As shown in Table III and Fig. 2, the resulting
sin2�eff is slightly different in these two different
approaches.

The deviation of the mixing-induced CP asymmetry in
B0 ! K�K�KS and KSKSKS from that measured in B!
J= KS (or the fitted CKM’s sin2� [44]), namely,
� sin2�eff � sin2�eff � sin2�J= KS�CKM�, is calculated
from Table III to be
094003
� sin2�K�K�KS � 0:06�0:08
�0:02�0:02�0:08

�0:02�;

� sin2�KSKSKS � 0:06�0:00
�0:00�0:02�0:00

�0:00�:
(3.1)

Note that part of the deviation comes from that between the
measured sin2�J= KS and the fitted CKM’s sin2�. The
K�K�KS has a potentially sizable � sin2�, as this
penguin-dominated mode is subject to a tree pollution
due to the presence of color-allowed tree contributions.
For the KSKSKS mode, the central value and the error on
� sin2� are small.

It is instructive to see the dependence of sin2�eff on the
K�K� invariant mass, mK�K� � m23 �

������
s23
p

. For the
phase space integration in Eq. (2.26), for a given s23, the
upper and lower bounds of s12 are fixed. The invariant mass
-8
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m23 is integrated from m�23 � m2 �m3 to m�23 �
mB �m1. When the variable s23 or m23 is integrated
from m�23 to a fixed mmax

23 (of course, m�23 <mmax
23 � m�23),

the effective sin2� thus obtained is designated as
sin2�eff�mmax

23 �. Figure 2 shows the plot of
sin2�eff�m

max
K�K�� versus mmax

K�K� for K�K�KS. Since there
are two different methods for the determination of sin2�eff ,
the results are depicted in two different curves. It is inter-
esting that sin2��mmax

23 � is slightly below sin2�CKM at the
bulk of the mK�K� region and gradually increases and
becomes slightly larger than sin2�CKM when the phase
space is getting saturated. The deviation � sin2�K�K�KS
arises mainly from the large mK�K� region.

Direct CP violation is found to be very small in both
K�K�KS and KSKSKS modes. It is interesting to notice
that direct CP asymmetry in the CP-even K�K�KS mode
is only of order 10�3, but it becomes 0:2	 10�2 in
K�K�KS with�KS excluded. Since these direct CP asym-
metries are so small, they can be used as approximate null
tests of the SM.

Since direct CP violation in charmless B decays can be
significantly affected by final-state rescattering [36], we
have studied to what extent indications of possibly large
deviations of the mixing-induced CP violation seen in the
penguin-induced two-body decay modes from sin2� de-
termined from B! J= KS can be accounted for by final-
state interactions [10]. It is natural to extend the study of
final-state rescattering effects on time-dependent CP
asymmetries to B! KKKS decays. Final-state interac-
tions in three-body decays are expected to be much more
complicated than the two-body case. For example, the
color-allowed tree decay B0 ! D����s D���� can rescatter
into a K�K�KS final state, where we have D����s !

K� �D�0, D���� ! KSD��s followed by a �D�0D�s ! K� fu-
sion. These diagrams are too complicated and will not be
included in this study.7 Nevertheless, we attempt to incor-
porate final-state rescattering effects in a simple way by
including resonance contributions to the corresponding
kaon pairs in the final state [47]. We note that another
attempt in this direction has recently been made by Furman
et al. [48]. They considered rescattering of �� and KK
pairs in the �� effective mass range from threshold to
1.1 GeV. While their predicted direct CP asymmetry is
very small, the parameter S is found to be�0:64 or�0:77,
depending on the set of penguin amplitudes. However, due
to the limitation on phase space, the calculated branching
ratios of order 1	 10�6 for K�K�KS and KSKSKS are
only small portions of the total experimental rates (see
7In passing we note that these diagrams could have the effect
of increasing somewhat our predictions for the rates of 3K final
states. Although these contributions carry negligible CP-odd
(weak) phases, they also contribute to the strong phases and
hence will tend to dilute our prediction on �S but not necessarily
on direct CP asymmetries.

094003
Table I) and, consequently, the predictions of S may be
affected when the whole phase space is taken into
consideration.

IV. CONCLUSIONS

In the present work we have studied the decay rates and
time-dependent CP asymmetries in the decays B0 !

K�K�KS�L� and KSKSKS�L� within the framework of fac-
torization. Our main results are as follows:
(1) R
-9
esonant and nonresonant contributions to the had-
ronic matrix elements are carefully investigated. We
incorporate final-state rescattering effects in a sim-
ple way by including resonance contributions to the
corresponding kaon pairs in the final state. Instead
of applying heavy meson chiral perturbation theory
to the matrix element for B! KK, which is valid
only for a small kinematic region, we consider the
resonant contribution from the B�s pole and nonre-
sonant contributions constrained by QCD counting
rules.
(2) U
sing the KSKSKS decay rate as an input, the pre-
dicted branching ratio of K�K�KS�L� modes and the
CP-even (odd) fraction of B0 ! K�K�KS�L� are
consistent with the data within the theoretical and
experimental errors, though the theoretical central
values on rates are somewhat smaller than the ex-
perimental ones.
(3) O
wing to the presence of color-allowed tree contri-
butions in B0 ! K�K�KS�L�, this penguin-
dominated mode is subject to a potentially signifi-
cant tree pollution and the deviation of the mixing-
induced CP asymmetry from that measured in
B! J= KS, namely, � sin2�K�K�KS�L� �
sin2�K�K�KS�L� � sin2�J= KS , can be as large as
O�0:10�. The deviation � sin2�K�K�KS�L� arises
mainly from the large mK�K� region.
(4) T
he KSKSKS�L� mode appears theoretically very
clean in our picture: The uncertainties in
� sin2�eff are negligible.
(5) D
irect CP asymmetries are very small in both
K�K�KS�L� and KSKSKS�L� modes.
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work) in rates and, as a result, a small � sin2�K�K�KS is
preferable.
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