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Estimates for pion-photon transition distributions
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In the scaling regime, amplitudes for backward virtual Compton scattering and hadron annihilation into
two photons depend on structure functions that describe the hadron-photon transition at the partonic level.
We construct simple analytical models for the vector and axial-vector pion-photon transition distribution
amplitudes based on double distributions. Via a sum rule, these models are tuned to reproduce the pion-
photon transition form factors. To obtain reasonable estimates of the distributions at a low scale, we
modify the models to saturate the positivity bounds using empirically parametrized parton distributions.
We also determine a model-independent contribution to the axial-vector transition distribution using chiral
perturbation theory.

DOI: 10.1103/PhysRevD.72.094001 PACS numbers: 13.60.Fz, 13.40.Gp, 14.40.Aq
I. INTRODUCTION

The detailed study of off-diagonal exclusive processes in
perturbative QCD [1–5] has led to a wide variety of theo-
retical and experimental work. QCD factorization theo-
rems for such processes enable the physical matrix
elements to be written as convolutions of perturbatively
calculable hard scattering amplitudes with what are now
commonly referred to as generalized parton distributions.
Typically these distributions arise from hadronic matrix
elements that are off-diagonal in momentum space and
contain quark or gluon operators separated by a lightlike
distance. Parton distributions, which arise in inclusive
deep-inelastic scattering, involve diagonal matrix elements
of lightlike separated operators. Elastic form factors, on the
other hand, are nondiagonal matrix elements of local op-
erators. The physics encompassed by generalized distribu-
tions is thus that of both inclusive and exclusive processes
at the partonic level. There are a number of insightful
reviews on the subject from a variety of perspectives, see
[6–11].

In the case of ordinary parton distributions, which we
shall generically denote q�x�, a wealth of phenomenology
has resulted from simple analytic parametrizations. For
example, one might assume at some low input scale �
the form

q�x� � Axa�1� x�b;

and constrain the parameters A, a, and b by particle num-
ber sum rules and fits to experimental data at higher scales.
Typically there is considerable information buried in these
few parameters, since one also generally assumes the
vanishing of sea quark distributions at the input scale,
and these distributions are then radiatively generated by
perturbative evolution. Nonetheless reliable phenomenol-
ogy has emerged from such Ansätze, and global analysis of
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structure function data has allowed for better tuned input
parametrizations.

For generalized parton distributions, one has functions
which we shall generically write as F�x; �; t�. In addition to
the longitudinal momentum fraction x, these functions
depend on the four-momentum transfer squared, t, and
the longitudinal momentum transfer, �. Lorentz covariance
imposes rather stringent constraints on the x-moments of
F�x; �; t�, namely, the nth moment must be a polynomial in
� of at most nth degree. The coefficients of these poly-
nomials are in general form factors that depend on t. For
example, the zeroth moment is some form factor F�t�. On
the other hand, when the four-momentum transfer goes to
zero, we have the reduction relation F�x; 0; 0� � q�x�,
which relates the forward limit of the generalized distribu-
tion to the ordinary parton distribution. One might be
inclined to choose an input parametrization at the scale
� of the form

F�x; �; t� � q�x�F�t�;

and use existing parton phenomenology and form factor
data to fix the input distribution. Without � dependence,
the polynomiality property of the x-moments is trivial.
Further the reduction relation in the forward limit is guar-
anteed by the form factor’s normalization. Some problems
with the resulting phenomenology are clear: one relies
completely on perturbative evolution for the distribution
to acquire � dependence, whereas one knows that this
dependence arises at any scale from the interference be-
tween light-cone wave functions of differing longitudinal
momenta [12,13]. Furthermore, there is no transparent way
to improve the input parametrizations consistent with the
constraints, i.e. once the parton distribution and form factor
are known, the input is fixed.

For generalized parton distribution phenomenology, one
needs a different way to construct and constrain input
parametrizations beyond the factorized form above. In an
alternate approach, one formulates the generalized distri-
butions in terms of underlying double distributions [14,15].
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The generalized parton distributions are then obtained as
projections of these Lorentz invariant double distributions,
and this feature maintains the polynomiality properties of
generalized parton distribution moments. Consequently
the double distribution formulation is attractive from the
perspective of generating input parametrizations. Cal-
culations of model double distributions have been pursued
[16–20]. There is a drawback to using models based on
double distributions: the positivity bounds [12,15,21–24]
become obscure [25].

In this work we use the formalism of double distribu-
tions to provide estimates of pion-photon transition distri-
bution amplitudes [26]. Unlike generalized parton
distributions, the off-diagonality of these transition distri-
butions is in particle state, not just momentum. But dis-
similar to other nondiagonal distributions considered
previously [27–29], the t-channel exchange involved in
transition distribution amplitudes carries away nearly all
the quantum numbers of the initial state. These distribu-
tions enter, e.g., in the pion annihilation process, ���� !
���, and backward virtual Compton scattering, ���� !
���, in the kinematic region where the real photon is
nearly collinear to the initial ��. This region is analogous
to the scaling limit of virtual Compton scattering, and QCD
factorization applies. The amplitudes for the annihilation
process and backward Compton scattering factorize into a
convolution of a hard scattering kernel with a soft matrix
element, the latter describes the hadron to photon transition
[26]. Analogous proton to pion transition distribution am-
plitudes appear in the scaling limit of pN ! ��� [30].

This paper has the following organization. First in Sec. II
we define the pion-photon transition distributions of [26] in
terms of double distributions. Next in Sec. III, we present a
simple quark model and use it to calculate transition
double distributions. While the model can reproduce the
pion-photon transition form factors, the partonic content
must be modified to give reasonable phenomenology for
processes at large momentum transfer. In Sec. IV, we
investigate the positivity bounds for pion-photon transition
distributions. Saturating these bounds by including empiri-
cally parametrized parton distributions in a factorization
approximation results in phenomenologically reasonable
input distributions satisfying known constraints. A conclu-
sion ends the paper (Sec. V).
1Electromagnetic gauge invariance is maintained for each
twist-two operator as can be verified by replacing ��� with P0�.
II. DEFINITIONS

To begin, we build up the vector and axial-vector pion-
photon transition distributions by considering matrix ele-
ments of towers of twist-two operators. This approach
leads us to define the transition distribution amplitudes in
terms of double distributions. Consequently Lorentz co-
variance will be manifest, and this formulation will ulti-
mately enable us to obtain model estimates that satisfy
known constraints.
094001
A. Vector operators

The pion-to-photon matrix elements of vector twist-two
operators can be decomposed in a fully Lorentz covariant
fashion in terms of various twist-two form factors Wnk�t�,
namely

h��P0�j �0����f�iD
$�1
� � � iD

$�ng
 �0�j���P�i

� �
ie
f�

���P��	"
��	f�
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k!�n� k�!

�Wnk�t�P
�1 � � �P�n�k

�
�

�

2

�
�n�k�1

� � �

�
�

�

2

�
�ng
; (1)

where the action of f� � �g on Lorentz indices produces the
symmetric, traceless part of the tensor, f� � 132 MeV is
the pion decay constant, P is defined to be the average
momentum between the initial and final states, P� � 1

2 �

�P0 � P��, and � is the momentum transfer, �� � �P0 �
P��, with t � �2. The field  is an isodoublet of the up and
down quark fields, and �	 are the usual isospin raising and
lowering operators. T-invariance restricts the form factors
to be real, but places no further restriction on the index k in
the sums.

Ordinarily ambiguity is present in such decompositions
of twist-two matrix elements [31–34]. This situation stems
from the generality of writing down form factors of cur-
rents that are not conserved, and leads to the freedom to
define various distributions with the same physical content.
Here, however, there is only one possible grouping of
Lorentz structures in the above decomposition due to
parity. Nonetheless the twist-two currents are not con-
served, and there is no ambiguity in the above decompo-
sition into form factors Wnk�t�.

1 We now define a double
distributionW�
;�; t� that is the generating function of the
twist-two form factors

Wnk�t� �
Z 1

�1
d


Z 1�j
j

�1�j
j
d�
n�k�kW�
;�; t�: (2)

There is no�-symmetry of this double distribution because
the values of k are unrestricted in Eq. (1).

With the operator product expansion, we can relate the
moments in Eq. (1) to matrix elements of bilocal operators.
By construction, the double distributions appear in the
decomposition of the lightlike separated quark bilinear
operator

h��P0�j ��z=2���z6  �z=2�j���P�i

�
ie
f�
z����P��	"���	

Z 1

�1
d


Z 1�j
j

�1�j
j
d�e�i
P�z�i���z=2

�W�
;�; t�; (3)

where z� is a lightlike vector.
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FIG. 1. Tree-level contributions to axial-vector matrix ele-
ments in chiral perturbation theory. The pion corresponds to
the double line, the photon to the wiggly line, while the axial
current is represented by the dotted line. In the local limit, the
cross represents the axial current and the depicted contributions
are proportional to f�. These are separated out from the structure
dependent axial form factor. When the cross represents the axial-
vector twist-two operators, the same separation can be made, but
it involves terms proportional to f� times moments of the pion
light-cone distribution amplitude.
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The light-cone correlation function is obtained by
Fourier transforming with respect to the light-cone sepa-
ration z�

MV�x; �; t� �
1

2

Z dz�

2�
eixP

�z�h��P0�j ��z�=2�����

�  �z�=2�j���P�i: (4)

Above, the variable � is the skewness parameter defined by
� � ���=�2P��. Unlike the case of generalized parton
distributions, we cannot assume without loss of generality
that � > 0 because time reversal does not relate the nega-
tive � distributions to those at positive �. The correlation
function in Eq. (4) can be written in terms of the vector
pion-photon transition distribution amplitude V�x; �; t�
[26]

M V�x; �; t� �
ie

2P�f�
���P��	"

���	V�x; �; t�: (5)

Unlike the double distribution, the transition amplitude is a
quantity that enters directly into convolutions that describe
physical processes. Inserting the decomposition equation
(3) into the correlator in Eq. (5), we can express the
transition amplitude as a projection of the double distribu-
tion

V�x; �; t� �
Z 1

�1
d


Z 1�j
j

�1�j
j
d���x� 
� ���W�
;�; t�;

(6)

from which we interpret the �-dependence of V�x; �; t� as
arising from different slices of the Lorentz invariant double
distribution.

The transition distribution satisfies an important sum
rule constraint. As with the case of generalized parton
distributions, integrating MV�x; �; t� over x produces the
local matrix element. Thus we can relate the vector tran-
sition distribution to the vector form factor FV accessible in
the weak decay of the pion. Furthermore matrix elements
of the flavor diagonal vector operators define transition
distributions Vu and Vd, and these are related to the �0 �
� electromagnetic transition form factor, via [26]Z 1

�1
dx
QuVu�x; �; t� �QdVd�x; �; t�� �

���
2
p
f�F���t�:

(7)

In our model, isospin algebra will enable us to utilize this
sum rule constraint.

B. Axial-vector operators

The analysis of matrix elements of the axial-vector
twist-two operators proceeds quite similarly. There are,
however, additional contributions from so-called internal
bremsstrahlung processes that must be separated out
from the matrix elements. These contributions can be
determined from chiral perturbation theory in a model-
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independent way, while the structure dependent terms
lead to the axial transition distribution which is modeled
in subsequent sections.

To discuss the axial transition distribution, it is useful to
recall the form of the transition matrix element of the local
axial current. For the pion transition to a real photon we
have, see, e.g., [35]

h��P0�j �0������5 �0�j���P�i

� e���

�
f�

�
g�� � 2

����

t�M2
�

�

� FA�t��P
0��� � g��P0 ���

�
: (8)

The terms in the above decomposition proportional to the
pion decay constant arise at tree-level in chiral perturbation
theory and are depicted in Fig. 1. The last term, usually
called the structure dependent piece, involves the axial
transition form factor FA�t�. Electromagnetic gauge invari-
ance is only present for the structure dependent term. For
each process, the remaining bremsstrahlung diagrams are
required for gauge invariance. The leading contributions in
chiral perturbation theory stem from the axial-vector op-
erator A�

A� �
f2

4
Tr��y��i@��� ���i@��y� (9)

and the electromagnetically gauged axial-vector operator.
Here f � f� at leading order, and � is an exponential
matrix of the pion fields

� � exp
���
2
p
i� � �=f: (10)
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There are analogous contributions to the axial-vector twist-
two matrix elements and we shall separate them out in
order to define a structure dependent axial transition dis-
tribution. To this end, let us determine the relevant tree-
level contribution in chiral perturbation theory.

Following [36,37], we map the axial-vector twist-two
operators onto those in chiral perturbation theory. At lead-
ing order2 we find

O ��1...�n
5 � a�n�5

f2

4
Tr��y��i@f�i@�1 � � � i@�ng�

����i@f�i@�1 � � � i@�ng�y�; (11)

where the a�n�5 are a set of low-energy constants which in
general are not constrained by chiral symmetry. They are
moments of the pion light-cone distribution amplitude
��x� [39,40], specifically

a�n�5 �
Z 1

0
dx
�
x�

1

2

�
n
��x�: (12)

We demonstrate this as follows [38]. Using the operators in
Eq. (11), we determine

h0j �0����f��5iD
$�1
� � � iD

$�ng
 �0�j���P�i

� if�a
�n�
5 Pf�P�1 � � �P�ng: (13)

Contracting with the lightlike vectors z�z�1
� � � z�n

, and
utilizing the operator product expansion, we arrive at

h0j ��z=2���z6 �5 �z=2�j���P�i

� if�P � z
Z 1

0
d
e�i

��1=2��P�z��
�: (14)

And thus the familiar definition [41] of the pion distribu-
tion amplitude emerges via a Fourier transformation,
namelyZ dz�

2�
ei
x��1=2��z�P�h0j ��z�=2���z6 �5 �z

�=2�j���P�i

� if���x�: (15)

Integration over x produces the matrix element of the axial
current which defines the pion decay constant. Thus we
require the normalizationZ 1

0
dx��x� � 1; (16)

which tells us further that a�0�5 � 1, see Eq. (12).
Armed with the leading-order operators O��1...�n

5 in
Eq. (11), we can calculate the tree-level chiral contribu-
2At higher orders in chiral perturbation theory, one has con-
tributions with two extra derivatives contracted, or equivalently,
by the equations of motion, insertions of the quark mass matrix.
These as well as the one-loop contributions can be systematically
calculated. For meson distribution amplitudes, the one-loop
corrections have been determined in [38]. We restrict our atten-
tion, however, only to those terms which survive in the
chiral limit.
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tions to the axial twist-two matrix elements shown in
Fig. 1. The first diagram, for example, can be determined
by electromagnetically gauging the operators in Eq. (11),
and then calculating the axial pion-to-photon transition
matrix element. One finds

h��P0�jO��1...�n
5 j���P�i � ef�n� 1�a�n�5 ��f�P�1 � � �P�ng:

(17)

The factor of �n� 1� tells us that ultimately this set of
diagrams will be related to the derivative of the pion
distribution amplitude. The leading-twist contribution
from such terms, however, is a gauge artifact because z �
�� � 0 in light-cone gauge. Thus in the decomposition of
axial twist-two transition matrix elements, we should
ignore structures proportional to ���. The contribution at
leading twist from the second diagram is not a gauge
artifact, and can be calculated using the pion electromag-
netic current and the operators O��1...�n

5 in Eq. (11). This
calculation enables us to write down the decomposition of
axial twist-two matrix elements that is the analogue of
Eq. (8):

h��P0�j �0����f��5iD
$�1
� � � iD

$�ng
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� e���

�
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5
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�

�f������1 � � � �����ng

�
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f�
��P0f�

Xn
k�0

n!

k!�n� k�!

� Bnk�t�P
0�1 � � �P0�n�k

�
�

�

2

�
�n�k�1

� � �

�
�

�

2

�
�ng
�
;

(18)

where we have omitted any terms involving the structure
g��, and used � � P0 � 0 for the real photon. Here the
Bnk�t� are structure dependent form factors of the axial
twist-two operators. As with the vector operators, we de-
fine a double distribution B�
;�; t� to be the generating
function for these form factors

Bnk�t� �
Z 1

�1
d


Z 1�j
j

�1�j
j
d�
n�k��� 
�kB�
;�; t�:

(19)

Using this definition and the relation of the a�n�5 to the pion
distribution amplitude, we find that matrix elements of the
bilocally separated quark operator have the form

h��P0�j ��z=2���z6 �5 �z=2�j���P�i

� �2ef�
� � z� � ��

t�M2
�

Z 1

0
d
ei

��1=2����z��
�

�
e
f�
P0 � z� � ��

Z 1

�1
d


�
Z 1�j
j

�1�j
j
d�e�i
P�z�i���z=2B�
;�; t�: (20)
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The light-cone correlation function is obtained by
Fourier transforming with respect to the light-cone sepa-
ration z�

MA�x; �; t� �
1

2

Z dz�

2�
eixP

�z�h��P0�j ��z�=2������5

�  �z�=2�j���P�i; (21)

and can be written in terms of the pion distribution ampli-
tude and the axial pion-photon transition distribution
A�x; �; t� as

MA�x; �; t� � ef�sign�����j�j � jxj�
� � ��

t�M2
�
�

�
x� �

2�

�
�

e
2f�

� � ���1� ��A�x; �; t�; (22)

where

A�x; �; t� �
Z 1

�1
d


Z 1�j
j

�1�j
j
d���x� 
� ���B�
;�; t�:

(23)

The pion pole term derived above is analogous to the one
encountered in the nucleon’s ~E�x; �; t� generalized parton
distribution [42–44]. In our case, instead of the pion-
nucleon coupling, g�N�0�, we have the pion electromag-
netic form factor, F�0� � Q�� � 1.

Integration of the amplitude MA�x; �; t� over the vari-
able x produces the plus component of the local axial
current operator. The normalization of the pion distribution
amplitude guarantees that the pion pole term in Eq. (8) is
correctly reproduced. Additionally we arrive at the sum
rule constraint that relates the transition distribution of
Eq. (22) to the axial transition form factor in Eq. (8)Z 1

�1
dxA�x; �; t� � f�FA�t�: (24)

III. QUARK MODEL FOR THE PION-PHOTON
TRANSITION

In this section, we use a quark model to calculate pion-
photon transition double distributions. Our main goal is to
3Our choice of a chirally nonsymmetric Lagrangian for the constitu
quarks [45], the pion couples derivatively and the asymptotic falloff o
and perturbative QCD. Moreover, the pion-photon transition amplitud
these reasons we have chosen Eq. (25) as our model.
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obtain realistic functional dependence of these distribu-
tions on the momentum transfer within a covariant frame-
work. Moreover these models will serve as the core for
constructing phenomenological estimates of the transition
distribution amplitudes by incorporating realistic
x-dependence.

The model consists of a triplet of pions � and a doublet
of constituent quarks q. Their Lagrangian has the form
L �
1

2
@�� � @���

1

2
M2
�� � �� q�i@6 �m�q

� ig� � q�5�q; (25)
where we keep the quarks degenerate and omit color
indices from the quarks, as these will produce only trivial
color factors below. To consider electromagnetic interac-
tions, we must add the photon’s coupling to each of the
particles in the above Lagrangian. We note that, unlike the
chirally invariant operators considered in the previous
section, the Lagrangian above does not respect chiral sym-
metry.3 In this quark model, the quark-pion coupling g is
given by g � m=f�. This model was used long ago to
calculate pion-photon transition form factors [46– 49].
Additionally a variety of partonic applications of this quark
model have been pursued, see, e.g., [50,51].

To apply the quark model to pion-photon transition
distributions we must come up with a prescription to
handle the QCD matrix elements in Eqs. (1) and (18). To
make any progress in calculating the double distributions,
we must use the parton model simplification for the QCD
gauge covariant derivative: D� ! @�. Further we replace
the elementary quark fields  with constituent quarks q.
Working in the impulse approximation, we have the quark
model contributions depicted in Fig. 2, and we address the
determination of the vector and axial-vector distributions
separately.

A. Vector distributions

For the matrix elements of vector twist-two operators,
we only have contributions from the first two diagrams.
Explicitly the first depicted diagram has the form
�iegNcQd�
�
�

Z d4k

�2��4

�k6 �m��5�k6 � P6 �m����k6 � �6 �m����1...�n�


k2 �m2 � i"�
�k� ��2 �m2 � i"�
�k� P�2 �m2 � i"�
; (26)
ent quarks is based on practical considerations. If one uses chiral
f the pion-photon transition form factor is contrary to experiment
es are complicated by divergences in the chiral quark model. For
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FIG. 2. Impulse approximation to the twist-two matrix ele-
ments. Here the twist-two operators with momentum insertion
are denoted by a cross. The initial-state pion has momentum P,
while the final-state photon has momentum P0. Only the first two
diagrams contribute to the vector twist-two matrix elements. The
last two diagrams depend on the moments of the model’s
(divergent) distribution amplitude. These plus the spectator
reduced contributions from the first two diagrams must be
isolated to deduce the remaining, structure dependent axial
transition distribution.
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2
 ]

0.1

0.2

0.3

F
γπ

Ve
G [ )t(

1-
] 

Dipole
V(x,ξ,t)
V

R
(x,ξ,t)

FIG. 3 (color online). Comparison of form factor fits. We
compare fits of model pion-photon transition form factors to
the empirically parametrized form in Eq. (31). Fits for the basic
model V�x; �; t� derived from Eq. (28) and the more realistic
model VR�x; �; t� in Eq. (45) are shown.
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where Nc is the number of colors. Above we have already
performed the trace over isospin and color indices. The
symmetric, traceless tensor ���1...�n in Eq. (26) is the
momentum-space transcription of the parton model opera-
tor O��1...�n and is given by

���1...�n � �f��k� �=2��1 � � � �k��=2��ng: (27)

Deriving the double distribution can be done directly by
casting the above contribution into the form of Eq. (1), and
then using the definition in Eq. (2). Taking the contribution
from both the first and second diagrams, we find the vector
transition double distribution has the form

W�
;�; t� �
m2

4�2

�
m2 �

1

2

��� 
� 1�M2

�

� 
1� �2 � 
�2� 
��
t
4

�
�1
: (28)

Notice in the chiral limit M� ! 0, the invariant masses of
the initial and final states are the same and consequently
�-symmetry of the double distribution emerges. Using
isospin algebra, we can calculate the distributions for
094001
flavor diagonal twist-two operators. We find

Wu�
;�; t� � Wd�
;�; t� � 2W�
;�; t�; (29)

where W�
;�; t� is the flavor nondiagonal distribution
given in Eq. (28). Using these relations we can make
contact with the sum rule in Eq. (7), namely

F���t� �

���
2
p

f�

Z 1

0
d


Z 1�


�1�

d�W�
;�; t�: (30)

In the limit M� ! 0, we find that the quark model repro-
duces the normalization of the form factor F���0� �
�2

���
2
p
�2f��

�1 required by the axial anomaly in the chiral
limit [52–54]. Notice the variable 
 is strictly positive
because there are no explicit sea quark contributions in this
model.

At this stage, we shall fit the constituent quark mass
parameter m by requiring that the model pion-photon
transition form factor comes close to the experimentally
parametrized form. In [55], a simple dipole form is used to
describe the experimental data

F���t� �
F���0�

1� t=�2 ; (31)

where the dipole mass is � � 776 MeV. We will tune the
quark mass at this stage to reproduce the form factor.
Eventually, however, we will augment the model distribu-
tion with empirical parton distributions. This will neces-
sitate that the model parameters be readjusted. Using the
pion mass M� � 0:14 GeV, we find that the form factor at
low momentum transfer is well reproduced for m �
0:18 GeV. The limiting and asymptotic behaviors cannot
simultaneously be well described with the model, however,
our concern is to find viable models only at low momentum
transfer and thus we have fit accordingly. In Fig. 3, we
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show our fit to the experimentally parametrized transition
form factor.

B. Axial distributions

In considering the matrix elements of the axial-vector
twist-two operators, all of the diagrams in Fig. 2 contribute.
The first two diagrams give contributions quite similar to
that in Eq. (26) with the insertion of an additional �5 from
the twist-two operator. We must be careful to remove
contributions that are not structure dependent, in the sense
of the decomposition in Eq. (8). Contributions from the
first two diagrams where the spectators propagator can be
reduced (by canceling against factors in the numerator) are
not structure dependent [48]. This procedure is compli-
cated by the fact that moments of the pion light-cone
distribution amplitude in this model are divergent. We
implicitly use a regularization scheme to render the distri-
bution amplitude finite, and remind the reader of this by
showing the third diagram in the figure. The exact form of
the scheme used is irrelevant; subsequent regularized con-
tributions from the fourth diagram, and those reduced
contributions from the first two diagrams are completely
discarded because they are not structure dependent. In
essence, we do not care what the model says about the
pion light-cone distribution amplitude, for we have already
determined the model-independent form for this contribu-
tion using chiral perturbation theory, cf. Eq. (22).

These technicalities aside, the structure dependent axial
transition distribution amplitude can be determined from
finite parts of the first two diagrams. We find
B�
;�; t� �
3m2��� 
�

4�2

�
m2 �

1

2

��� 
� 1�M2

�

� 
1� �2 � 
�2� 
��
t
4

�
�1
; (32)
4There is no guarantee, moreover, that the scale of the implicit
quark distribution of the photon is not mismatched with the
determined scale of the pion’s quark distribution. One should
thus calculate the model’s quark distributions for both the pion
and photon and determine their mutual scale by a simultaneous
fit.
which is very similar to the vector transition double distri-
bution. The differences result from the differing spin struc-
ture factors present in the interference of the valence light-
cone wave functions of the pion and photon, and an overall
numerical factor that depends on how the charge factors
from the first two diagrams combine. For the parameter
value m � 0:18 GeV, we find FA�0�=FV�0� � 0:98 and
FA�0� � 0:026. These are consistent with earlier findings
for this model [48], but are more than a factor of 2 too large
compared with experiment [56].

At this point, we do not plot the vector or axial-vector
transition distribution amplitudes derived in this model.
The main goal of this section has been to determine the
t-dependence of the vector and axial form factors in a
covariant manner. We will obtain realistic estimates of
transition distributions based on these models and further
considerations below.
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IV. POSITIVITY AND INPUT
PARAMETRIZATIONS

The vector and axial-vector double distributions deter-
mined above are presumably at some very low hadronic
scale intrinsic to the model. It is not clear how to determine
this scale from the model transition distributions alone.
One could in turn calculate the pion parton distributions in
the model, and then use the evolution equations to evolve
empirical parametrizations down to a scale where the first
few moments of the model pion parton distribution agree
and identify this scale with the model. This procedure is
not unique; many models can reproduce the empirical
quark distributions at higher scales.4 Also the use of per-
turbative evolution is questionable at best at low scales.
While the evolution kernels for generalized parton distri-
butions are known at next-to-leading order [57–61], we
will not use the evolution approach for our simple model.
Perturbative evolution cannot generate the nonperturbative
small-x physics which our model lacks, and we believe the
small-x physics is crucial for relating to data in the scaling
regime. The relevant leading-twist amplitudes are convo-
lutions of transition distribution amplitudes weighted by a
hard scattering kernel that emphasizes a region where
either the initial- or final-state wave function is evaluated
near the end point. In fact, the imaginary part of the
amplitude is directly proportional to an overlap of light-
cone wave functions, where either the initial or final state
has x � 0.

In order to be useful for phenomenological estimates, a
more pragmatic solution amounts to augmenting the model
with realistic parametrizations of the pion and photon
quark distributions at a low scale. We shall do this by
implanting the realistic distribution via factorization of
the 
-dependence of the double distributions [16]. This
choice, while unrealistic for the double distributions, may
indeed be less problematic for the transition distribution
amplitudes since there is ample allowance for interplay of
x, �, and t dependence. From the perspective of model
building, we are merely attempting to satisfy the known
constraints and generate an input distribution at a moder-
ately low scale. One can then evolve upward to the scale
relevant to make contact with data and eventually learn
how to improve the input parametrization.

To implant realistic partonic behavior and estimate the
transition distribution amplitudes, we shall use a factoriza-
tion Ansatz motivated by the positivity constraints. Just like
generalized parton distributions, the transition distribution
amplitudes satisfy constraints arising from the norm on
-7
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Hilbert space: the positivity bounds [12,15,21–24]. Using
the method described in [21], we can derive the basic
bounds satisfied by both the vector and axial-vector am-
plitudes. For the positively charged pion, we find

��x� ��jMV;A�x; �; t�j 

������������������������������������������������
d�
�
x� �
1� �

�
u�

�

�
x� �
1� �

�s
:

(33)

Here we have used fH�x� to denote the parton distribution
of the flavor f in the state H. The vector and axial-vector
distributions derived in the quark model above self-
consistently satisfy the positivity bounds. That is, the con-
straints in Eq. (33) are met using the quark distributions of
the pion and photon determined within the model.5 For
useful phenomenology, however, these model parton dis-
tributions must be modified, and hopefully in such a way
that the bound in Eq. (33) remains satisfied. As an inspired
guess, we choose to saturate the bounds in the forward
limit by making a factorization Ansatz of the form

WR�
;�; t� � NV
W�
;�; t�R1�


�1�
 d�W�
;�; 0�

����������������������������
d��
�u�

�
�
�

q
;

(34)

for the vector distribution and

BR�
;�; t� � NA
B�
;�; t�R1�


�1�
 d�B�
;�; 0�

����������������������������
d��
�u�

�
�
�

q
;

(35)

for the axial-vector distribution. Here NV and NA are
constants to be determined below. When ft; �g ! 0, inte-
gration over 
 and � of the Ansätze yields

VR�x; 0; 0� � NV

�������������������������
d��x�u�

�
�x�

q
;

AR�x; 0; 0� � NA

�������������������������
d��x�u�

�
�x�

q
;

(36)

where VR�x; �; t� and AR�x; 0; 0� are the realistic vector and
axial-vector transition distribution amplitudes formed from
the factorized double distributions. From Eq. (36), one sees
our attempt to input realistic light-cone wave functions for
the pion and photon consistent with positivity. The result-
ing form is reasonable provided there is little interference
arising from the transverse momentum components of the
wave functions. We are not advocating that this is the case.
5This can be easily understood due to the simplicity of the
quark model used. When one confronts the light-cone correlation
functions MV;A directly instead of via the double distributions,
one finds that the contributions for x > � stem from the light-
cone time ordering where the spectator quark is on shell. The
remaining two propagators then reduce to the model light-cone
wave functions for the initial and final states. A simple applica-
tion of the Cauchy-Schwarz inequality gives the bound in
Eq. (33), because the quark distributions are transverse momen-
tum integrals of the squares of light-cone wave functions.
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In fact because the positivity bounds are stable under
evolution and the square-root Ansatz is certainly not true
at a high scale, the form is not expected to hold at a low
scale. We are, however, only estimating the distributions to
the best of our ability given reasonable x-dependence of
parton distributions. Improving these estimates sensibly is
difficult and the subject of an ongoing investigation. In fact
for our model, the � integration in Eq. (35) introduces a
singularity proportional to 1=
 in the double distribution.
This suggests that interference between the various Fock
components in the axial distribution cannot be neglected.
In our model for the axial distribution, saturation of the
positivity bounds in the forward limit is not possible. To
tame the singularity, we shall add a factor of 
 to the
numerator of Eq. (35) as the simplest way to introduce
the requisite interference:

BR�
;�; t� � NA

B�
;�; t�R1�


�1�
 d�B�
;�; 0�

����������������������������
d��
�u�

�
�
�

q
:

(37)

In the literature, there exists a number of analytic pa-
rametrizations of quark distributions that have been con-
strained to fit data. Our preference is to choose those
models which are at a reasonably low scale, so that evolv-
ing up to the relevant scale for comparison with experiment
allows some of the crudeness in the factorization Ansätze
to be evolved away. For the pion, in Ref. [62] simple
analytic parametrizations of the valence and sea quark
distributions are presented. As the sea quark distributions
are unconstrained experimentally, they have been related,
using a constituent quark model, to the radiatively gener-
ated parton distributions in the proton, see [63,64]. For our
model estimates, we need the up distribution in the posi-
tively charged pion,

u�
�
�x� �

1

2
v�

�
�x� � q�

�
�x�: (38)

This distribution is given in terms of the valence and sea
distributions defined in [62] that are given by

v�
�
�x;�2 � 0:40 GeV2� � 1:391x�0:447�1� x�0:426;

(39)

q�
�
�x;�2 � 0:40 GeV2� � 0:417x�0:793�1� 2:466

���
x
p

� 3:855x��1� x�4:454: (40)

The input scale �2 � 0:40 GeV2 is obtained from using
next-to-leading order QCD evolution.

For the real photon, we use the analytic parametrization
presented in [65]. The photon’s quark distribution consists
of a perturbative pointlike contribution and a nonperturba-
tive hadronic contribution. The former is chosen to vanish
at the input scale �2 � 0:40 GeV2. The hadronic piece is
determined using a vector meson dominance model [66],
and by relating the quark distributions in vector mesons to
-8
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FIG. 4 (color online). Vector pion-photon transition distribu-
tion amplitude. The function VR�x; �; t� is plotted at fixed t �
�0:10 GeV2 for a few values of �. Notice the distribution is only
qualitatively x antisymmetric.
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those in the pion. For the down quark distribution of the
photon

d��x� �
1

4�
G2
dd

�0
�x�; (41)

where G2
d � 0:25, and d�

0
� 1

2 �d
�� � d�

�
�. In terms of

the parametrized forms for the pion parton distribution
used above, d�

0
� 1

4 
v
�� � 4q�

�
�.

The terms motivated by the positivity bound in the
region � < x < 1 all concern the quark distributions of
the pion and photon and hence contribute to the transition
distribution amplitudes in the kinematic region �� < x <
1. Assuming the distributions vanish outside this range is
inconsistent with the partonic input. To arrive at the anti-
quark contributions in the kinematic region �1< x< �,
we make a similar set of Ansätze by considering the
positivity bound in the region �1< x<��. In this re-
gion, we have

���� x�jMV;A�x; �; t�j 

������������������������������������������������
d�
�
x� �
1� �

�
u�

�

�
x� �
1� �

�s
:

(42)

In terms of the parametrizations used above, u�
�
�x� �

q�
�
�x� and d��x� � d��x�. For lack of more information,

we are forced to assume the antiquark contributions have
the same t-dependence as the quark contributions, and thus
take the antiquark distributions to be of the form

W R�
;�; t� � NV
W�
;�; t�R1�


�1�
 d�W�
;�; 0�

����������������������������
d��
�u�

�
�
�

q
;

(43)

for the vector distribution and

BR�
;�; t� � NA

B�
;�; t�R1�


�1�
 d�B�
;�; 0�

����������������������������
d��
�u�

�
�
�

q
;

(44)

for the axial-vector distribution. A factor of 
 has been
inserted because the axial distribution becomes singular if
one saturates the positivity bound in the forward limit. We
have defined these functions for positive 
 but have used a
barred notation to remind the reader that they are antiquark
contributions. The realistic transition distribution ampli-
tudes are formed from the barred and unbarred double
distributions via

VR�x; �; t� �
Z 1

0
d


Z 1�


�1�


��x� 
� ���WR�
;�; t�

� ��x� 
� ���WR�
;�; t��; (45)

AR�x; �; t� �
Z 1

0
d


Z 1�


�1�


��x� 
� ���BR�
;�; t�

� ��x� 
� ���BR�
;�; t��; (46)
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where the minus sign arises from the opposite ordering of
the antiquark creation and annihilation operators, see [12].

Using these parametrized parton distribution functions
in the Ansätze equations (34), (37), (43), and (44), we can
determine the constants NV and NA by using the experi-
mental numbers for FV�0� derived from conservation of
vector current, and FA�0�. Using FV�0� � 0:0259, and
FA�0� � 0:0115 [56], we find NV � 0:33 and NA � 0:48.
There is no reason to suppose that the constituent quark
mass parameter m remains the same when augmenting the
double distribution with parametrized quark distributions.
Just as we did for the basic model, we can determine m for
the realistic model by requiring a reasonable fit to the small
momentum transfer behavior of the pion-photon transition
form factor F���t�. In Fig. 3, we have shown the form
factor determined from VR�x; �; t� for the value m �
0:20 GeV, as well as the earlier fit, and the empirical dipole
form. We are able to match the low momentum behavior of
the transition form factor. Having determined the model
parameters for the vector and axial-vector distributions in
Eqs. (45) and (46), we can now plot the estimates of
transition distribution amplitudes. The vector distribution
VR�x; �; t� is plotted as a function of x at fixed t �
�0:10 GeV2 for a few values of � in Fig. 4. The same is
done in Fig. 5 for the function AR�x; �; t�. One should note
that, in the symmetric kinematics, we have the relation

t � �
�2
? � 2��1� ��M2

�

1� �2 : (47)

Thus for fixed t, we must have

�
1

1� 2M2
�=t
 �  1; (48)

and unlike the case of deeply virtual Compton scattering,
the maximal skewness is not kinematically restricted. In
-9
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the figures, the minimal skewness at t � �0:10 GeV2 is
�min � �0:72. We have not plotted the distributions for
negative values of �. In our model the differences between
distributions at positive and negative values of � are mini-
mal. The approximate �-symmetry that emerges is due to
the factorization Ansätze which evaluate the pion and
photon parton distributions symmetrically.

V. CONCLUSION

Above we have written the vector and axial-vector pion-
photon transition distribution amplitudes in terms of tran-
sition double distributions. These double distributions
were defined from the matrix elements of the relevant
twist-two operators. For the axial-vector transition distri-
bution, we determined the form of a model-independent
contribution depending on the pion light-cone distribution
amplitude from chiral perturbation theory.

Using a quark model, we calculated the transition double
distributions, and demonstrated that the falloff of the pion-
photon electromagnetic transition form factor could be
well reproduced by tuning the constituent quark mass
parameter. Motivated by the positivity bounds, we then
took a factorized Ansatz for the double distributions in
order to establish the renormalization scale of the model,
and to incorporate parametrized parton distributions with
realistic x-dependence. Model parameters were then re-
094001
tuned to produce the pion-photon electromagnetic transi-
tion form factor and the pion axial form factor. We then
plotted the resultant input distributions which should lead
to reasonable phenomenological estimates for pion-photon
transitions in the scaling regime. It would be interesting to
compare our estimates with other calculations. There are a
number of existing realistic studies of pion structure that
could be extended to transition distributions amplitudes,
e.g., [67–71].

Improving the factorization Ansatz employed above may
ultimately be necessary to best describe the x, �, and t
dependence of the data. There is ample room for improve-
ment, e.g., we assumed the same t-dependence and abso-
lute normalization for quark and antiquark contributions.
More realistic models, data from lattice QCD, and experi-
mental data can help to motivate better input parametriza-
tions. Furthermore the only difference between vector and
axial-vector distributions in our model arises from the spin
structure of the valence light-cone wave functions, whereas
realistically the difference stems from the interference
from all Fock components. One needs to address whether
our approximation is good enough for the input distribu-
tions at a low scale. We already found suggestions of
sizable interference between Fock components in the axial
distribution. Finally approximate �-symmetry of the dis-
tributions emerges due to the simplicity of our Ansätze.
Better input parametrizations must address how to treat the
initial and final states differently in a covariant fashion.

The study of off-diagonal exclusive reactions leads to
phenomenology involving generalized parton distribu-
tions. Unlike ordinary parton distributions, input parame-
trizations cannot simply be written down at will, as
constraints on the distributions are nontrivial. Using double
distributions, we have formulated a basic input parametri-
zation for pion-photon transition distribution amplitudes.
Contact with future data, lattice QCD data, or other models
will help one to tune this type of input parametrization.
This procedure in turn gives one a better sense of how to
construct reasonable input parametrizations of generalized
parton distributions in general.
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